JPS61240669A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS61240669A
JPS61240669A JP8183185A JP8183185A JPS61240669A JP S61240669 A JPS61240669 A JP S61240669A JP 8183185 A JP8183185 A JP 8183185A JP 8183185 A JP8183185 A JP 8183185A JP S61240669 A JPS61240669 A JP S61240669A
Authority
JP
Japan
Prior art keywords
channel
ground electrode
electrode
output
semiconductor integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8183185A
Other languages
Japanese (ja)
Other versions
JPH0523067B2 (en
Inventor
Tetsuo Asano
哲郎 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8183185A priority Critical patent/JPS61240669A/en
Publication of JPS61240669A publication Critical patent/JPS61240669A/en
Publication of JPH0523067B2 publication Critical patent/JPH0523067B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/082Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including bipolar components only
    • H01L27/0821Combination of lateral and vertical transistors only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To absorb a leakage current from an output transistor into a ground electrode irrespective of other wiring, by dividing the power source electrode and by surrounding the output transistor by the ground electrode to which the source electrode is connected through cross wiring. CONSTITUTION:Output transistors of a first channel of the semiconductor integrated circuit consist of two NPN transistors 1, 2 arrayed side by side, constituting SEPP (single end push-pull). The output transistors are surrounded by respective separating regions to be separated. The ground electrode 14 which surrounds three sides of the output transistors of each channel is made ohmic contact to the separating regions, and the power source electrode is divided and extended. Wiring to small-signal circuits of each channel from the power source electrodes 7, 15 adopts cross wiring structure. The ground electrode 14 is connected through the cross wiring which utilizes the separating regions under the power source electrodes 7, 15. Leakage current from the respective NPN transistors 1, 2 is directly absorbed into the ground electrode 14 through the separating regions.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は半導体集積回路、特[2チャンネルのアンプ回
路を内蔵する半導体集積回路の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a semiconductor integrated circuit, and more particularly to an improvement in a semiconductor integrated circuit incorporating a two-channel amplifier circuit.

(ロ)従来の技術 半導体集積回路はその構造上高耐圧トランジスタを形成
するのが困離であり、アンプ回路を形成するにあたりB
TL接続による出力アンプを図ることが良く用いられる
。斯る公知文献と[2ては「ステレオ再生装置」、鈴木
健著、日刊工業新聞社発行(昭和45年11月)の第1
89頁にBTL接続が記載されている。
(b) Conventional technology It is difficult to form high-voltage transistors in semiconductor integrated circuits due to their structure, and B
It is often used to create an output amplifier using a TL connection. Such known documents and [2] "Stereo Reproducing Device", written by Ken Suzuki, published by Nikkan Kogyo Shimbun (November 1970), Volume 1
BTL connections are described on page 89.

一般的にBTL接続は以下に説明する出力分割型(第3
図)とNFフローティング型(第4図)とがある。出力
分割型のBTL接続は非反転アンプ61)の入力端子I
Nに入力信号な印加l〜、帰還端子NFをコンデンサを
介1〜て接地し、出力端子OU Tより出力信号を得て
いる。一方反転アンプに)の入力端子INを接地し、帰
還端子NFには非反斬アンプ01)の出力信号を分割抵
抗およびコンデンサを介して帰還させている。そして負
荷RLは両アンプG9(ハ)の出力端子間に接続されて
2倍の出力信号を得ている。
In general, BTL connections are of the output split type (third
There are two types: the NF floating type (Fig. 4) and the NF floating type (Fig. 4). The output split type BTL connection is the input terminal I of the non-inverting amplifier 61).
An input signal is applied to N, the feedback terminal NF is grounded via a capacitor, and an output signal is obtained from the output terminal OUT. On the other hand, the input terminal IN of the inverting amplifier (01) is grounded, and the output signal of the non-inverting amplifier (01) is fed back to the feedback terminal NF via a dividing resistor and a capacitor. The load RL is connected between the output terminals of both amplifiers G9 (c) to obtain twice the output signal.

NFフローティング型のB T L接続は非反転アンプ
6Dの入力端子INに入力な印加1−21反転アンブ(
イ)の入力端子INを接地し、両アンプ09に)の帰還
端子NFをコンデンサと抵抗で接続し、両アンプ0→(
イ)の出力端子OUT間に負荷R,,を接続している。
The NF floating type BTL connection is applied to the input terminal IN of the non-inverting amplifier 6D.
Ground the input terminal IN of A), connect the feedback terminal NF of A) to both amplifiers 09 with a capacitor and resistor, and connect both amplifiers 0 to (
A load R, , is connected between the output terminal OUT of (b).

