JPS61239568A - Fuel cell stack - Google Patents

Fuel cell stack

Info

Publication number
JPS61239568A
JPS61239568A JP60080474A JP8047485A JPS61239568A JP S61239568 A JPS61239568 A JP S61239568A JP 60080474 A JP60080474 A JP 60080474A JP 8047485 A JP8047485 A JP 8047485A JP S61239568 A JPS61239568 A JP S61239568A
Authority
JP
Japan
Prior art keywords
pressure
separator
separators
holder
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60080474A
Other languages
Japanese (ja)
Other versions
JPH0654676B2 (en
Inventor
Susumu Katsuta
進 勝田
Minoru Koga
実 古賀
Tsutomu Hara
勉 原
Morikazu Muraoka
村岡 守一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP60080474A priority Critical patent/JPH0654676B2/en
Publication of JPS61239568A publication Critical patent/JPS61239568A/en
Publication of JPH0654676B2 publication Critical patent/JPH0654676B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To realize miniaturization and improve heat efficiency, by performing a press deep drawing processing on separators and providing a pressure chamber for either an upper holder or a lower holder in a stack so as to have the separators act in the direction in which electrodes hold electrolyte tiles. CONSTITUTION:Separators are of corrugation type in which heat-resisting sheet iron plates are press-molded. In order to obtain more uniform contact pressure between electrodes 2, 3 and tiles 1, pressure chambers 22 and 23 are provided respectively between an upper holder 10 and separators 4, and between a lower holder 9 and separators 4. Pressure fluid is supplied respectively into the pressure chamber 22 from a pressure port 24 equipped in the upper holder 10, and into the pressure chamber 23 from a pressure port 25 equipped in the lower holder 9. Thus, because the upper separators 4 and lower ones 4 are deformed respectively downward and upwards, fastening strength can be uniformalized between the electrodes 2, 3 and tiles 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料の有する化学エネルギーを直接電気エネル
ギーに変換させるエネルギ一部門で用いる燃料電池を複
数層に積層させて々る燃料電池スタックに関するもので
ある。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a fuel cell stack in which fuel cells are stacked in multiple layers to be used in the energy sector for directly converting the chemical energy of fuel into electrical energy. It is.

〔従来の技術〕[Conventional technology]

燃料電池スタックは、燃料電池の構成部品で  ゛ある
電解質タイルを、空気極であるカソードと   1燃料
極であるアノードとにより上下両面から挾  □み、カ
ソード側には空気を供給し、アノード側  (K、。ヶ
ヶやよ、。よい2.カッ−1,よア、 ;−ドとの間で
発生する電位差により発電が行われるようにしたユニッ
トを、セパレータを介し  1て多層に積層させ、適当
な締付力で固定させた  1全体のものをいう。   
            1燃料電池は、LNG及び石
炭ガス等の有する化学エネルギーを直接電気エネルギー
に直接変換  ロするため、従来の発電方式(化学エネ
ルギー→  [熱エネルギー→機械エネルギー→電気エ
ネルギ  −−)に比べて下記のメリットがある0  
     ;。
In a fuel cell stack, an electrolyte tile, which is a component of a fuel cell, is sandwiched between the upper and lower sides by a cathode, which is an air electrode, and an anode, which is a fuel electrode.Air is supplied to the cathode side, and air is supplied to the anode side ( 2. Units that generate power by the potential difference generated between the It refers to one whole that is fixed with a certain tightening force.
1 Fuel cells directly convert the chemical energy of LNG, coal gas, etc. into electrical energy, so compared to conventional power generation methods (chemical energy → [thermal energy → mechanical energy → electrical energy --), fuel cells generate the following: There is merit 0
;.

■ カルノーサイクルの制約がないため、高い  【効
率が期待できる0              1■ 
回転部分がないので騒音が少ない。
■ High because there is no restriction of Carnot cycle [Efficiency can be expected 0 1■
There are no rotating parts, so there is less noise.

■ 電池作動温度に近い比較的高温の有効な発熱が得ら
れる。
■ Effective heat generation can be obtained at a relatively high temperature close to the battery operating temperature.

■ 出力を変えても効率が余り変らない。■ Efficiency does not change much even if the output is changed.

■ 規模の制約がない。■ No size restrictions.

■ 逐次増設が可能である。■ Sequential expansion is possible.

