JPS61240225A - Optical element - Google Patents

Optical element

Info

Publication number
JPS61240225A
JPS61240225A JP60081907A JP8190785A JPS61240225A JP S61240225 A JPS61240225 A JP S61240225A JP 60081907 A JP60081907 A JP 60081907A JP 8190785 A JP8190785 A JP 8190785A JP S61240225 A JPS61240225 A JP S61240225A
Authority
JP
Japan
Prior art keywords
layer
coloring
optical element
combination
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60081907A
Other languages
Japanese (ja)
Inventor
Kumiko Hirochi
廣地 久美子
Makoto Kitahata
真 北畠
Osamu Yamazaki
山崎 攻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60081907A priority Critical patent/JPS61240225A/en
Publication of JPS61240225A publication Critical patent/JPS61240225A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To obtain an optical element simple in structure, high in coloring speed and coloring intensity, and power consumption efficiency by laminating one or more combinations of a transparent electrode, a coloring layer, and an ion-feeding thin layer, and forming an electrode at the uppermost part. CONSTITUTION:The thin transparent electrode 12 made of ITO for transmitting the visible light is formed on a quartz base glass 11, on this layer, the coloring layer 13 made of a mixture of oxides of lithium and tungsten is formed by sputtering, and then, the ion-feeding thin layer 14 is formed on the layer 13 by sputtering, thus the first combination 15 composed of 12, 13, and 14 is formed. Next, the second combination 15' composed of 12, 13, and 14, and further, the third combination 15'', and the fourth combination 15''' are laminated on the first combination 15, and finally forming the electrode 16 on the ion-feeding thin layer 14 of the fourth combination 15''' of the 4 laminated combinations to prepare the optical element.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は記録材料や表示素子に用いられる高速駆動可能
な光学素子に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical element that can be driven at high speed and is used in recording materials and display elements.

従来の技術 従来記録材料や表示素子に用いられている光学素子は1
第2図に示す如く、二つの石英ガラスの如き基板1およ
び1′上にそれぞれの透明電極2および2′を設けたも
のを対向せしめ1一方の電極2上に発色層3として例え
ば酸化タングステン(WOI)層を設け、両電極2およ
び2′の周    □囲をシール材4で封止し、発色層
3と対向電極2′との間にイオン供給源5を封入して構
成されている。
Conventional technology The optical elements conventionally used in recording materials and display elements are 1
As shown in FIG. 2, two transparent electrodes 2 and 2' are provided on two substrates 1 and 1' made of quartz glass, respectively, and are placed facing each other. WOI) layer is provided, the periphery of both electrodes 2 and 2' is sealed with a sealing material 4, and an ion supply source 5 is enclosed between the coloring layer 3 and the counter electrode 2'.

上述した構成の従来の光学素子のイオン供給源5として
は例えばINのH、so、水溶液電解質、あるいはLL
WOaの如き固体電解質1ポリオレフインフイルムの如
き絶縁体が使用されている。
Examples of the ion source 5 of the conventional optical element having the above-described structure include IN H, SO, aqueous electrolyte, or LL.
Solid electrolytes such as WOa and insulators such as polyolefin films have been used.

上述した如き構成の従来の光学素子においては1電極2
′を正に、電極2を負にして電圧を印加するとイオン供
給源5の電解質が解離して、陽イオンが発色層3中に侵
入して、界面付近で光吸収体を生じて発色し、また逆の
電圧を印加すると脱色する。
In the conventional optical element having the configuration as described above, one electrode and two
' is positive and electrode 2 is negative and a voltage is applied, the electrolyte of the ion supply source 5 dissociates, cations enter the coloring layer 3, a light absorber is generated near the interface, and color is generated. Moreover, when the opposite voltage is applied, the color is bleached.