斯上したBTL接続をした2チャンネルのアンプ回路を
組み込んだ半導体集積回路に於いては、第5図の如く各
チャンネルのアンプ回路の出力トランジスタを形成して
いる。第1チャンネルのアンプ回路の出力トランジスタ
はチップの上半分に形成され、第2チャンネルのアンプ
回路の出力トランジスタはチップの下半分に形成されて
いる。
In a semiconductor integrated circuit incorporating a two-channel amplifier circuit with BTL connection as described above, the output transistor of each channel amplifier circuit is formed as shown in FIG. The output transistor of the first channel amplifier circuit is formed in the upper half of the chip, and the output transistor of the second channel amplifier circuit is formed in the lower half of the chip.

第1チャンネルの出力トランジスタは左右に並んだ2個
のNPN)ランジスタ@1に)で形成され、こノトラン
シスタ01)に)を5EPP(シングルエンドプッシュ
プル)を構成する様に接続される。左側のNPNトラン
ジスタ01)のコレクタ電極(財)はVcc電源電極(
ロ)に接続され、ベース電極に)は前段の増1]回路へ
接続され、エミッタ電極に)は第1チャンネルの出力端
子(4ηに接続されている。右側のNPNトランジスタ
θ諸のコレクタ電極(財)は第1チャンネルの出力端子
0′i)に接続され、ベース電極00は前段の増巾回路
へ接続され、エミッタ電極■はグランド電極51)に接
続されている。なお第2チャンネルの出力トランジスタ
も第1チャンネルと線対称に形成されている。等価回路
は第6図に示す様になる。
The output transistor of the first channel is formed by two NPN transistors arranged on the left and right, which are connected to the transistor 01) to form a 5EPP (single-ended push-pull). The collector electrode of the left NPN transistor 01) is the Vcc power supply electrode (
b) is connected to the base electrode, the emitter electrode) is connected to the output terminal (4η) of the first channel, and the collector electrode of the NPN transistors θ on the right ( The electrode 0' is connected to the output terminal 0'i) of the first channel, the base electrode 00 is connected to the amplifying circuit at the previous stage, and the emitter electrode 2 is connected to the ground electrode 51). Note that the output transistor of the second channel is also formed line-symmetrically with the first channel. The equivalent circuit is shown in FIG.

斯る半導体集積回路では各チャンネルの出力トランジス
タは各々分離領域で囲まれて分離され、チップの右端の
分離領域上に分離領域とオーミック接触したグランド電
極51)を設け、電源電極(財)は両チャンネル共通に
形成されていた。
In such a semiconductor integrated circuit, the output transistors of each channel are surrounded and separated by isolation regions, and a ground electrode 51) in ohmic contact with the isolation region is provided on the isolation region at the right end of the chip. It was formed in common for all channels.

(ハ)発明が解決しようどする問題点 しかしながら斯る半導体集積回路ではグランド電極15
1)をチップの右端の分離領域のみでコンタクトさせて
いるので、大電流を取扱う出力トランジスタの寄生電流
をグランド電極61)より十分に吸い出すことができな
く、寄生効果を発生し易い欠点があった。
(c) Problems to be solved by the invention However, in such a semiconductor integrated circuit, the ground electrode 15
1) is contacted only in the isolation region at the right end of the chip, so the parasitic current of the output transistor that handles large currents cannot be sufficiently sucked out from the ground electrode 61), which has the disadvantage that parasitic effects are likely to occur. .

に)問題点を解決するための手段 本発明は斯る欠点に鑑みてなされ、グランド電極t51
)で各チャンネルの出力トランジスタを囲むことにより
、従来の欠点を大巾に改善した半導体集積回路を実現す
ることを目的としている。
B) Means for Solving the Problems The present invention has been made in view of such drawbacks, and the ground electrode t51
) by surrounding the output transistor of each channel, the aim is to realize a semiconductor integrated circuit that greatly improves the conventional drawbacks.

(ホ)作用 本発明に依れば各チャンネルの出力トランジスタをグラ
ンド電極Gυで囲むことにより、出力トランジスタから
の漏れ電流を基板と導通したグランド電極61)で直ち
に吸い出すことができ寄生効果を防止できるのである。
(E) Effect According to the present invention, by surrounding the output transistor of each channel with the ground electrode Gυ, the leakage current from the output transistor can be immediately sucked out by the ground electrode 61) which is electrically connected to the substrate, and parasitic effects can be prevented. It is.

