JPS6123959A - Collating electrode for high-temperature and high-pressure water - Google Patents

Collating electrode for high-temperature and high-pressure water

Info

Publication number
JPS6123959A
JPS6123959A JP14426284A JP14426284A JPS6123959A JP S6123959 A JPS6123959 A JP S6123959A JP 14426284 A JP14426284 A JP 14426284A JP 14426284 A JP14426284 A JP 14426284A JP S6123959 A JPS6123959 A JP S6123959A
Authority
JP
Japan
Prior art keywords
container
liquid junction
electrolyte
temperature
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14426284A
Other languages
Japanese (ja)
Inventor
Yamato Asakura
朝倉 大和
Hidefumi Ibe
英史 伊部
Akihide Katsura
桂 了英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14426284A priority Critical patent/JPS6123959A/en
Publication of JPS6123959A publication Critical patent/JPS6123959A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PURPOSE:To prevent an electrolyte, etc., from leaking by forming the liquid junction of the collating electrode in a specific shape. CONSTITUTION:The liquid junction of the collating electrode formed of a container 1 which is equipped with a bellows 3, etc., and made of ethylene tetrafluoride, etc., is shaped in a frustum of a cone and inserted into a container body. In this constitution, even if the electrolyte 2 in the container 1, the container 1, etc., expand in different states as the water temperature in an autoclave rises, the clearance formed between the liquid junction and container body is blocked automatically with the conic part of the liquid junction 4. When the temperature falls, on the other hand, outward leakage of the electrolyte, inward leakage of water, etc., are prevented similarly.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は電気化学計測器に係り、特に高温・高圧水中に
おける金属材料(試料電極)の酸化・還元電極(表面電
位、腐食電位)を測定する際に不可欠な基準電位を与え
る照合電極に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an electrochemical measuring instrument, particularly for measuring the oxidation/reduction electrode (surface potential, corrosion potential) of a metal material (sample electrode) in high temperature/high pressure water. This invention relates to a reference electrode that provides an indispensable reference potential.

〔発明の背景〕[Background of the invention]

高温・高圧水用照合電極は、電極の設置方法によって内
部照合電極と外部照合電極の2形式に大別される。前者
はオートクレーブ内に設置され。
High-temperature/high-pressure water reference electrodes are roughly divided into two types, internal reference electrodes and external reference electrodes, depending on how the electrodes are installed. The former is installed inside an autoclave.

試料電極と同温度で使用される。後者はオートクレーブ
外に設置され、通常室温で使用される。外部照合電極を
用いて測定される電位は、相対的変化を調べる上では有
益であるが、腐食反応を熱力学的に調べるためには、内
部照合電極が必要部−なる。
Used at the same temperature as the sample electrode. The latter is placed outside the autoclave and is normally used at room temperature. Although potentials measured using external reference electrodes are useful for investigating relative changes, internal reference electrodes are necessary for thermodynamic investigation of corrosion reactions.

高温高圧水用の内部照合電極で実用上吊も問題となるの
は、電極が比較的短時間で劣化することで、その原因の
1つとして、電極容器と内部液の熱膨張係数の差による
シール部の不良化が考えられている。これに対し、容器
を薄肉の四フッ化エチレン樹脂(PIFE)で作ること
により、柔軟性を持たせ、内部液の熱膨張による圧力変
化を緩和することが行なわれている。
A practical problem with internal reference electrodes for high-temperature, high-pressure water is that the electrodes deteriorate in a relatively short period of time, and one of the causes of this is the sealing caused by the difference in thermal expansion coefficient between the electrode container and the internal liquid. It is thought that the parts may have become defective. In contrast, the container is made of thin-walled polytetrafluoroethylene resin (PIFE) to provide flexibility and to alleviate pressure changes caused by thermal expansion of the internal liquid.

しかし、昇温・降温時の容器内外の圧力差を完全になく
すことはむずかしく、昇温時には、電解液がオートクレ
ーブ中にリークして、オートクレーブ内の水を汚染する
。また、降温時には、逆に容器内が負圧どなり、オート
クレーブ内の水が流入し、電解液が希釈されるため電極
の劣化を起す。
However, it is difficult to completely eliminate the pressure difference between the inside and outside of the container when the temperature rises or falls, and when the temperature rises, the electrolyte leaks into the autoclave, contaminating the water inside the autoclave. Moreover, when the temperature falls, the inside of the container becomes negative pressure, water in the autoclave flows in, and the electrolyte is diluted, causing deterioration of the electrodes.

特にBWR条件下では、高純水を用いるため、昇温時に
電解液リークは、炉水水質に与える影響が大きい。
Particularly under BWR conditions, since high-purity water is used, electrolyte leakage during temperature rise has a large effect on the quality of reactor water.

【発明の目的〕[Purpose of the invention]

本発明の目的は、BWR条件下に適用するのに不可欠な
電解液リークを効果的に防止し得る構造の高温・高圧水
用内部照合電極を提供するにある。
An object of the present invention is to provide an internal reference electrode for high-temperature/high-pressure water having a structure that can effectively prevent electrolyte leakage, which is essential for application under BWR conditions.

[発明の概要〕 従来型の内部照合電極における電解液リーク挙動と昇温
・降温の温度サイクルとの相関を実験的に調べた結果、
昇温過程では容器内の電解液の熱膨張に伴なって容器内
部の圧力が外部より高くなり、電解液が容器外部にリー
クする。一方、降温過程では、電解液の収縮に伴なって
容器内部の圧力が外部より低くなり、容器外部の水が容
器内部にインリークし、電解液を希釈することがわかっ
た。また、リークの経路としては、液絡部以外に、液絡
と容器の熱膨張率の差によって形成されるすき間の寄与
が大きいこともわかった。
[Summary of the invention] As a result of experimentally investigating the correlation between the electrolyte leak behavior in a conventional internal reference electrode and the temperature cycle of temperature rise and fall, we found that
During the temperature rising process, the pressure inside the container becomes higher than that outside due to thermal expansion of the electrolytic solution inside the container, and the electrolytic solution leaks to the outside of the container. On the other hand, during the cooling process, as the electrolyte contracts, the pressure inside the container becomes lower than that outside, and water from outside the container leaks into the container, diluting the electrolyte. It was also found that, in addition to the liquid junction, the gap formed by the difference in thermal expansion coefficient between the liquid junction and the container has a large contribution to the leak path.

これらの実験事実から、電解液の外部リークを効果的に
防止するため、液絡を円すい台状にして、昇温過程に発
生する容器内部の圧力を利用して、液絡と容器の熱膨張
率の差によって形成されるすき間を自動的になくすこと
を考え、本発明に至った。
Based on these experimental facts, in order to effectively prevent external leakage of the electrolyte, the liquid junction is shaped like a truncated cone, and the pressure inside the container generated during the heating process is used to reduce the thermal expansion of the liquid junction and the container. The present invention was developed based on the idea of automatically eliminating the gap formed by the difference in rate.

本発明の特徴は、電極、電解液、電極・電解液保持容器
、液絡から構成される電気化学測定用照合電極において
、液絡部を、容器内側部の直径が外側部の直径より大き
くなるような円すい台形状として容器本体にそう人する
ものである。
A feature of the present invention is that in a reference electrode for electrochemical measurement consisting of an electrode, an electrolyte, an electrode/electrolyte holding container, and a liquid junction, the diameter of the liquid junction is larger on the inside of the container than on the outside. The main body of the container is shaped like a trapezoidal cone.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明を適用した高温・高圧水用内部照合電
極の内部構造の1例に示す図で、1はPTFE製容器、
2は0.01  kmoQ−m−”KCQ水溶液、3は
PTFE製ベローズ、4は多孔質アルミナ焼結体で作ら
れた円すい台状液絡、5はAg線、6はAgCQであり
、いわゆる銀/ハロゲン化銀電極を構成している。第1
図の電極は、オートクレーブ内の純水中に浸漬され、オ
ートクレーブ中の水と共に昇温されて、高温・高圧水用
内部照合電極として使用される。第2図は昇温・降温過
程における液絡部の変形挙動を模式的に示した図である
。PTFEの体膨張係数は5.4  Xl0−’/K、
水のそれは1.41  Xl0−a/K、アルミナのそ
れは8.OX10−S/にである。したがって、第1図
の電極を室温から、BWRの炉水温度条件である285
℃(558K)に昇温した場合、容器内の電解液は容器
体積よりも約25%程度多く膨張する。体積膨張分はベ
ローズ部がのびることによって吸収されるが、ベローズ
部がバネ定数を持つことから、容器内には、バネ定数と
ベローズ部の伸びの積に対応する内圧が発生する。
FIG. 1 is a diagram showing an example of the internal structure of an internal reference electrode for high-temperature/high-pressure water to which the present invention is applied; 1 is a PTFE container;
2 is a 0.01 kmoQ-m-" KCQ aqueous solution, 3 is a PTFE bellows, 4 is a trapezoidal liquid junction made of porous alumina sintered body, 5 is an Ag wire, and 6 is AgCQ, which is the so-called silver /Constituting a silver halide electrode.First
The electrode shown in the figure is immersed in pure water in an autoclave, heated together with the water in the autoclave, and used as an internal reference electrode for high-temperature, high-pressure water. FIG. 2 is a diagram schematically showing the deformation behavior of the liquid junction during the temperature rising/cooling process. The body expansion coefficient of PTFE is 5.4 Xl0-'/K,
That of water is 1.41 Xl0-a/K, and that of alumina is 8. It is OX10-S/. Therefore, the electrodes in Figure 1 can be adjusted from room temperature to 285, which is the BWR reactor water temperature condition.
When the temperature rises to 558 K, the electrolytic solution in the container expands approximately 25% more than the volume of the container. The volumetric expansion is absorbed by the extension of the bellows part, but since the bellows part has a spring constant, an internal pressure corresponding to the product of the spring constant and the extension of the bellows part is generated within the container.

今、第2図に示すように電解液が入っている容器部の長
さをQ(■)、断面積をS (alT) 、バネ定数を
K (kg/am)とすると、電解液の体積膨張(25
%)による内圧P(ICg/a#)は次式で表わされる
Now, as shown in Figure 2, if the length of the container containing the electrolyte is Q (■), the cross-sectional area is S (alT), and the spring constant is K (kg/am), then the volume of the electrolyte is Expansion (25
%), the internal pressure P (ICg/a#) is expressed by the following formula.

例えば、Q = 10 cm 、 S = 1 ti 
、 k = 1 kg / anとすると、P=2.5
 kg/afとなる。
For example, Q = 10 cm, S = 1 ti
, k = 1 kg/an, then P = 2.5
kg/af.

一方、液絡部においては、容器の液絡そう入部が、アル
ミナ製液絡よりも約30%程度多く膨張する。容器が均
等に熱膨張すると仮定すると、液絡そう入部の直径は約
10%程度増加する。
On the other hand, in the liquid junction part, the liquid junction entry part of the container expands about 30% more than the alumina liquid junction. Assuming uniform thermal expansion of the container, the diameter of the junction will increase by about 10%.

今、第2図に示すように、容器内側部の液絡直径をa 
(■)、外側部の直径をb(an)とすると285℃に
おける直径は、それぞれ、1.I  Xa(cn) 、
 1.I  Xb (an)となる。
Now, as shown in Figure 2, the liquid junction diameter on the inside of the container is a
(■), and the diameter at 285°C is 1. I Xa(cn),
1. I Xb (an).

例えば、a=1儂、b=0.7 艶とすると、285℃
における直径は、それぞれ1.1 ■。
For example, if a = 1 and b = 0.7 gloss, then 285℃
The diameter of each is 1.1 ■.

0.77anとなる。すなわち、液絡と容器本体との間
に約0.1 anのすき間が発生する。しかし、上記し
たように、液絡には、電解液の体積膨張による内圧、2
.5 kg/lnがかかるために、第2図に示すように
、液絡が容器の内側から外側に向って移動し、液絡と容
器本体との間に発生する約0.1印のすき間を自動的に
塞ぐことになる。従って、第1図に示すような、円すい
台状の液絡を用いることにより、昇温過程における電解
液の外部り一り゛を効果的に防止することが可能である
It becomes 0.77an. That is, a gap of about 0.1 an is generated between the liquid junction and the container body. However, as mentioned above, the internal pressure due to the volume expansion of the electrolyte, 2
.. Because 5 kg/ln is applied, the liquid junction moves from the inside of the container to the outside, as shown in Figure 2, and a gap of approximately 0.1 mark is created between the liquid junction and the container body. It will be automatically blocked. Therefore, by using a truncated cone-shaped liquid junction as shown in FIG. 1, it is possible to effectively prevent the electrolyte from flowing outside during the temperature rising process.

なお、本発明では、銀/ハロゲン化銀電極の場合につい
て一実施例を示したが、発明の背景で引用した文献に記
載”されている、金属/金属酸化物電極、金属/金属硫
酸塩電極、カロメル電極等の、電極、電解液、電極・電
解液保持容器、液絡から構成される高温・高圧水用照合
電極に一般に適用することが可能で、上記実施例と同様
の効果が発揮される。また、容器の材質としてはPTF
E以外でもよいが、例えばステンレス鋼の場合には、電
解液による腐食生成物が電極に悪影響を及ぼす。
In addition, in the present invention, an example has been shown in the case of a silver/silver halide electrode, but metal/metal oxide electrodes and metal/metal sulfate electrodes described in the documents cited in the background of the invention may also be used. It can be generally applied to reference electrodes for high temperature and high pressure water, such as calomel electrodes, which are composed of an electrode, an electrolyte, an electrode/electrolyte holding container, and a liquid junction, and the same effects as in the above embodiments are exhibited. In addition, the material of the container is PTF.
A material other than E may be used, but in the case of stainless steel, for example, corrosion products caused by the electrolyte will have a negative effect on the electrode.

変形例1 第3図は、第1図の発明実施例の変形例を示す図で、1
〜6は第1図と同じ、7はテフロン製液絡おさえ、8は
スプリングである。テフロン製液絡おさえ7と、スプリ
ング8を追加することにより、昇温時のすき間発生を防
止するだけでなく、降温時に、容器内部が外部に対して
負圧となり、オートクレーブ内に水が容器内3部にイン
リークするのを確実に防止する。ことが可能となる。従
って、オートクレーブ内の水の汚染防止だけでなく、電
解液の希釈も防止できるため、照合電極の寿命を向上さ
せることが可能である。
Modification Example 1 FIG. 3 is a diagram showing a modification example of the invention embodiment shown in FIG.
- 6 are the same as in FIG. 1, 7 is a Teflon liquid junction presser, and 8 is a spring. By adding a Teflon liquid junction retainer 7 and a spring 8, it not only prevents gaps from forming when the temperature rises, but also creates a negative pressure inside the container relative to the outside when the temperature falls, causing water to leak into the autoclave. To reliably prevent in-leakage to the third part. becomes possible. Therefore, not only can water in the autoclave be prevented from being contaminated, but also dilution of the electrolytic solution can be prevented, so that the life of the reference electrode can be extended.

変形例2 第4図は、第3図の発明実施例の変形例を示す図で、液
絡部の円すい台の形状を、容器内側部の直径が外側部の
直径より大きくしたものである。
Modified Example 2 FIG. 4 is a diagram showing a modified example of the embodiment of the invention shown in FIG. 3, in which the shape of the truncated cone of the liquid junction is such that the diameter of the inner side of the container is larger than the diameter of the outer side.

この場合、容器本体への液絡の取り付けを容器の外側か
ら行なえるというメリットがあるが、電解液の熱膨張に
ともなう電解液の外部リークを防止するために、内圧よ
りも高い圧力を発生できるスプリングが不可欠となる。
In this case, the advantage is that the liquid junction can be attached to the container body from outside the container, but it is also possible to generate a pressure higher than the internal pressure in order to prevent external leakage of the electrolyte due to thermal expansion of the electrolyte. A spring is essential.

変形例3 第1.第3.第4図は、電極・電解液保持容器として、
ベローズ構造を有する厚肉テフロン容器を用いたが、従
来使われている、ベローズ構造を有しない薄肉テフロン
容器を用いても同様の効果が期待できる。
Modification 3 1st. Third. Figure 4 shows the electrode/electrolyte holding container.
Although a thick-walled Teflon container with a bellows structure was used, similar effects can be expected by using a conventionally used thin-walled Teflon container without a bellows structure.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、以下の効果を奏することができる。 According to the present invention, the following effects can be achieved.

1、昇温過程における電解液の外部リークを、自動的に
防止することが可能となり、オートクレーブかの純水の
水質を変化させるとなく、金属材料の高温水中での酸化
・還元電位を測定できる。
1. It is possible to automatically prevent external leakage of electrolyte during the temperature raising process, and the oxidation/reduction potential of metal materials in high-temperature water can be measured without changing the quality of pure water in the autoclave. .

2、−゛降温過程における水のインリークによる電解液
の希釈を自動的に防止することが可能であり、電解液の
希釈にともなう照合電極の劣化を防止できる。
2. - It is possible to automatically prevent dilution of the electrolytic solution due to in-leakage of water during the temperature-lowering process, and it is possible to prevent deterioration of the reference electrode due to dilution of the electrolytic solution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の高温・高圧水用内部照合電
極の内部構造図、第2図は昇温・降温過程における本発
明による液絡部の変形挙動を示す説明図、第3図、第4
図は本発明の変形による高温・高圧水用内部照合電極の
内部構造図である。 1・・・PTFE製容器、4・・・液絡、5・・・Ag
線、6・・・−33′ 第1目 第 39 第 4 口
Fig. 1 is an internal structure diagram of an internal reference electrode for high temperature/high pressure water according to an embodiment of the present invention, Fig. 2 is an explanatory diagram showing the deformation behavior of the liquid junction according to the present invention during the temperature rising/falling process, and Fig. 3 Figure, 4th
The figure is an internal structure diagram of an internal reference electrode for high temperature/high pressure water according to a modification of the present invention. 1... PTFE container, 4... Liquid junction, 5... Ag
Line, 6...-33' 1st eye 39th mouth

Claims (1)

【特許請求の範囲】[Claims] 1、電極、電解液、電極・電解液保持容器、液絡から構
成される電気化学測定用照合電極において、液絡部を円
すい台形状として容器本体にそう入することを特徴とし
た高温・高圧水用照合電極。
1. In a reference electrode for electrochemical measurement consisting of an electrode, an electrolyte, an electrode/electrolyte holding container, and a liquid junction, the liquid junction part is shaped like a trapezoid and is inserted into the main body of the container. Reference electrode for water.
JP14426284A 1984-07-13 1984-07-13 Collating electrode for high-temperature and high-pressure water Pending JPS6123959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14426284A JPS6123959A (en) 1984-07-13 1984-07-13 Collating electrode for high-temperature and high-pressure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14426284A JPS6123959A (en) 1984-07-13 1984-07-13 Collating electrode for high-temperature and high-pressure water

Publications (1)

Publication Number Publication Date
JPS6123959A true JPS6123959A (en) 1986-02-01

Family

ID=15358000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14426284A Pending JPS6123959A (en) 1984-07-13 1984-07-13 Collating electrode for high-temperature and high-pressure water

Country Status (1)

Country Link
JP (1) JPS6123959A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6387377U (en) * 1986-11-28 1988-06-07
JP2009150657A (en) * 2007-12-18 2009-07-09 Dkk Toa Corp Electrolyte for polarographic diaphragm type electrode and polarographic diaphragm type electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6387377U (en) * 1986-11-28 1988-06-07
JP2009150657A (en) * 2007-12-18 2009-07-09 Dkk Toa Corp Electrolyte for polarographic diaphragm type electrode and polarographic diaphragm type electrode

Similar Documents

Publication Publication Date Title
SUZUKI et al. Critical potential for growth of localized corrosion of stainless steel in chloride media
US5217596A (en) Electrode probe for use in aqueous environments of high temperature and high radiation
US5192414A (en) Electrode probe for use in aqueous environments of high temperature and high radiation
JPH0473095B2 (en)
CN104155355A (en) Oxygen sensor
GB2044464A (en) Balanced external reference electrode assembly
JPS6123959A (en) Collating electrode for high-temperature and high-pressure water
Shen et al. A double‐mode cell to measure pitting and crevice corrosion
Sunaba et al. Influence of chloride ions on corrosion of modified martensitic stainless steels at high temperatures under a CO2 environment
JP2009282011A (en) Reference electrode having automatic calibration function, and electrochemical potential automatic correction device using it
Guilherme et al. A portable electrochemical microcell for weld inspection of duplex stainless steel tanks
JPH05196592A (en) Reference electrode probe used in high- temperature water environment
CN106706744B (en) A kind of electrochemical detection device and its processing method and purposes
GB893185A (en) Improvements in or relating to glass electrodes
Mignone et al. The Electrochemical Potentiokinetic Reactivation Method—An Analysis of Different Treatments of Experimental Data
Terada et al. Corrosion behavior of Eurofer 97 and ODS-Eurofer alloys compared to traditional stainless steels
Altay et al. Usability of alloys with different composition as electrode for electrochemical reduction of ferricyanide ion
JP2015169466A (en) hydrogen embrittlement evaluation method
CN217006912U (en) Test device for critical pitting temperature of stainless steel
Spaepen et al. Electrochemical corrosion experiments at temperatures above 100° C
KR20060046932A (en) External reference electrode for a pressurized, high temperature aqueous environments
CN209530784U (en) A kind of commercial fluorided hydrogen ammonium grain dissolution heating device
JP4234856B2 (en) Electrode body
CN108982350B (en) Electrochemical testing device for high-temperature stress corrosion environment under slow strain rate stretching condition
JPS6230947A (en) Reference electrode for high temperature/pressure aqueous solution