発明の解決しようとする問題点 上述した従来の光学素子においては1印加電圧が低い場
合には発色層3での着色強度は注入電荷量に比例するが
、着色速度は印加電圧が大きくなる程速くなる。このた
め着色速度を速くする1即ち高速駆動を可能にするため
、印加電圧を大にすると、着色強度が飽和する傾向を有
し、このため着色強度に限界を生じ、しかも最大着色強
度に達するのに数百m5eoも要し、着色に関与しない
漏洩電流が増大する0このため上述した如き従来の光学
素子では、速度を大にするためには多くの電流を必要と
するばかりでなく、そのときの注入電荷量に対する着色
効率が悪いという欠点を有していた。このためかかる光
学素子の実用範囲が非常に狭くなっていた。
Problems to be Solved by the Invention In the conventional optical element described above, when the applied voltage is low, the coloring intensity in the coloring layer 3 is proportional to the amount of charge injected, but the coloring speed increases as the applied voltage increases. Become. Therefore, if the applied voltage is increased in order to increase the coloring speed (1), that is, to enable high-speed driving, the coloring intensity tends to be saturated, which limits the coloring intensity and makes it difficult to reach the maximum coloring intensity. For this reason, in the conventional optical element as described above, not only a large amount of current is required to increase the speed, but also a large amount of current is required to increase the speed. It had a drawback that the coloring efficiency was poor with respect to the amount of charge injected. For this reason, the practical range of such optical elements has become extremely narrow.

従って本発明は上述した欠点を克服した光学素子、即ち
簡易な構造で、着色速度が速く、また着色強度も大であ
り、電力消費も効率的な光学素子を提供することにある
Therefore, the object of the present invention is to provide an optical element that overcomes the above-mentioned drawbacks, that is, an optical element that has a simple structure, has a fast coloring speed, a high coloring intensity, and is efficient in power consumption.

問題点を解決するための手段 本発明は可視光を透過する透明電極上に発色層1その上
にイオン供給源薄層を設け、上記透明電極1発色層およ
びイオン供給源薄層の組合せを更に一つ以上槽重させ、
最上部に電極を設けたことを特徴とする光学素子にある
Means for Solving the Problems The present invention provides a color forming layer 1 on a transparent electrode that transmits visible light, and an ion source thin layer thereon, and a combination of the transparent electrode 1 color forming layer and ion source thin layer. Add one or more tanks,
An optical element is characterized in that an electrode is provided at the top.

可視光を透過する透明電極としては、従来より一般に使
用されている透明電極、例えば工TO薄膜を使用できる
。なおこの透明電極が自己支持性でない場合には、この
透明電極を適当な透明または不透明基体上に設けてもよ
い。
As the transparent electrode that transmits visible light, a conventionally commonly used transparent electrode, such as a TO thin film, can be used. If the transparent electrode is not self-supporting, the transparent electrode may be provided on a suitable transparent or opaque substrate.

本発明によれば、上記発色層としてリチウムとタングス
テンの混合酸化物のアルゴン雰囲気中で形成したスパッ
タ膜を使用し、またイオン供給源薄層としては上記リチ
ウムとタングステンの混合酸化物のアルゴン・酸素雰囲
気中で形成したスパッタ膜を用いるとよい。
According to the present invention, a sputtered film of a mixed oxide of lithium and tungsten formed in an argon atmosphere is used as the coloring layer, and an argon/oxygen film of the mixed oxide of lithium and tungsten is used as the ion source thin layer. It is preferable to use a sputtered film formed in an atmosphere.

本発明によれば上述した透明電極、発色層およびイオン
供給源薄層の組合せを、二つ以上、所望数任意に組合せ
るのである。
According to the present invention, two or more of the above-mentioned combinations of the transparent electrode, the coloring layer, and the ion source thin layer are arbitrarily combined in a desired number.

また上記発色層およびイオン供給源薄層の合計の厚さは
2000A以下にするとよい。
Further, the total thickness of the coloring layer and the ion source thin layer is preferably 2000A or less.

本発明によれば、上述した如く透明電極1発色層および
イオン供給源薄層の組合せを複数積重させ1最後に最上
部のイオン供給源薄層上に電極を設ける。
According to the present invention, as described above, a plurality of combinations of the transparent electrode 1 coloring layer and the ion source thin layer are stacked, and the electrode is finally provided on the uppermost ion source thin layer.