(へ)実施例 本発明の一実施例を第1図および第2図を参照して詳述
する。
(F) Embodiment An embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2.

本発明に依る半導体集積回路には2チャンネルのアンプ
回路を組み込んで形成され、各チャンネルのアンプ回路
の出力トランジスタは第1図のように形成されている。
A semiconductor integrated circuit according to the present invention is formed by incorporating a two-channel amplifier circuit, and the output transistor of the amplifier circuit of each channel is formed as shown in FIG.

即ち、第1チャンネルのアンプ回路はテップの上半分に
形成され、左側に位置する第1チャンネルの小信号系回
路と右側に位置する出力トランジスタより構成され、第
2チャンネルのアンプ回路も同様の配置でチップの下半
分に形成されている。第1チャンネルの出力トランジス
タは左右に並んだ2個のNPN )ランジスタ(1)(
2)で形成され、このトランジスタ(1)(2)を5E
PP(シングルエンドプツシ−プル)を構成する様に接
続されている。各トランジスタは実線で示すコレクタ領
域(3)内に複数個のベース領域(4)およびエミッタ
領域(5)を形成1.、点線で示す電極で所望の接続を
行っている。左側のNPN )ランジスタ(1)のコレ
クタ電極(6)は第1のVcc電源電極(7)に接続さ
れ、ベース電極(8)は前段の小信号系の増巾回路へ接
続され、エミッタ電極(9)は第1チャンネルの出力端
子α1に接続されている。右側のNPNトランジスタ(
2)のコレクタ電極(ロ)は第1チャンネルの出力端子
(ト)に接続され、ベース電極@は前段の小信号系の増
巾回路へ接続され、エミッタ電極(ト)ハ両チャンネル
共通のグランド電極α→に接続されている。なお第2チ
ャンネルの出力トランジスタも第1チャンネルと線対称
に形成されている。
That is, the first channel amplifier circuit is formed in the upper half of the step, and consists of the first channel small signal circuit located on the left side and the output transistor located on the right side, and the second channel amplifier circuit has a similar arrangement. is formed in the lower half of the chip. The output transistor of the first channel consists of two NPN ) transistors (1) (
2), and these transistors (1) and (2) are 5E
They are connected to form a PP (single-ended pushpull). Each transistor has a plurality of base regions (4) and emitter regions (5) formed in a collector region (3) indicated by a solid line.1. , the desired connections are made with the electrodes indicated by dotted lines. The collector electrode (6) of the left NPN ) transistor (1) is connected to the first Vcc power supply electrode (7), the base electrode (8) is connected to the previous stage small signal amplifier circuit, and the emitter electrode ( 9) is connected to the output terminal α1 of the first channel. The NPN transistor on the right (
The collector electrode (b) of 2) is connected to the output terminal (g) of the first channel, the base electrode @ is connected to the small signal amplifier circuit in the previous stage, and the emitter electrode (g) is connected to the common ground for both channels. Connected to electrode α→. Note that the output transistor of the second channel is also formed line-symmetrically with the first channel.

本発明の特徴はグランド電極0荀の配置にある。A feature of the present invention lies in the arrangement of the ground electrodes.