燃料電池は、」二部した多くのフリツトを有することか
ら、従来燃料電池の研究が進められ、電解質タイルにカ
ソード、アノードの各電極を均一な血圧で押し付けるよ
うにした燃料電池スタックの開発が進められている。
Since fuel cells have many frits that are divided into two parts, research into fuel cells has progressed, and progress has been made in the development of fuel cell stacks in which the cathode and anode electrodes are pressed against the electrolyte tile with uniform pressure. It is being

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、燃料電池システムの全コストの半分は、電解
質タイル、電極をセパレータを介し多層に積層してなる
スタック本体であり、この中でも2種類の作動流体を仕
切るセパレータの5、:    溝加工費が太き々ウェ
イトを占めている。セ・ζレータの溝加工は、作動流体
の流れを阻害することが々いよう々通路を形成すると同
時に電極を電解質タイルに押し付けて接触させるだめの
突起を形成させるだめのものであり、現状では、第5図
に示す如く、エンドミルにより溝加工を実施して突起(
a)を形成させ、溝(b)のピッチ(p)は4〜5爺と
しである。しかも−ト記突起(a)はタイルに電極を接
触させるためにその頂部の平坦度を確保する必要がある
ことから、セパレータの板厚が厚くなっており、そのた
め、積層した場合、スタックの全高が高くなる欠点があ
る。
However, half of the total cost of a fuel cell system is the stack body, which is made up of electrolyte tiles and electrodes laminated in multiple layers with separators in between. It takes up a lot of weight. The groove machining of the separator is intended to form a passage that often obstructs the flow of the working fluid, and at the same time to form a protrusion that allows the electrode to press and contact the electrolyte tile. , As shown in Figure 5, grooves are processed using an end mill to form protrusions (
a) is formed, and the pitch (p) of the grooves (b) is 4 to 5 pitches. In addition, it is necessary to ensure the flatness of the top of the projection (a) in order to contact the electrode with the tile, so the thickness of the separator is increased, so when stacked, the total height of the stack is It has the disadvantage of being high.

又、燃料電池の電気化学反応は、第6図に示す如く、作
動ガス(C1、液状電解質タイル(A)及び固相電極の
6相が介在する個所に生ずる。す々わち、電極0を電解
質タイル(A)に押し付けることにより電極接触点近傍
に6相混在場所が生ずるが、この5相混在場所を多数生
じさせることが効率的発電につながることになる。0は
溶融塩である。一方、従来の燃料電池スタックは、スタ
ック本体からの作動流体の漏洩を防止することが必要で
あると同時に電極■を電解質タイル(A)に均一に押圧
することが必要なだめ、燃料電池部品は高度の加工精度
が必要である。又、電解質をしみ込ませたタイル(A)
は長期間締め伺けているとクリープ現象を起こすため、
押圧力はこの縮む量に追従する押圧方式が必要となる。
Furthermore, as shown in Fig. 6, the electrochemical reaction of the fuel cell occurs at a location where six phases exist: the working gas (C1), the liquid electrolyte tile (A), and the solid phase electrode. By pressing against the electrolyte tile (A), a 6-phase mixture area is generated near the electrode contact point, but creating a large number of 5-phase mixture areas will lead to efficient power generation. 0 is molten salt.On the other hand In conventional fuel cell stacks, it is necessary to prevent the leakage of the working fluid from the stack body, and at the same time it is necessary to press the electrodes uniformly against the electrolyte tiles (A), and the fuel cell components are highly sophisticated. Machining precision is required.Also, tiles impregnated with electrolyte (A)
If it is not tightened for a long time, it will cause a creep phenomenon.
A pressing method is required for the pressing force to follow this amount of shrinkage.

そこで、本発明は、コストダウン、小型化、熱効率の向
上、等を図ることができる燃料電池スタックを得ようと
するものである。
Therefore, the present invention aims to provide a fuel cell stack that can reduce costs, reduce size, improve thermal efficiency, and the like.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は、異なる電極に供給される2種類の作動流体を
仕切るセパレータに、プレス深絞り加工を施こし、該セ
パレータにより電極の電解質タイルへの接触圧を均一化
させるため少なくともスタック上部又は下部のホルダー
の一方に圧力室を設け、該圧力室に圧入される流体によ
シセパレータを、電極が電解質タイルを挾持する方向へ
作用させるようにした構成とする。
The present invention applies deep press processing to a separator that separates two types of working fluids supplied to different electrodes, and uses the separator to equalize the contact pressure of the electrodes to the electrolyte tiles at least at the top or bottom of the stack. A pressure chamber is provided on one side of the holder, and the fluid pressurized into the pressure chamber acts on the separator in a direction in which the electrodes clamp the electrolyte tile.

〔作  用〕[For production]

」二部及び下部ホルダーに設けた圧力室に、電極に供給
する作動流体の圧力より高い圧力の流体を供給すると、
この圧力によりセパレータが押されて電解質タイルと電
極との接触圧を均一化させることができ、スタックの締
付力にプラスして圧力室の圧力による」二部均−な接触
圧が得られることにカリ、電気化学反応が効率化される
。又、セパレータはプレス深絞り加工を施こして作動流
体の通路と電極を電解質タイルに接触させる突起を形成
させていることから、安価で且つ薄く製作できてスタッ
ク全高を低くてき、小型化できる。
"When a fluid with a pressure higher than the pressure of the working fluid supplied to the electrode is supplied to the pressure chambers provided in the second part and the lower holder,
This pressure pushes the separator and equalizes the contact pressure between the electrolyte tile and the electrode, resulting in a two-part equal contact pressure due to the clamping force of the stack plus the pressure in the pressure chamber. Potassium, the electrochemical reaction becomes more efficient. Furthermore, since the separator is deep-drawn to form protrusions that bring the working fluid passage and electrode into contact with the electrolyte tile, it can be manufactured thinly and inexpensively, reducing the overall height of the stack and making it more compact.

〔実 施 例〕〔Example〕

以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図乃至第3図は本発明の実施例を示し、第4図は本
発明の燃料電池スタックを分離させ     ・た全体
構成を示すものである。
FIGS. 1 to 3 show embodiments of the present invention, and FIG. 4 shows the overall structure of the separated fuel cell stack of the present invention.

耐熱薄鋼板をプレス成形してなるコルゲート型セパレー
タ(4)と、電解質タイル(1)と、電極(カソード)
(2)と、電極(アノード)(3)と、パンチングプレ
ート(5)と、内部くり抜き部(8)を有するディスタ
ンスプレー1− (6) (7)とをそれぞれ複数ずつ
用意し、作動流体の内部マニホールド機能を有する下部
ホルダー(91ににディスタンスプレート(6)を介し
てセパレータ(4)を載置さぜ、該セパレータ(4)の
上方突起」−に、上記ティスタンスプレート(6)(7
)の各内部クリ抜き部(8)内に入り得る大きさとしで
あるパンチングプレー1・(5)を載せ、更に電極(3
)を介して電解質タイルfl)を載せ、このタイル(1
)上には、電極の電極(2)、パンチングプレート(5
)、セパレータ(4)の順に載置させ、」二部セパレー
タ(4)はその周辺部をディス ゛タンスピース(6)
を介してタイル(IIJ二に載せるようにする。このよ
うにタイル(11の上面側と下面側に、電極(2)と(
3)、パンチングプレー) (5) 、セパレータ(4
)を配して々るものを多層に積み重ね、且つ」一部に上
部ホルダー(10)を載置させ、該上部ホルダー(10
)より水平に張り出した耳(11)と下部ホルダー(9
)より水平に張り出しだ耳(12)とを鉛直のタイロッ
ド(1翅で連結し締めイ」けることにより一1    
 体構造となったスタックか得られるようにする。
A corrugated separator (4) made by press-forming a heat-resistant thin steel plate, an electrolyte tile (1), and an electrode (cathode)
(2), an electrode (anode) (3), a punching plate (5), and a distance plate 1-(6) (7) each having a hollowed out part (8). Place the separator (4) through the distance plate (6) on the lower holder (91) having an internal manifold function, and place the distance plate (6) (7) on the upper protrusion of the separator (4).
) is placed on the punching plate 1 (5) of a size that can fit into each internal cutout (8), and then the electrode (3) is placed.
) through the electrolyte tile fl), and this tile (1
) on which are the electrode (2) and the punching plate (5).
) and the separator (4) in this order, and the two-part separator (4) has its peripheral part placed on the distance piece (6).
Place the electrode (2) on the top and bottom of the tile (11).
3), punching play) (5), separator (4)
) are stacked in multiple layers, and an upper holder (10) is placed on a part of the upper holder (10).
) and the lower holder (9).
) by connecting the ears (12) that protrude horizontally with the vertical tie rod (1 wing) and tightening them.
Make it possible to obtain a stack that is a body structure.

上記積層されてなるスタックにおける各層の電極(カソ
ード)(2)へ作動流体(たとえば空気+炭酸ガス)を
供給するだめの供給孔04)と該作動流体を排出させる
だめの排出孔(15)とを、上記スタックを構成する各
層のタイル(1)、ディスクンスフレ−) (6) (
71、セパレータ(4)の−側辺部ト他側辺部に各々貫
通させて形成し、又、各層の電極(アノード)(3)へ
作動流体(燃料)を供給させるだめの供給孔(+6)と
該作動流体を排出させるための排出孔0ηとを、上記と
同様に各層のタイル(1)、ティスタンスプレート(6
)(力、セパレータ(4)の−側辺部と他側辺部に、」
二部空気用の孔(+4)(+51と交互配置となるよう
に貫通して設ける。
A supply hole 04 for supplying a working fluid (for example, air + carbon dioxide) to the electrode (cathode) (2) of each layer in the laminated stack and a discharge hole (15) for discharging the working fluid. , the tiles (1), diskunsphere) (6) (
71, a supply hole (+6) is formed to pass through the negative side and the other side of the separator (4), and is used to supply working fluid (fuel) to the electrode (anode) (3) of each layer. ) and the discharge hole 0η for discharging the working fluid, in the same way as above, the tile (1) and the tistance plate (6) of each layer.
) (force, on the − side and the other side of the separator (4),
Two air holes (+4) and (+51) are provided so as to be alternately arranged.

上記ディスタンスプレー) (61(7)のうち、電極
(カソード)側のディスタンスプレー1− (6)は、
」二部供給孔θ4)及び排出孔(15)を内部くり抜き
部(8)に開口させ、供給孔04)より供給される空気
及び炭酸ガスが各ディスタンスプレー1− (6)部で
内部くり抜き部(8)を供給側から排出側へ流れる間に
パンチングプレート(5)を通過して電極(カソード)
(2)へ供給されるよ、うにし、又、電極(アノード)
(3)側のディスタンスプレート(力は、燃料    
:を供給する孔(+6)及び排出する孔(+7)をすべ
て内部くり抜き部(8)に開口させ、当該ディスタンス
プレー1− (7)の部では供給側から排出側に燃料が
流れ、この間にパンチングプレート(5)を通って電極
(アノード)(3)に供給されるようにしである。
Distance play above) (Of 61(7), distance play 1-(6) on the electrode (cathode) side is
The two-part supply hole θ4) and the discharge hole (15) are opened in the internal hollowed out part (8), and the air and carbon dioxide gas supplied from the supply hole 04) are supplied to the internal hollowed out part in each distance play 1-(6) part. (8) while flowing from the supply side to the discharge side, passing through the punching plate (5) and forming the electrode (cathode).
(2) Supply to the electrode (anode)
(3) side distance plate (force is fuel
: The supply hole (+6) and the discharge hole (+7) are all opened in the internal hollowed out part (8), and in the distance play 1- (7) part, fuel flows from the supply side to the discharge side, and during this time, the fuel flows from the supply side to the discharge side. It passes through a punching plate (5) and is supplied to an electrode (anode) (3).

電極(2)(3)、タイル(1)、スペーサ(4)等給
付力は、」二部及び下部ホルダー(IQ (9)に取り
付けた耳(11)α2)・間にタイロッド(嗜を通し、
絶縁材(1,8>、皿ばね(19)、カラー(20)を
介してナラ) (21)で締め付けることにより容易に
発生させることができるようにしであるが、本発明の特
徴は、電極(2) (31とタイル(1)のより均一々
接触圧を得るだめ、上部ホルダー00)とセパレータ(
4)との間及び下部ホルダー(9)とセパレータ(4)
との間に、それぞれ圧力室(22)及び(23)を設け
、上部ホルダー(10)に設けた圧力ポート(24)か
ら圧力室(22)に、又、下部ホルダー(9)に設けた
圧カポ−1□ (25)から圧力室(23)にそれぞれ
圧力流体を供給することにより上部のセパレータ(4)
は下方へ、又、下部のセパレータ(4)は上方へ変形さ
れて電極(2) (3+とタイル(1)間の締付力の均
一化7゛71″’) K u (h 2w t l f
 、!+6・     :□(2G)は空気及び炭酸ガ
ス供給孔(14)に連通ずるよう下部ホルダー(9)に
設けたボー1− 、(27)は空気排出孔Q、51に連
通ずるよう下部ホルダー(9)に設けたボー) 、(2
8)ld燃料供給孔(16)に連通ずるよう下部   
 iホルダー(9)に設けたボー1− 、(29)は燃
料排出孔0η   1に連通ずるよう下部ホルダー(9
)に設けたポート:である。又、(至)は上部ホルダー
(10)の上面に形成した電解室部ゎアあり、該溜、1
.)(30)。8角部。補   1給孔01)から各タ
イル(1)に電解質が補給されるようにしである。(3
1)はスペーサである。
The power to supply electrodes (2) (3), tiles (1), spacers (4), etc. is provided by connecting the two parts and the ears (11) α2 attached to the lower holder (IQ (9)) and the tie rod (through the holes) between them. ,
This can be easily generated by tightening the insulating material (1, 8>, disc spring (19), and collar (21) through the collar (20), but the feature of the present invention is that the electrode (2) (In order to obtain more uniform contact pressure between 31 and tile (1), upper holder 00) and separator (
4) and between the lower holder (9) and the separator (4)
Pressure chambers (22) and (23) are provided between the upper holder (10) and the pressure chamber (22), respectively. Upper separator (4) by supplying pressure fluid from capo-1□ (25) to pressure chambers (23) respectively.
is deformed downward, and the lower separator (4) is deformed upward to equalize the clamping force between the electrode (2) (3+ and the tile (1) 7゛71'') K u (h 2w t l f
,! +6・: □ (2G) is the bow 1- provided on the lower holder (9) so as to communicate with the air and carbon dioxide gas supply hole (14), (27) is the bow 1- provided on the lower holder (9) so as to communicate with the air exhaust hole Q, 51. 9) , (2)
8) Lower part that communicates with the ld fuel supply hole (16)
The bow 1-, (29) provided on the i-holder (9) is connected to the lower holder (9) so that it communicates with the fuel discharge hole 0η1.
): is the port provided. Further, (to) there is an electrolysis chamber formed on the upper surface of the upper holder (10), and the reservoir, 1
.. )(30). 8 corners. Electrolyte is supplied to each tile (1) from the supplementary supply hole 01). (3
1) is a spacer.

なお、前記した絶縁材08)は、高温雰囲気に耐   
1し えるようセラミックス製であり、上下部ホルダ   −
ト −(10) (9)を電気的に絶縁するものであり、又
、皿ばね(10は耐熱鋼で製作され、締付力によるタイ
    )ル(1)のクリープに追従して締付力を極カ
一定にするだめのものである。タイル(1)のクリープ
に追   j・ 従する別方法としては、上部ホルダー00)を図示  
 :しないシリンダで押すようにすることも考えら  
 ′れる。
Note that the above-mentioned insulating material 08) is resistant to high temperature atmosphere.
1. It is made of ceramics and has an upper and lower holder.
The plate spring (10 is made of heat-resistant steel, and the clamping force follows the creep of the tile (1) due to the clamping force). It is necessary to keep the power extremely constant. An alternative way to follow the creep of tile (1) is to
: I am also thinking of pressing it with a cylinder that does not work.
´Reru.

又、第4図では、パンチングプレート(5)は示してな
い。
Further, in FIG. 4, the punching plate (5) is not shown.

今、下部ホルダー(9)のポート(28)から燃料を供
給すると、この作動流体は供給孔(16)を上昇しなが
らディスタンスプレー1− (7)部でセパレータ(4
)の上側を流れ、該ディスタンスプレート(7)の排出
側のポートから排出孔(17)を通り下部ホルダー(9
)のポー) (29)から流出する。又、下部ホルダー
(9)のボー) (26)がら空気及び炭酸ガスを供給
すると、この作動流体は供給孔04)を」−昇し力から
ティスタンスプレート(6)部でセパレータ(4)の下
側を流れ、該ディスタンスプレート(61の排出側のポ
ートから排出孔(15)を通り下部ホルダー(9)のホ
ー ) (27)から流出する。
Now, when fuel is supplied from the port (28) of the lower holder (9), this working fluid rises through the supply hole (16) and reaches the separator (4) in the distance play 1- (7) section.
) flows from the discharge side port of the distance plate (7) through the discharge hole (17) to the lower holder (9).
) outflows from (29). Also, when air and carbon dioxide are supplied through the bow (26) of the lower holder (9), this working fluid rises through the supply hole (04), causing the separator (4) to rise at the tension plate (6). It flows from the bottom of the distance plate (61) through the discharge hole (15) and flows out from the hole (27) of the lower holder (9).

上記セパレータ(4)の上側に導かれた燃料側作動流体
は、パンチングプレー1− (51の孔を通って電極(
アノード)(3)に供給され、セパレータ(4)の下側
に導かれた空気側作動流体は、パンチングプレー1・(
5)の孔を通って電極(カソード)(2)に供給される
The fuel-side working fluid led to the upper side of the separator (4) passes through the holes in the punching plate 1- (51) to the electrode (
The air-side working fluid supplied to the anode) (3) and led to the lower side of the separator (4) is fed to the punching plate 1 (
It is supplied to the electrode (cathode) (2) through the hole in 5).

上記供給される作動流体の漏洩としては、セパレータ(
4)、ディスタンスプレー1− (61及び(力のシー
ル面からの外部漏れと、各供給孔(] 4) (16)
及び排出孔(+51(19間の漏れ、タイル(旬間差圧
による漏れ、等の内部漏れとが存在する。タイル間差圧
による漏れを除く漏洩は、スタック締付力、部品加工精
度、電極とタイルの締付力等に主として支配される。す
なわち、締付力を一定にした場合、漏洩を防止しようと
すると、電極(2) (31とタイル(1)間の締付力
が低下することも予想される。
As for the leakage of the working fluid supplied above, the separator (
4), distance play 1- (61 and (external leakage from the force sealing surface and each supply hole (] 4) (16)
There are internal leaks such as leaks between the drain holes (+51 (19), leaks due to differential pressure between tiles, etc.).Leaks other than leaks due to differential pressure between tiles are caused by stack tightening force, part processing accuracy, electrode and It is mainly controlled by the tightening force of the tile, etc. In other words, if the tightening force is kept constant, if an attempt is made to prevent leakage, the tightening force between the electrode (2) (31 and the tile (1) will decrease. is also expected.

本発明では、上記両者の逆相関を断ち切るために、上部
及び下部の各ホルダー00)と(9)に設けた圧力室(
22)と(23)に、空気又は燃料の作動流体圧力より
も高い圧力を加え、セパレータ(4)を内側方向へ変形
させ、電極(2) (3)とタイル(1)間の締付力の
均一化が図られている。この際、圧力室(22)(23
)内の圧力によるセパレータ(4)の変形は、タイル周
辺部に局部的な変形が生じ、タイル(1)が破損するお
それがあるが、本発明では、タイル(1)の両面の周辺
部にスペーサ(4)を位置させているので、タイル(1
)の周辺部に生ずる局部変形を緩和することができる。
In the present invention, in order to break the inverse correlation between the two, pressure chambers (
A pressure higher than the working fluid pressure of air or fuel is applied to 22) and (23) to deform the separator (4) inward, thereby increasing the clamping force between the electrodes (2) and (3) and the tile (1). Efforts are being made to make these standards uniform. At this time, pressure chambers (22) (23
) The deformation of the separator (4) due to the pressure within the tile (1) causes local deformation in the periphery of the tile, which may cause damage to the tile (1). Since the spacer (4) is positioned, the tile (1
) can be alleviated.

タイル(1)中の電解質は、タイル(1)間に生ずる差
圧による透過流れ及び作動流体に存在する水蒸気と反応
して逸散するので、電解質を補給す1′    る必要
があるが、この補給は、上部ホルダー00)、i 1    に設置された溜め(30)に貯えられた電解
質が高温になると液化し、」二部ホルダー(10)に設
けられた補給孔(31)を流下してタイル(1)に浸透
させられることによって行われる。
The electrolyte in the tiles (1) reacts with the permeate flow due to the pressure difference between the tiles (1) and the water vapor present in the working fluid and dissipates, so it is necessary to replenish the electrolyte1'. Replenishment is carried out when the electrolyte stored in the reservoir (30) installed in the upper holder 00) and i 1 liquefies when it becomes hot and flows down the replenishment hole (31) provided in the two-part holder (10). This is done by infiltrating the tile (1).

なお、本発明は上記実施例のみに限定されるものではな
く、たとえば、圧力室(22) 123)に圧力を加え
ることによりセパレータ(4)に背圧を加え1、、  
  これにより電極(21(31とタイル(1)間の給
付力を均8、;、1  −化させるようにした構成を示
したが、上下部゛パ“  オフ、2.−6.(9)ヵ1
5.1ヶい□、□ヵ。わ−化効果は低減することも考え
られるので、この場合は、スタック中間複数個所に同じ
効果を有する圧力室を設けるようにすればよいこと、又
、下部ホルダー(9)に設けた各ポートの相対的取合い
は一例を示すものであること、その信奉発明の要旨を逸
脱しない範囲内で種々の変更を加え得ることは勿論であ
る。
Note that the present invention is not limited to the above-mentioned embodiments. For example, by applying pressure to the pressure chambers (22) (123), back pressure is applied to the separator (4).
As a result, a configuration was shown in which the force applied between the electrode (21 (31) and the tile (1) was equalized to 8. ka1
5.1 month □, □ month. Since the warping effect may be reduced, in this case, it is sufficient to provide pressure chambers with the same effect at multiple locations in the middle of the stack, and to It goes without saying that the relative arrangement is merely an example, and that various changes may be made without departing from the gist of the invention.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く本発明の燃料電池スタックによれば、次
のような優れた効果を奏し得る。
As described above, according to the fuel cell stack of the present invention, the following excellent effects can be achieved.

(1)  セパレータはプレス深絞り加工を施こした薄
鋼板を用いているので、従来の機械溝加工による場合に
比して大幅に製作コストを低下できると共に、小型化が
図れる。
(1) Since the separator is made of a thin steel plate that has been deep-drawn by a press, manufacturing costs can be significantly lowered and the separator can be made smaller compared to conventional mechanical groove processing.

(11)上部又は下部ホルダーに設けた圧力室によシセ
パレータに背圧を作用させ電極をタイルに均一に接触さ
せるようにしであるので、スタックの給付力のほかに電
極とタイル間の接触圧の均一化が図れ、電気化学反応を
効率化     、させることができる。
(11) Since the pressure chamber provided in the upper or lower holder applies back pressure to the separator to bring the electrode into uniform contact with the tile, in addition to the applied force of the stack, the contact pressure between the electrode and the tile It is possible to make the electrochemical reaction more uniform and to make the electrochemical reaction more efficient.

(iii)  スタックの段数が多い場合に中間の任意
の位置にも圧力室を設けることにより、段数が多くなる
ことに伴ないセパレータの背圧による均一接触圧効果が
減殺されることもなくなる。
(iii) When the number of stages in the stack is large, by providing a pressure chamber at any intermediate position, the uniform contact pressure effect due to the back pressure of the separator will not be diminished as the number of stages increases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の燃料電池スタックの一実施例図、第2
図は第1図の平面図、第61図は第1図のl1l−it
矢視図、第4図はスタックを上下方向に離したときの一
例図、第5図は従来の燃料電池スタックにおけるセパレ
ータの斜視図、第6図は燃料電池の電気化学反応を示す
図である。 (1)は電解質タイル、(2) (31は電極、(4)
はセパレータ、(61f力はディスタンスプレート、(
9)は下部ホルダー’t (IOJは上部ホルダー、(
131はタイロッド、(14)(1,6)は供給孔、(
]51 (]7)は排出孔、(22) (23)は圧力
室を示す。
FIG. 1 is an embodiment of the fuel cell stack of the present invention, and FIG.
The figure is the plan view of Fig. 1, and Fig. 61 is the l1l-it of Fig. 1.
4 is an example view when the stack is separated in the vertical direction, FIG. 5 is a perspective view of a separator in a conventional fuel cell stack, and FIG. 6 is a diagram showing the electrochemical reaction of the fuel cell. . (1) is an electrolyte tile, (2) (31 is an electrode, (4)
is the separator, (61f force is the distance plate, (
9) is the lower holder't (IOJ is the upper holder, (
131 is a tie rod, (14) (1, 6) is a supply hole, (
]51 (]7) indicates a discharge hole, and (22) and (23) indicate a pressure chamber.

Claims (1)

【特許請求の範囲】[Claims] 1)電解質タイルを電極で挾んでなる燃料電池ユニット
をセパレータを介し多層に積み重ねて上下部のホルダー
間に位置させ、且つ上記電解質タイル両側の電極に異な
る作動流体を供給する通路と排出する通路を備え、上下
部のホルダーを押圧してなる燃料電池スタックにおいて
、上記2種類の作動流体を仕切るセパレータにプレス深
絞り加工を施こし、且つ少なくとも上記上部ホルダーと
セパレータとの間又は下部ホルダーとセパレータとの間
に圧力室を設け、該圧力室に外部から圧力を付与できる
ようにしたことを特徴とする燃料電池スタック。
1) Fuel cell units consisting of electrolyte tiles sandwiched between electrodes are stacked in multiple layers with separators interposed between them, and placed between upper and lower holders, and passages for supplying and discharging different working fluids to the electrodes on both sides of the electrolyte tiles are provided. In a fuel cell stack formed by pressing upper and lower holders, the separator that partitions the two types of working fluids is deep-drawn, and at least between the upper holder and the separator or between the lower holder and the separator. 1. A fuel cell stack characterized in that a pressure chamber is provided between the fuel cell stack and the pressure chamber can be applied with pressure from the outside.
JP60080474A 1985-04-16 1985-04-16 Fuel cell stack Expired - Lifetime JPH0654676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60080474A JPH0654676B2 (en) 1985-04-16 1985-04-16 Fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60080474A JPH0654676B2 (en) 1985-04-16 1985-04-16 Fuel cell stack

Publications (2)

Publication Number Publication Date
JPS61239568A true JPS61239568A (en) 1986-10-24
JPH0654676B2 JPH0654676B2 (en) 1994-07-20

Family

ID=13719261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60080474A Expired - Lifetime JPH0654676B2 (en) 1985-04-16 1985-04-16 Fuel cell stack

Country Status (1)

Country Link
JP (1) JPH0654676B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6255875U (en) * 1985-09-27 1987-04-07
EP0410159A1 (en) * 1989-07-24 1991-01-30 Asea Brown Boveri Ag Current collector for high temperature fuel cell
JPH0566875U (en) * 1991-12-18 1993-09-03 本田技研工業株式会社 Fuel cell manifold plate
US5419980A (en) * 1992-06-18 1995-05-30 Honda Giken Kogyo Kabushiki Kaisha Fuel cell stack and method of pressing together the same
US6544681B2 (en) 2000-12-26 2003-04-08 Ballard Power Systems, Inc. Corrugated flow field plate assembly for a fuel cell
WO2004109838A1 (en) * 2003-05-26 2004-12-16 Siemens Aktiengesellschaft Electrolytic cell or fuel cell comprising pressure pads and an improved transfer resistance
WO2006082195A1 (en) * 2005-02-07 2006-08-10 Siemens Aktiengesellschaft Method and device for permanently connecting a polymer electrolyte to at least one gas diffusion electrode
JP2015172998A (en) * 2014-03-11 2015-10-01 株式会社豊田自動織機 battery module
JP2015529379A (en) * 2012-08-17 2015-10-05 ヌヴェラ・フュエル・セルズ・インコーポレーテッド Bipolar plate design for use in electrochemical cells

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6255875U (en) * 1985-09-27 1987-04-07
EP0410159A1 (en) * 1989-07-24 1991-01-30 Asea Brown Boveri Ag Current collector for high temperature fuel cell
JPH0566875U (en) * 1991-12-18 1993-09-03 本田技研工業株式会社 Fuel cell manifold plate
US5419980A (en) * 1992-06-18 1995-05-30 Honda Giken Kogyo Kabushiki Kaisha Fuel cell stack and method of pressing together the same
US6544681B2 (en) 2000-12-26 2003-04-08 Ballard Power Systems, Inc. Corrugated flow field plate assembly for a fuel cell
WO2004109838A1 (en) * 2003-05-26 2004-12-16 Siemens Aktiengesellschaft Electrolytic cell or fuel cell comprising pressure pads and an improved transfer resistance
US7862955B2 (en) 2003-05-26 2011-01-04 Siemens Aktiengesellschaft Electrolytic cell or fuel cell with pressure pads and improved transfer resistance
WO2006082195A1 (en) * 2005-02-07 2006-08-10 Siemens Aktiengesellschaft Method and device for permanently connecting a polymer electrolyte to at least one gas diffusion electrode
US9461325B2 (en) 2005-02-07 2016-10-04 Siemens Aktiengesellschaft Method and device for permanently bonding a polymer electrolyte membrane to at least one gas diffusion electrode
JP2015529379A (en) * 2012-08-17 2015-10-05 ヌヴェラ・フュエル・セルズ・インコーポレーテッド Bipolar plate design for use in electrochemical cells
US11552319B2 (en) 2012-08-17 2023-01-10 Nuvera Fuel Cells, LLC Bipolar plates for use in electrochemical cells
JP2015172998A (en) * 2014-03-11 2015-10-01 株式会社豊田自動織機 battery module

Also Published As

Publication number Publication date
JPH0654676B2 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
US5077148A (en) Fully internal manifolded and internal reformed fuel cell stack
US5227256A (en) Fully internal manifolded fuel cell stack
US4963442A (en) Internal manifolded molten carbonate fuel cell stack
EP0405088B1 (en) Fully internally manifolded fuel cell stack
US4345009A (en) Fuel cell stack compressive loading system
CA2098645C (en) Fuel cell stack and method of fastening the same
CN101557002B (en) Seal member for proton exchange membrane fuel cell plate
US5342706A (en) Fully internal manifolded fuel cell stack
CN1339181A (en) Fuel cell stacks for ultra-high efficiency power systems
CA2202380A1 (en) Fuel cells employing integrated fluid management platelet technology
EP2859607B1 (en) Solid oxide fuel cell
JP2002367665A (en) Fuel cell stack and its pressurized support method
JPS61239568A (en) Fuel cell stack
US8980498B2 (en) Fuel cell stack
JPH06251790A (en) Fuel cell
US6905793B2 (en) Folded metal bipolar sheets for fuel cells
JPH0845535A (en) Fuel cell fastening device
JP5318192B2 (en) FUEL CELL STACK AND METHOD FOR MANUFACTURING FUEL CELL STACK
US8652701B2 (en) Fuel cell
JPH01117278A (en) Fuel cell
JPS6210868A (en) Separator for fuel cell
JPH08162145A (en) Solid polymer electrolytic fuel cell
US8012644B2 (en) Fuel cell stack
JPH01246766A (en) Cooling plate for fuel cell
JP2957844B2 (en) Fuel cell