この電極は上述した透明電極と同じ材料で構成しても良
い、あるいは全薄膜の不透明電極であっても良い。また
この電極の上には必要に応じて透明または不透明の基体
を設けてもよい。
This electrode may be constructed of the same material as the transparent electrode described above, or may be an entirely thin film opaque electrode. Further, a transparent or opaque base may be provided on this electrode as necessary.

作  用 本発明において、上述した如く発色層としてリチウムと
タングステンの混合酸化物のアルゴン雰囲気中で形成し
たスパッタ膜を使用し、イオン供給源薄層として上記リ
チウムとタングステンの混合酸化物のアルゴン・酸素雰
囲気中で形成したスパッタ膜を使用するのは、これら両
層(膜)の形成中、層(膜)間の相互拡散を最小にする
ことができること、および薄い膜厚で形成できるからで
ある0またこの両層の厚さを2000A以下にすると印
加電圧を減少させることができ、電力消費を低減させる
ことができるからである。
Function In the present invention, as described above, a sputtered film of a mixed oxide of lithium and tungsten formed in an argon atmosphere is used as the coloring layer, and a sputtered film formed in an argon atmosphere of a mixed oxide of lithium and tungsten is used as the ion source thin layer. The reason why a sputtered film formed in an atmosphere is used is that during the formation of these two layers (films), mutual diffusion between the layers (films) can be minimized, and the film can be formed with a thin film thickness. Further, if the thickness of both layers is set to 2000 A or less, the applied voltage can be reduced, and power consumption can be reduced.

本発明は上述した如く、透明電極、発色層およびイオン
供給源薄層の組合せをに組以上多数組積重させたことに
より、組合せの数に応じて本発明による光学素子に印加
すべき電圧は大きくする必要があるが1各組合せを構成
する各層の膜厚を薄く制御すれば、それに応じて上記電
圧を低くすることができる◇また各組合せの界面、即ち
一つの界面に対する電圧はその組合せの数に応じて低電
圧となるので漏洩電流が非常に少なくなり、低電力消費
も実現できる。
As described above, in the present invention, by stacking a plurality of combinations of a transparent electrode, a coloring layer, and an ion source thin layer, the voltage to be applied to the optical element according to the present invention can be adjusted according to the number of combinations. However, if the film thickness of each layer constituting each combination is controlled to be thin, the above voltage can be lowered accordingly.◇Also, the voltage to the interface of each combination, that is, one interface, is Since the voltage is low depending on the number of batteries, leakage current is extremely low, and low power consumption can also be achieved.

本発明の光学素子においては、各組合せへの注入電荷量
を従来の構成の光学素子の場合の注入電荷量と同じにな
るように、上記組合せの数に応じて光学素子に電圧を印
加すると、各組合せにおける着色強度とそれに達する速
度は同じであっても、組合せの数に応じて各組合せでの
界面の数が増大しているため、全体としての着色強度は
大となり、鮮明な表示が得られる。その結果として着色
強度の大なる鮮明な表示が速やかに達成できることにな
る0 また本発明に従い各層に特にイオン供給源薄層も固体薄
膜とすることにより1各層は容易に形成することができ
る。
In the optical element of the present invention, when a voltage is applied to the optical element according to the number of combinations so that the amount of charge injected into each combination is the same as the amount of charge injected in the case of an optical element with a conventional configuration, Even if the coloring intensity and the speed at which it is reached are the same for each combination, the number of interfaces in each combination increases according to the number of combinations, so the overall coloring intensity increases and a clear display can be obtained. It will be done. As a result, a clear display with high coloring intensity can be quickly achieved.Furthermore, according to the present invention, each layer, especially the ion source thin layer, is made of a solid thin film, so that each layer can be easily formed.

実施例 第1図は本発明による光学素子の一実施例を示す断面図
である。
Embodiment FIG. 1 is a sectional view showing an embodiment of an optical element according to the present invention.

第1図において11は可視光を透過する石英ガラスの基
板であり、その上に可視光を透過する透明電極12とし
ての工τO薄膜を形成した。
In FIG. 1, reference numeral 11 denotes a quartz glass substrate that transmits visible light, and a τO thin film serving as a transparent electrode 12 that transmits visible light was formed thereon.

次にその工To薄膜it極12上に発色層13としてリ
チウムとタングステンの混合酸化物のアルゴン雰囲気中
でスパッタリングにより厚さ1000Aのスパッタ膜を
形成した。次に上記発色層13上にイオン供給源薄層1
4として、リチウムとタングステンの混合酸化物のアル
ゴン・酸素雰囲気中でのスパッタリングにより厚さ10
08人のスパッタ膜を形成した。かくして、第一の透明
電極12、発色層13およびイオン供給源薄層14の組
合せ15を形成した。
Next, a sputtered film having a thickness of 1000 Å was formed on the thin film IT electrode 12 by sputtering a mixed oxide of lithium and tungsten in an argon atmosphere as a coloring layer 13. Next, the ion source thin layer 1 is placed on the coloring layer 13.
4, a mixed oxide of lithium and tungsten was sputtered to a thickness of 10 mm in an argon/oxygen atmosphere.
08 people formed sputtered films. Thus, a combination 15 of the first transparent electrode 12, the coloring layer 13 and the ion source thin layer 14 was formed.

次に上述した如くして第一の組合せ15の上に更に第二
の透明電極12、発色層13およびイオン供給源薄層1
4の組合せ15′を形成積重した。このようにして第2
図に示す如く1更に組合せ15/’/  および15″
を形成積重して\合計四つの組合せを積重し、最後の組
合せ15″のイオン供給源薄層14の上に電極16とし
て全薄膜を形成して光学素子を作った。
Next, as described above, a second transparent electrode 12, a color forming layer 13 and an ion source thin layer 1 are further applied on the first combination 15.
A combination 15' of 4 was formed and stacked. In this way the second
As shown in the figure 1 further combination 15/'/ and 15''
A total of four combinations were formed and stacked, and the entire thin film was formed as an electrode 16 on the ion source thin layer 14 of the last combination 15'' to make an optical element.

上述した如く作った光学素子の基板11上の工TO薄膜
電極12を電極とし、上記全薄膜16を正極として電圧
を印加した。これにより強力で鮮明な着色が生じた。電
圧の印加を正負逆にすることにより速やかに着色は消え
た。この例によれば発色層13およびイオン供給源薄層
14の膜厚を200OAとしたが実用に充分に酎えうる
電圧で着消色を実施でき、かつ従来より強力で鮮明な着
色を速やかに実現できた。
A voltage was applied using the TO thin film electrode 12 on the substrate 11 of the optical element produced as described above as an electrode and the entire thin film 16 as a positive electrode. This resulted in a strong and vivid coloration. The coloring quickly disappeared by reversing the positive and negative voltage applications. According to this example, the film thickness of the color forming layer 13 and the ion source thin layer 14 is set to 200 OA, but it is possible to perform coloring and decoloring at a voltage that is sufficient for practical use, and to quickly achieve stronger and clearer coloring than before. I was able to make it happen.

発明の効果 本発明によれば光学素子を1透明電極、発色層およびイ
オン供給源薄層の組合せを多数積重した構造に形成する
ことにより1着色強度の増大と、それに達するための速
度を大にすることができ、しかもそれを簡単な構造で実
現できるすぐれた効果が達成される0
Effects of the Invention According to the present invention, by forming an optical element into a structure in which a large number of combinations of a transparent electrode, a coloring layer, and a thin ion source layer are stacked, it is possible to increase the intensity of coloring and to increase the speed at which it is achieved. can be achieved with a simple structure and excellent effects can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光学素子の断面図であり、第2図
は従来の光学素子の断面図である。 11は基板、12は透明電極、13は発色層、14はイ
オン供給、源薄層、15 、15’、 15’。 15″はそれぞれ透明電極、発色層およびイオン供給源
薄層の組合せ、16は電極。 特許出願人  松下電器産業株式会社 第1図 第2図 1′
FIG. 1 is a sectional view of an optical element according to the present invention, and FIG. 2 is a sectional view of a conventional optical element. 11 is a substrate, 12 is a transparent electrode, 13 is a coloring layer, 14 is an ion supply and source thin layer, 15, 15', 15'. 15'' is a combination of a transparent electrode, a coloring layer and an ion source thin layer, and 16 is an electrode. Patent applicant Matsushita Electric Industrial Co., Ltd. Figure 1 Figure 2 Figure 1'

Claims (1)

【特許請求の範囲】 1、可視光を透過する透明電極上に発色層、その上にイ
オン供給源薄層を設け、上記透明電極、発色層およびイ
オン供給源薄層の組合せを更に一つ以上積重させ、最上
部に電極を設けたことを特徴とする光学素子。 2、発色層がリチウムとタングステンの混合酸化物のア
ルゴン雰囲気中でのスパッタ膜であり、イオン供給源薄
層がリチウムとタングステンの混合酸化物のアルゴン・
酸素雰囲気でのスパッタ膜である特許請求の範囲第1項
記載の光学素子。 3、発色層およびイオン供給源薄層の合計の厚さが20
00Å以下である特許請求の範囲第1項または第2項記
載の光学素子。
[Claims] 1. A color forming layer is provided on a transparent electrode that transmits visible light, and an ion source thin layer is provided on the transparent electrode, and one or more combinations of the above transparent electrode, color forming layer, and ion source thin layer are provided. An optical element characterized by being stacked and having an electrode at the top. 2. The coloring layer is a sputtered film of a mixed oxide of lithium and tungsten in an argon atmosphere, and the ion source thin layer is a sputtered film of a mixed oxide of lithium and tungsten in an argon atmosphere.
The optical element according to claim 1, which is a sputtered film in an oxygen atmosphere. 3. The total thickness of the coloring layer and ion source thin layer is 20
The optical element according to claim 1 or 2, which has a thickness of 00 Å or less.
JP60081907A 1985-04-17 1985-04-17 Optical element Pending JPS61240225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60081907A JPS61240225A (en) 1985-04-17 1985-04-17 Optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60081907A JPS61240225A (en) 1985-04-17 1985-04-17 Optical element

Publications (1)

Publication Number Publication Date
JPS61240225A true JPS61240225A (en) 1986-10-25

Family

ID=13759513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60081907A Pending JPS61240225A (en) 1985-04-17 1985-04-17 Optical element

Country Status (1)

Country Link
JP (1) JPS61240225A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989012844A1 (en) * 1988-06-16 1989-12-28 Eic Laboratories, Inc. Solid state electrochromic light modulator
USRE34469E (en) * 1987-06-18 1993-12-07 Eic Laboratories, Inc. Solid state electrochromic light modulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE34469E (en) * 1987-06-18 1993-12-07 Eic Laboratories, Inc. Solid state electrochromic light modulator
WO1989012844A1 (en) * 1988-06-16 1989-12-28 Eic Laboratories, Inc. Solid state electrochromic light modulator

Similar Documents

Publication Publication Date Title
US4135790A (en) Electrochromic element
US11927865B2 (en) Electrochromic device with side-by-side structure and application thereof
JPH04251826A (en) Electrochromic apparatus and radiation/heat protecting window, display element and reflecting mirror formed of electrochromic apparatus
US5260821A (en) Electrochromic system
JPS5781242A (en) All solid state complementary type electrochromic display element
US4303310A (en) Electrochromic display device
JPS61240225A (en) Optical element
US4447133A (en) Electrochromic device
GB2050666A (en) Electrochromic display device
JPS5827484B2 (en) display cell
JPH01172887A (en) El panel
JPS6186734A (en) Electrochromic element
JPH0470717A (en) Electrochromic element
JPS61277927A (en) Structural body of electrochromic element
JPS63148238A (en) Liquid crystal display device
JPS5830731A (en) Electrochromic display
JPH0381738A (en) Electrochromic element, dimmer, display device and antidazzling mirror
JPS5991424A (en) Electrochromic display element
JPS62178931A (en) Manufacture of electrochromic element
JPS6029159Y2 (en) plasma display panel
JPS58122518A (en) Electrochromic display element
JPH02163726A (en) Electrochromic element and production thereof
JPS62177529A (en) Electrochromic display element
JPS6173785A (en) Electrochromic element
JPS61239224A (en) Electrochromic element