各チャンネルの出力トランジスタは各々分離領域で囲ま
れて分離され、グランド電極α侶ま各チャンネルの出力
トランジスタの3辺を囲んでいる。この3辺とは第1チ
ャンネルの出力トランジスタの上辺および第2チャンネ
ルの出力トランジスタの下辺を除く3辺である。グラン
ド電極6局はその下にある分離領域とオーミック接触し
、従来共通としていたVcc電源電極を分割してその間
にも延在されている。なお第1および第2 Vcc電源
電極(至)Qeから各チャンネルへの小信号系回路への
配線は第2図に示す如く、クロス配線構造を採用してい
る。第2図に於いて、翰はP型半導体基板、01)はN
Wエピタキシャル層に拡散されたP+型分離領域、(イ
)は酸化膜、0侶1グランド電極、(7)(至)は第1
および第2のVcc電源電極である。斯上した構造によ
りグランド電極Q41はクロス配線を介して3辺とも接
続され、チップの右端に設けたグランド電極(l→より
ボンディングワイヤーを介して外部ピンと接続されてい
る。更にクロス配線として第1および第2 Vcc電源
電極(7)(至)下の大きい面積の分離領域Q1)を利
用しているので、かなり低抵抗の導電バスを形成でき離
間したグランド電極6局を低抵抗で接続している。なお
りロス配線部分に第1および第2 Vcc電源電極(7
)Qeからは各チャンネルの小信号系回路に配線ライン
を形成している。
The output transistors of each channel are surrounded and separated by isolation regions, and the ground electrode α surrounds three sides of the output transistor of each channel. These three sides are the three sides excluding the upper side of the first channel output transistor and the lower side of the second channel output transistor. The six ground electrodes are in ohmic contact with the isolation region below, and the Vcc power supply electrode, which has been common in the past, is divided and extended between them. Note that the wiring from the first and second Vcc power supply electrodes (to) Qe to the small signal circuits for each channel employs a cross wiring structure as shown in FIG. In Figure 2, the wire is a P-type semiconductor substrate, and 01) is an N-type semiconductor substrate.
P+ type isolation region diffused in W epitaxial layer, (a) is oxide film, 0-1 ground electrode, (7) (to) is first
and a second Vcc power supply electrode. With the above structure, the ground electrode Q41 is connected to all three sides via cross wiring, and is connected to an external pin via a bonding wire from the ground electrode (l→) provided at the right end of the chip. Since a large-area isolation region Q1) under the second Vcc power supply electrode (7) is used, a conductive bus with considerably low resistance can be formed, and the six separated ground electrodes can be connected with low resistance. There is. The first and second Vcc power supply electrodes (7
) A wiring line is formed from Qe to the small signal circuit of each channel.

斯上した本発明の構造に依れば、各チャンネルの出力ト
ランジスタ即ち2個のNPN )ランジスタ(1)(2
)は上辺あるいは下辺を除く3辺をグランド電極6局で
囲まれており、各NPNトランジスタ(1)(2)から
の漏れ電流は直ちに分離領域を介してグランド電極α→
に吸い出される。
According to the structure of the present invention described above, the output transistors of each channel, that is, two NPN) transistors (1) (2)
) is surrounded by six ground electrodes on three sides except the top or bottom, and the leakage current from each NPN transistor (1) and (2) immediately flows through the separation area to the ground electrode α →
is sucked out.

なおグランド電極αくを設けない一辺はチップの上辺あ
るいは下辺に隣接しているので漏れ電流は小信号系回路
へ流出するおそれは少なく、この辺から前段の小信号系
回路への配線を導出している。
Note that the side on which the ground electrode is not provided is adjacent to the top or bottom side of the chip, so there is little risk of leakage current flowing to the small signal circuit, and the wiring to the previous small signal circuit is derived from this side. There is.

(ト)発明の効果 本発明に依れば電源電極を分割して各チャンネルの出力
トランジスタの3辺をグランド電極04で囲んでいるの
で、出力トランジスタの漏れ電流を直ちにグランド電極
0→で吸収でき、寄生効果を防止できる利点を有する。
(g) Effects of the Invention According to the present invention, since the power supply electrode is divided and three sides of the output transistor of each channel are surrounded by the ground electrode 04, the leakage current of the output transistor can be immediately absorbed by the ground electrode 0. , which has the advantage of preventing parasitic effects.

また電源電極(7)(至)からの配線層(至)とグラン
ド電極α菊とはクロス配線構造を採っているので、他の
配線に関係なくグランド電極a→で各チャンネルの出力
トランジスタを囲むことができ、設計上の制約も少ない
利点を有する。
Also, since the wiring layer (to) from the power supply electrode (7) (to) and the ground electrode α have a cross wiring structure, the output transistor of each channel is surrounded by the ground electrode a → regardless of other wiring. It has the advantage of having fewer design restrictions.

更に本発明ではクロス配線を第1および第2電源電極・
(7)(至)下の分離領域で形成するため余分なスペー
スを必要とせず、パターン面積の増大を防止できる利点
を有する。
Furthermore, in the present invention, the cross wiring is connected to the first and second power supply electrodes.
(7) Since it is formed in the lower isolation region, it does not require extra space and has the advantage of preventing an increase in pattern area.

更にまた本発明ではBTL接続した2チャンネルのアン
プ回路を安定して得られ、半導体集積回路の応用範囲を
大巾に拡大できる利点を有する。
Furthermore, the present invention has the advantage that a BTL-connected two-channel amplifier circuit can be stably obtained, and the range of application of semiconductor integrated circuits can be greatly expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に依る半導体集積回路を説明する上面図
、第2図は本発明に用いたクロス配線構造を説明する断
面図、第3図及び第4図は一般的なりTL接続を説明す
る回路図、第5図は従来の半導体集積回路を説明する上
面図、第6図は第5図の等価回路図である。 主な図番の説明 (1)(2)はNPN )ランジスタ、 (7)は第1
のVcc電源電極、 00は第1チャンネルの出力端子
、(14)&まグランド電極、 Qeは第2のVcc電
源電極である。
Fig. 1 is a top view illustrating a semiconductor integrated circuit according to the present invention, Fig. 2 is a sectional view illustrating a cross wiring structure used in the present invention, and Figs. 3 and 4 are illustrating general TL connections. FIG. 5 is a top view illustrating a conventional semiconductor integrated circuit, and FIG. 6 is an equivalent circuit diagram of FIG. Explanation of main drawing numbers (1) (2) are NPN) transistors, (7) is 1st
00 is the output terminal of the first channel, (14) & is the ground electrode, and Qe is the second Vcc power electrode.

Claims (1)

【特許請求の範囲】[Claims] (1)SEPP(シングルエンドプッシュプル)回路を
構成する出力トランジスタを含む2チャンネルのアンプ
回路を組込んだ半導体集積回路に於いて、各アンプ回路
の出力トランジスタを囲む様に分離領域にオーミック接
触したグランド電極を設け、各アンプ回路の出力トラン
ジスタ共通の電源電極を前記グランド電極で分割し、前
記電源電極からの配線ラインで分割されたグランド電極
を電源電極下に設けた分離領域を用いてクロスオーバー
させて接続することを特徴とする半導体集積回路。
(1) In a semiconductor integrated circuit incorporating a two-channel amplifier circuit including an output transistor forming a SEPP (single-ended push-pull) circuit, ohmic contact is made with the isolation region surrounding the output transistor of each amplifier circuit. A ground electrode is provided, a power supply electrode common to the output transistors of each amplifier circuit is divided by the ground electrode, and the ground electrode divided by the wiring line from the power supply electrode is crossed over using a separation area provided under the power supply electrode. 1. A semiconductor integrated circuit characterized by being connected in a straight line.
JP8183185A 1985-04-17 1985-04-17 Semiconductor integrated circuit Granted JPS61240669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8183185A JPS61240669A (en) 1985-04-17 1985-04-17 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8183185A JPS61240669A (en) 1985-04-17 1985-04-17 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS61240669A true JPS61240669A (en) 1986-10-25
JPH0523067B2 JPH0523067B2 (en) 1993-03-31

Family

ID=13757418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8183185A Granted JPS61240669A (en) 1985-04-17 1985-04-17 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS61240669A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984542A (en) * 1982-11-08 1984-05-16 Nec Corp High-frequency semiconductor integrated circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984542A (en) * 1982-11-08 1984-05-16 Nec Corp High-frequency semiconductor integrated circuit

Also Published As

Publication number Publication date
JPH0523067B2 (en) 1993-03-31

Similar Documents

Publication Publication Date Title
KR860007750A (en) Semiconductor devices
JPH049378B2 (en)
JPS61240669A (en) Semiconductor integrated circuit
US4051443A (en) Differential amplifier
JPS61240668A (en) Semiconductor integrated circuit
JPH0475371A (en) Semiconductor integrated circuit
JPH0526769Y2 (en)
JP3028362B2 (en) Semiconductor device and hybrid integrated circuit device incorporating the semiconductor device
JP3084474B2 (en) Composite semiconductor element and circuit device using the same
JPH069505Y2 (en) Pulse generator circuit device
JPS6237540B2 (en)
JPH0472755A (en) Compound semiconductor integrated device
JP3435937B2 (en) Semiconductor device
JP3038723B2 (en) Semiconductor circuit device
JPS5833707Y2 (en) transistor circuit device
JPH02260561A (en) Semiconductor device
JPS63179572A (en) Bipolar transistor
JP3370946B2 (en) Semiconductor circuit
JPS5837698B2 (en) Transistor chiro-souch
JPS60158657A (en) Semiconductor device
JPS6250065B2 (en)
JPS63229855A (en) Semiconductor integrated circuit
JPS6138618B2 (en)
JPS61152071A (en) Multistage darlington semiconductor device
JPH06204372A (en) Power transistor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees