JPH08162145A - Solid polymer electrolytic fuel cell - Google Patents

Solid polymer electrolytic fuel cell

Info

Publication number
JPH08162145A
JPH08162145A JP6302561A JP30256194A JPH08162145A JP H08162145 A JPH08162145 A JP H08162145A JP 6302561 A JP6302561 A JP 6302561A JP 30256194 A JP30256194 A JP 30256194A JP H08162145 A JPH08162145 A JP H08162145A
Authority
JP
Japan
Prior art keywords
gas
solid polymer
hole group
separator
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6302561A
Other languages
Japanese (ja)
Other versions
JP3350260B2 (en
Inventor
Hiroshi Kusunoki
啓 楠
Saneji Otsuki
実治 大槻
Yoshihiko Shindo
義彦 新藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Fuji Electric Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Fuji Electric Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP30256194A priority Critical patent/JP3350260B2/en
Publication of JPH08162145A publication Critical patent/JPH08162145A/en
Application granted granted Critical
Publication of JP3350260B2 publication Critical patent/JP3350260B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE: To uniformly and safely press a stack and provide a highly precise and compact metal separator by pressing and sliding a pressurizing plate by the gas pressure of a gas pressurizing chamber in a fuel cell. CONSTITUTION: In a solid polymer electrolytic fuel cell, a plurality of unit cells 6 are pressed through a current collecting plate 8, an insulating plate 9, and a distributing plate 18 by a pressurizing plate 13 to form a stack. The pressurizing plate 13 is airtightly mounted on a pressurizing plate holder 14 through an O-ring 16 in such a manner as to be capable of sliding. The gas pressure in a gas pressurizing chamber 17 is held at a prescribed value. According to this gas pressure, the pressurizing plate 13 is slid within the pressurizing plate holder 14. The pressurizing plate 13 uniformly presses the whole body of the end part of the stack in the laminated direction. Thus, the internal resistance caused by the contact resistance in stack lamination can be reduced, and the sealing of reacting gas and cooling water can be ensured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は固体高分子電解質型燃
料電池の構造に係り、特にスタックの積層および冷却の
構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a solid polymer electrolyte fuel cell, and more particularly to a stacking and cooling structure of a stack.

【0002】[0002]

【従来の技術】固体高分子電解質型燃料電池は固体高分
子電解質膜の二つの主面にそれぞれ電極であるアノード
とカソードを配して形成される。アノードまたはカソー
ドの各電極は電極基材上に電極触媒層を配している。固
体高分子電解質膜はスルホン酸基を持つポリスチレン系
の陽イオン交換膜をカチオン導電性膜として使用したも
の、フロロカーボンスルホン酸とポリビニリデンフロラ
イドの混合膜、あるいはフロロカーボンマトリックスに
トリフロロエチレンをグラフト化したものなどが知られ
ているが最近ではパーフロロカーボンスルホン酸膜を用
いて燃料電池の長寿命化を図ったものが知られるに至っ
た。
2. Description of the Related Art A solid polymer electrolyte fuel cell is formed by disposing an anode and a cathode, which are electrodes, on two main surfaces of a solid polymer electrolyte membrane. Each electrode of the anode or the cathode has an electrode catalyst layer arranged on an electrode base material. The solid polymer electrolyte membrane uses polystyrene type cation exchange membrane with sulfonic acid group as cation conductive membrane, mixed membrane of fluorocarbon sulfonic acid and polyvinylidene fluoride, or trifluoroethylene grafted on fluorocarbon matrix. However, recently, a perfluorocarbon sulfonic acid membrane has been used to extend the life of the fuel cell.

【0003】固体高分子電解質膜は分子中にプロトン
(水素イオン)交換基を有し、飽和に含水させることに
より常温で20Ω・cm以下の比抵抗を示しプロトン導
電性電解質として機能する。飽和含水量は温度によって
可逆的に変化する。電極基材は多孔質体で燃料電池の反
応ガス供給手段または反応ガス排出手段および集電体と
して機能する。アノード(燃料極)またはカソード(空
気極)の電極においては三相界面が形成され電気化学反
応が起こる。
The solid polymer electrolyte membrane has a proton (hydrogen ion) exchange group in the molecule, and when it is saturated with water, it exhibits a specific resistance of 20 Ω · cm or less at room temperature and functions as a proton conductive electrolyte. The saturated water content changes reversibly with temperature. The electrode base material is a porous body and functions as a reaction gas supply means or a reaction gas discharge means and a current collector of the fuel cell. At the anode (fuel electrode) or cathode (air electrode) electrode, a three-phase interface is formed and an electrochemical reaction occurs.

【0004】アノードでは(1)式の反応が起こる。 H2 =2H+ +2e (1) カソードでは(2)式の反応が起こる。 1/2O2 +2H+ +2e=H2 O (2) つまりアノードにおいては系の外部より供給された水素
がプロトンと電子を生成する。生成したプロトンはイオ
ン交換膜中をカソードに向かって移動し電子は外部回路
を通ってカソードに移動する。一方カソードにおいては
系の外部より供給された酸素とイオン交換膜中をアノー
ドより移動してきたプロトンと外部回路より移動してき
た電子が反応し、水を生成する。
At the anode, the reaction of the formula (1) occurs. H 2 = 2H + + 2e (1) At the cathode, the reaction of the formula (2) occurs. 1 / 2O 2 + 2H + + 2e = H 2 O (2) That is, at the anode, hydrogen supplied from the outside of the system produces protons and electrons. The generated protons move toward the cathode in the ion exchange membrane, and the electrons move to the cathode through an external circuit. On the other hand, in the cathode, oxygen supplied from the outside of the system reacts with protons moving from the anode in the ion exchange membrane and electrons moving from the external circuit to generate water.

【0005】図8は従来の固体高分子電解質型燃料電池
の単電池を示す平面図である。アノード2およびカソー
ド3は厚さ100μmの固体高分子電解質膜1の両主面
に接して積層される。電極の厚さは300μmである。
電極は前述のように電極基材上に電極触媒層を配して構
成されるがこの電極触媒層は一般に微小な粒子状の白金
触媒と水に対する撥水性を有するフッ素樹脂から構成さ
れており、三相界面と反応ガスの効率的な拡散を維持す
るための細孔とが十分形成される。電極基材は前記触媒
層を支持する。
FIG. 8 is a plan view showing a unit cell of a conventional solid polymer electrolyte fuel cell. The anode 2 and the cathode 3 are laminated in contact with both main surfaces of the solid polymer electrolyte membrane 1 having a thickness of 100 μm. The thickness of the electrode is 300 μm.
The electrode is formed by disposing the electrode catalyst layer on the electrode base material as described above, but the electrode catalyst layer is generally composed of a fine particulate platinum catalyst and a fluororesin having water repellency, The three-phase interface and pores for maintaining efficient diffusion of the reaction gas are sufficiently formed. The electrode base material supports the catalyst layer.

【0006】電極の配置された固体高分子電解質膜の外
側には反応ガスを外部から導いてアノードまたはカソー
ドに供給する一対の例えばカーボンからなるセパレータ
板5が設けられる。セパレータ板はその一方の主面に反
応ガスを導くガス流通溝4を備えるガス不透過性板であ
る。ガス流通溝の寸法は深さ1mm,幅員1mmであ
る。
A pair of separator plates 5 made of, for example, carbon are provided outside the solid polymer electrolyte membrane on which the electrodes are arranged to guide the reaction gas from the outside and supply it to the anode or the cathode. The separator plate is a gas impermeable plate having a gas flow groove 4 for guiding a reaction gas on one main surface thereof. The gas flow groove has a depth of 1 mm and a width of 1 mm.

【0007】図9は従来の固体高分子電解質型燃料電池
のスタックを示す側面図である。積層された単電池6は
その3枚毎に冷却板7により冷却される。集電板8は上
記電池集合体の電流を取り出す。電池集合体は締めつけ
板10と締めつけボルト11を用いて組み立てられる。
絶縁板9が集電板8と締めつけ板10との電気的絶縁を
図る。単電池6内では反応ガスは鉛直方向に流れる。
FIG. 9 is a side view showing a stack of a conventional solid polymer electrolyte fuel cell. The stacked unit cells 6 are cooled by the cooling plate 7 every three sheets. The current collector plate 8 takes out the current of the battery assembly. The battery assembly is assembled using the tightening plate 10 and the tightening bolts 11.
The insulating plate 9 electrically insulates the current collector plate 8 and the tightening plate 10. In the unit cell 6, the reaction gas flows in the vertical direction.

【0008】固体高分子電解質型燃料電池の運転温度は
固体高分子電解質膜の電気抵抗を小さくして発電効率を
高めるために通常50ないし100℃の温度で運転され
る。この単電池の発生する電圧は1V以下であるので、
実用上は電圧を高めるために前記単電池を複数個直列に
積層してスタックとして使用される。燃料電池では、一
般に発生電力にほぼ相当する熱量を熱として発生し、こ
の熱により単電池を多数積層したスタックにおいてはス
タック内に温度の分布が生じる。そこで、スタックで
は、冷却板を内蔵してスタックの温度を単電池の面方
向,積層方向にできるだけ均一になるようにする。ここ
で一般に冷却媒体としては水、空気等が用いられる。冷
却板は冷却媒体を供給することで余剰熱を除去して冷却
をする。
The operating temperature of the solid polymer electrolyte fuel cell is usually 50 to 100 ° C. in order to reduce the electric resistance of the solid polymer electrolyte membrane and increase the power generation efficiency. Since the voltage generated by this unit cell is 1 V or less,
In practice, in order to increase the voltage, a plurality of the unit cells are stacked in series and used as a stack. In a fuel cell, generally, a heat amount substantially equivalent to the generated power is generated as heat, and this heat causes a temperature distribution in the stack in a stack in which a large number of unit cells are stacked. Therefore, in the stack, a cooling plate is built in so that the temperature of the stack becomes as uniform as possible in the plane direction and the stacking direction of the unit cells. Here, water, air or the like is generally used as the cooling medium. The cooling plate is cooled by supplying a cooling medium to remove excess heat.

【0009】前述のとおり固体高分子電解質型燃料電池
では、電解質保持層である固体高分子電解質膜1を飽和
に含水させることにより膜の比抵抗が小さくなり、膜は
プロトン導電性電解質として機能する。したがって、固
体高分子電解質型燃料電池の発電効率を高く維持するた
めには、膜の含水状態を飽和状態に維持することが必要
である。膜の乾燥を防いで発電効率を維持するために、
反応ガスには水蒸気が添加され、膜からガスへの水の蒸
発が抑えられる。
As described above, in the solid polymer electrolyte fuel cell, the specific resistance of the membrane is reduced by saturating the solid polymer electrolyte membrane 1 which is the electrolyte holding layer, and the membrane functions as a proton conductive electrolyte. . Therefore, in order to keep the power generation efficiency of the solid polymer electrolyte fuel cell high, it is necessary to keep the water content of the membrane saturated. In order to prevent the membrane from drying and maintain power generation efficiency,
Water vapor is added to the reaction gas to suppress evaporation of water from the membrane into the gas.

【0010】[0010]

【発明が解決しようとする課題】しかしながらこのよう
な従来の固体高分子電解質型燃料電池にあってはカーボ
ンからなるセパレータ板は機械的に脆弱であるためにス
タックを形成して締めつけ板10と締めつけボルト11
を用いて単電池とセパレータ板を締めつけたときにセパ
レータ板に亀裂が発生し易く反応ガスがリークし易いと
いう問題があった。そこでセパレータ板を金属材料で構
成しようとすると軽量かつコンパクトな構造を達成する
ためには曲げ剛性の小さい金属を使用しなければならず
高い寸法精度の加工が困難となり、加工工数が増大して
製造コストが増すという問題があった。
However, in such a conventional solid polymer electrolyte fuel cell, since the separator plate made of carbon is mechanically weak, a stack is formed and tightened with the tightening plate 10. Bolt 11
There is a problem that when the unit cell and the separator plate are tightened using the separator, the separator plate is easily cracked and the reaction gas easily leaks. Therefore, if the separator plate is made of a metal material, in order to achieve a lightweight and compact structure, it is necessary to use a metal with a small bending rigidity, which makes it difficult to perform processing with high dimensional accuracy, which increases the number of processing man-hours. There was a problem that the cost increased.

【0011】また従来の固体高分子電解質型燃料電池で
は複数個の単電池毎に冷却板が設けられているために単
電池毎の温度の均一化を図ることは困難であった。さら
に従来の固体高分子電解質型燃料電池では締めつけ板1
0と締めつけボルト11を用いて単電池とセパレータ板
を締めつけたときに締めつけボルト11の締結が一様で
ないために固体高分子電解質膜1とアノード2またはカ
ソード3の両電極を均一に加圧できない上に長時間の運
転ではクリープにより締めつけボルト11の加圧力が低
下するという問題があった。
Further, in the conventional solid polymer electrolyte fuel cell, it is difficult to make the temperature uniform for each unit cell because a cooling plate is provided for each unit cell. Further, in the conventional solid polymer electrolyte fuel cell, the tightening plate 1
When the cell and the separator plate are tightened using 0 and the tightening bolt 11, the tightening of the tightening bolt 11 is not uniform, so that both electrodes of the solid polymer electrolyte membrane 1 and the anode 2 or the cathode 3 cannot be uniformly pressed. In addition, there is a problem that the pressing force of the tightening bolt 11 is reduced due to creep during long-time operation.

【0012】この発明は上述の点に鑑みてなされその目
的はスタックの締めつけ構造,セパレータ構造に改良を
加え、安定且つ均一なスタックの締めつけが可能であ
り、さらにスタックの温度分布が均一で経済性にも優れ
る固体高分子電解質型燃料電池を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to improve the stack tightening structure and the separator structure so that stable and uniform stack tightening is possible, and further, the temperature distribution of the stack is uniform and economical. Another object of the present invention is to provide a solid polymer electrolyte fuel cell which is also excellent.

【0013】[0013]

【課題を解決するための手段】上述の目的は第一の発明
によれば固体高分子電解質膜とその両面に配設された電
極からなる固体高分子膜/電極接合体を反応ガス流路群
を備えた二つのセパレータで挟んで単電池を構成すると
ともに該単電池を複数個積層してスタックを形成し、前
記スタックに燃料ガスと酸化剤ガスの反応ガスおよび冷
却水を供給する固体高分子電解質型燃料電池において、
加圧板と合体して加圧ガス室を形成し所定圧力のガスが
内蔵される位置固定の加圧板保持器と、しゅう動自在且
つ気密に加圧板保持器に取り付けられ加圧ガス室のガス
圧によりスタックの端部をスタックの積層方向に全体加
圧する加圧板を備えるとすることにより達成される。
According to the first aspect of the present invention, a solid polymer electrolyte membrane / electrode assembly comprising a solid polymer electrolyte membrane and electrodes arranged on both sides of the solid polymer electrolyte membrane / electrode assembly is used as a reaction gas flow path group. A solid polymer which forms a unit cell by sandwiching it with two separators provided with and forms a stack by stacking a plurality of the unit cells, and supplies reaction gas of fuel gas and oxidant gas and cooling water to the stack. In an electrolyte fuel cell,
A pressure plate holder that is fixed to the position where the pressure plate is united to form a pressure gas chamber and contains a gas of a predetermined pressure, and a gas pressure in the pressure gas chamber that is slidably and airtightly attached to the pressure plate holder. It is achieved by providing a pressure plate that totally presses the ends of the stack in the stacking direction of the stack.

【0014】また第二の発明によれば固体高分子電解質
膜とその両面に配設された電極からなる固体高分子膜/
電極接合体を反応ガス流路群を備えた二つのセパレータ
で挟んで単電池を構成するとともに該単電池を複数個積
層してスタックを形成し、前記スタックに燃料ガスと酸
化剤ガスの反応ガスおよび冷却水を供給する固体高分子
電解質型燃料電池において、凹凸の波形成型により金属
板の中央部に設けられた波形溝と、該波形溝の周辺に設
けられた酸化剤ガスと燃料ガスと冷却水の各導入孔群
と、反応ガス流路群の周辺に設けられた酸化剤ガスと燃
料ガスと冷却水の各排出孔群を有する金属セパレータ
と、前記金属セパレータの導入孔群と排出孔群に対応し
て導入孔群と排出孔群が設けられるとともに燃料ガス導
入孔と燃料ガス排出孔にセパレータの波形溝に連通する
切り欠き溝を備え、金属セパレータの波形溝の周辺にお
いて、固体高分子膜/電極接合体と第一の金属セパレー
タの間に、導入孔群と排出孔群をセパレータのものと一
致させて介挿される第一のガスパッキンと、前記金属セ
パレータの導入孔群と排出孔群に対応して導入孔群と排
出孔群が設けられるとともに酸化剤ガス導入孔と酸化剤
ガス排出孔にセパレータの波形溝に連通する切り欠き溝
を備え、金属セパレータの波形溝の周辺において、固体
高分子膜/電極接合体と第二の金属セパレータの間に、
導入孔群と排出孔群をセパレータのものと一致させて介
挿される第二のガスパッキンと、前記金属セパレータの
導入孔群と排出孔群に対応して導入孔群と排出孔群が設
けられるとともに冷却水導入孔と冷却水排出孔にセパレ
ータの波形溝に連通する切り欠き溝を備え、金属セパレ
ータの波形溝の周辺において、第二の金属セパレータと
前記第二のセパレータに隣接する単電池を構成する第三
の金属セパレータの間に、導入孔群と排出孔群をセパレ
ータのものと一致させて介挿される冷却水パッキンを備
えるとすることにより達成される。
According to the second invention, a solid polymer electrolyte membrane comprising a solid polymer electrolyte membrane and electrodes arranged on both sides of the solid polymer electrolyte membrane /
An electrode assembly is sandwiched between two separators having a reaction gas flow path group to form a single cell, and a plurality of the single cells are stacked to form a stack, and a reaction gas of a fuel gas and an oxidant gas is formed in the stack. In a solid polymer electrolyte fuel cell for supplying cooling water, a corrugated groove formed in the center of a metal plate by corrugation of unevenness, and an oxidant gas and a fuel gas cooled around the corrugated groove. A metal separator having each introduction hole group of water, each discharge hole group of oxidant gas, fuel gas, and cooling water provided around the reaction gas flow path group, and an introduction hole group and discharge hole group of the metal separator In addition to the introduction hole group and the discharge hole group corresponding to the fuel gas introduction hole and the fuel gas discharge hole is provided with a notch groove communicating with the corrugated groove of the separator, the solid polymer around the corrugated groove of the metal separator. film/ Between the electrode assembly and the first metal separator, a first gas packing that is inserted by matching the introduction hole group and the discharge hole group with those of the separator, and the introduction hole group and the discharge hole group of the metal separator. Correspondingly, a group of inlet holes and a group of outlet holes are provided, and a notch groove communicating with the corrugated groove of the separator is provided in the oxidizing gas inlet hole and the oxidizing gas exhaust hole, and the solid height around the corrugated groove of the metal separator is increased. Between the molecular film / electrode assembly and the second metal separator,
A second gas packing which is inserted by matching the introduction hole group and the discharge hole group with those of the separator, and the introduction hole group and the discharge hole group are provided corresponding to the introduction hole group and the discharge hole group of the metal separator. Along with the cooling water inlet hole and the cooling water discharge hole provided with a notch groove communicating with the corrugated groove of the separator, in the vicinity of the corrugated groove of the metal separator, the second metal separator and the unit cell adjacent to the second separator This is achieved by providing a cooling water packing in which the introduction hole group and the discharge hole group are inserted so as to be aligned with those of the separator between the constituent third metal separators.

【0015】上述の第二の発明において金属セパレータ
は表面が金メッキまたは銀メッキされていること、金属
セパレータは周辺部がガスパッキンまたは冷却水パッキ
ン保持用に突起を有していること、またはパッキンの切
り欠き溝は凹部に膜加圧弁を装着するとすることが有効
である。
In the above-mentioned second invention, the surface of the metal separator is gold-plated or silver-plated, the peripheral portion of the metal separator has a protrusion for holding the gas packing or the cooling water packing, or It is effective to mount a membrane pressure valve in the recess of the cutout groove.

【0016】[0016]

【作用】加圧板は加圧ガス室のガス圧により押圧されて
しゅう動するからスタックは均等に加圧される。またガ
ス圧はガス室の体積変動に比例するから締結棒のクリー
プがあってもガス圧の変動は僅少でありスタックは安定
に押圧される。金属板に凹凸の波形溝を設ける構造にす
ると波形成型により高精度,コンパクト且つ安価な金属
セパレータが製造できる。
The pressure plate is pressed by the gas pressure of the pressure gas chamber and slides, so that the stack is uniformly pressed. Further, since the gas pressure is proportional to the volume variation of the gas chamber, even if there is creep of the fastening rod, the gas pressure varies little and the stack is pressed stably. When the metal plate is provided with a corrugated groove having irregularities, a highly accurate, compact and inexpensive metal separator can be manufactured by corrugation molding.

【0017】金属セパレータの中央部に波形溝を設ける
構造とすると、金属セパレータの波形溝の一方の主面に
は反応ガスを、他方の主面には冷却水を流すことができ
単電池毎の冷却が可能となる。金属セパレータは表面が
金メッキまたは銀メッキされていると他の金属パッキン
との間,金属パッキンと固体高分子膜/電極接合体との
間または金属パッキンと膜押さえ弁との間の接触抵抗が
小さくなる。
When the corrugated groove is provided in the center of the metal separator, the reaction gas can flow on one main surface of the corrugated groove of the metal separator and the cooling water can flow on the other main surface of each metal separator. Cooling becomes possible. If the surface of the metal separator is gold-plated or silver-plated, the contact resistance between the metal packing and other metal packing, between the metal packing and the solid polymer membrane / electrode assembly, or between the metal packing and the membrane control valve is small. Become.

【0018】金属セパレータは周辺部がガスパッキンま
たは冷却水パッキン保持用に突起を有しているとガスパ
ッキンや冷却水パッキンを金属セパレータの間に保持す
ることが容易になる。パッキンの切り欠き溝は凹部に膜
加圧弁を装着するとスタックを加圧板により押圧すると
きに切り欠き溝の流体流路が閉塞することを防止する。
If the peripheral portion of the metal separator has a protrusion for holding the gas packing or the cooling water packing, it becomes easy to hold the gas packing or the cooling water packing between the metal separators. The cutout groove of the packing prevents the fluid passage of the cutout groove from being closed when the stack is pressed by the pressure plate when the membrane pressurizing valve is mounted in the recess.

【0019】[0019]

【実施例】次にこの発明の実施例を図面に基いて説明す
る。図1はこの発明の実施例に係る固体高分子電解質型
燃料電池を示す断面図である。単電池6の複数個が集電
板8,絶縁板9,分配板18を介して加圧板13により
押圧されスタックを形成する。加圧板13はOリング1
6を介して加圧板保持器14に気密に且つしゅう動自在
に取り付けられる。加圧板保持器14と加圧板13は加
圧ガス室17を形成する。加圧ガス室17の加圧板保持
器14は締結棒15により所定の位置に固定される。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a sectional view showing a solid polymer electrolyte fuel cell according to an embodiment of the present invention. A plurality of the unit cells 6 are pressed by the pressure plate 13 through the current collector plate 8, the insulating plate 9, and the distribution plate 18 to form a stack. Pressure plate 13 is O-ring 1
It is attached to the pressure plate holder 14 via 6 in an airtight and slidable manner. The pressure plate holder 14 and the pressure plate 13 form a pressurized gas chamber 17. The pressurizing plate holder 14 of the pressurizing gas chamber 17 is fixed at a predetermined position by a fastening rod 15.

【0020】分配板18には燃料ガス入口19A,酸化
剤ガス入口20A,冷却水入口21Aが設けられ、スタ
ック内の燃料ガス導入孔19C,酸化剤ガス導入孔20
C,冷却水導入孔21Cにそれぞれ連通する。同様に分
配板18には燃料ガス出口19B,酸化剤ガス出口20
B,冷却水出口21Bが設けられ、スタック内の燃料ガ
ス排出孔19D,酸化剤ガス排出孔20D,冷却水排出
孔21Dにそれぞれ連通する。
The distribution plate 18 is provided with a fuel gas inlet 19A, an oxidizing gas inlet 20A, and a cooling water inlet 21A, and a fuel gas introducing hole 19C and an oxidizing gas introducing hole 20 in the stack are provided.
C and the cooling water introduction hole 21C communicate with each other. Similarly, the distribution plate 18 has a fuel gas outlet 19B and an oxidant gas outlet 20.
B, a cooling water outlet 21B are provided and communicate with the fuel gas discharge hole 19D, the oxidant gas discharge hole 20D, and the cooling water discharge hole 21D in the stack, respectively.

【0021】スタック内の燃料ガス導入孔19C,酸化
剤ガス導入孔20C,冷却水導入孔21Cはそれぞれ単
電池のアノード半電池,カソード半電池,単電池と単電
池の間を介してスタック内の燃料ガス排出孔19D,酸
化剤ガス排出孔20D,冷却水排出孔21Dに連通す
る。単電池の詳細は次図以下に示される。
The fuel gas introduction hole 19C, the oxidant gas introduction hole 20C, and the cooling water introduction hole 21C in the stack are provided in the stack through the anode half cell, the cathode half cell of the unit cell, and between the unit cell and the unit cell, respectively. It communicates with the fuel gas discharge hole 19D, the oxidant gas discharge hole 20D, and the cooling water discharge hole 21D. Details of the unit cell are shown in the following figures.

【0022】加圧ガス室17内のガス圧は所定値に保持
される。加圧板13はガス圧に応じて加圧板保持器14
の内部をしゅう動する。加圧板13はスタックの端部の
全体をその積層方向に均等に押圧する。図2はこの発明
の実施例に係る固体高分子電解質型燃料電池につき積層
された単電池を示す金属セパレータに関する透視図であ
る。
The gas pressure in the pressurized gas chamber 17 is maintained at a predetermined value. The pressure plate 13 is a pressure plate holder 14 according to the gas pressure.
Slide inside. The pressure plate 13 uniformly presses the entire end portion of the stack in the stacking direction. FIG. 2 is a perspective view of a metal separator showing a stacked unit cell of a solid polymer electrolyte fuel cell according to an embodiment of the present invention.

【0023】図3はこの発明の実施例に係る固体高分子
電解質型燃料電池につき図2に示す積層された単電池の
A―A矢視断面図である。図4はこの発明の実施例に係
る固体高分子電解質型燃料電池につき図2に示す積層さ
れた単電池のB―B矢視断面図である。金属セパレータ
28は金属薄板を用い波形のプレス成型により中央部に
波形溝22を設けて高精度,コンパクト且つ安価に作成
される。二つの金属セパレータ28の間にガスパッキン
25Aと固体高分子膜/電極接合体27とガスパッキン
25Bが挟まれて一つの単電池が構成される。C×Cの
部分に固体高分子膜/電極接合体27の電極が存在す
る。一つの金属セパレータ28とガスパッキン25Aと
固体高分子膜/電極接合体27はカソード半電池を構成
し、他の金属セパレータ28とガスパッキン25Bと固
体高分子膜/電極接合体27はアノード半電池を構成す
る。ガスパッキン25A,ガスパッキン25Bは波形溝
22の周辺部に配置される。ガスパッキン25Aはガス
パッキンの切り欠き溝24A,24Dを備えカソード半
電池のシールとカソード半電池に対する酸化剤ガスの分
配と排出を行う。ガスパッキン25Bはガスパッキンの
切り欠き溝24B,24Eを備えアノード半電池のシー
ルとアノード半電池に対する燃料ガスの分配と排出を行
う。
FIG. 3 is a sectional view taken along the line AA of the stacked unit cells shown in FIG. 2 for the solid polymer electrolyte fuel cell according to the embodiment of the present invention. FIG. 4 is a cross-sectional view of the solid polymer electrolyte fuel cell according to the embodiment of the present invention taken along the line BB of the stacked unit cells shown in FIG. The metal separator 28 is formed with high precision, compactness and low cost by forming a corrugated groove 22 in the center by corrugating press molding using a thin metal plate. The gas packing 25A, the solid polymer membrane / electrode assembly 27, and the gas packing 25B are sandwiched between the two metal separators 28 to form one unit cell. The electrode of the solid polymer membrane / electrode assembly 27 is present in the C × C portion. One metal separator 28, the gas packing 25A and the solid polymer membrane / electrode assembly 27 constitute a cathode half cell, and the other metal separator 28, the gas packing 25B and the solid polymer membrane / electrode assembly 27 are an anode half cell. Make up. The gas packing 25A and the gas packing 25B are arranged around the corrugated groove 22. The gas packing 25A is provided with notches 24A and 24D of the gas packing, and seals the cathode half-cell and distributes and discharges the oxidant gas to and from the cathode half-cell. The gas packing 25B is provided with notches 24B and 24E of the gas packing, and seals the anode half cell and distributes and discharges the fuel gas to and from the anode half cell.

【0024】前記単電池と異なる単電池が前記単電池に
積層される。この単電池の積層によりスタックが形成さ
れる。複数の単電池相互の間には冷却水パッキン25C
が配置される。冷却水パッキン25Cには冷却水パッキ
ンの切り欠き溝24C,24Fが設けられ、単電池相互
間のシールと単電池相互間への冷却水の分配と排出を行
う。
A unit cell different from the unit cell is stacked on the unit cell. A stack is formed by stacking the unit cells. Cooling water packing 25C between multiple cells
Is arranged. The cooling water packing 25C is provided with cutout grooves 24C and 24F of the cooling water packing, and seals the unit cells and distributes and discharges the cooling water between the unit cells.

【0025】金属セパレータ28とガスパッキン25A
とガスパッキン25Bと冷却水パッキン25Cにはそれ
ぞれ酸化剤ガス導入孔20C,燃料ガス導入孔19C,
冷却水導入孔21Cおよび酸化剤ガス排出孔20D,燃
料ガス排出孔19D,冷却水排出孔21Dが金属セパレ
ータ28,ガスパッキン25A,ガスパッキン25B,
冷却水パッキン25C間で穿孔位置を一致させて形成さ
れる。
Metal separator 28 and gas packing 25A
An oxidant gas introduction hole 20C, a fuel gas introduction hole 19C, and a gas packing 25B and a cooling water packing 25C, respectively.
The cooling water introduction hole 21C, the oxidant gas discharge hole 20D, the fuel gas discharge hole 19D, and the cooling water discharge hole 21D are the metal separator 28, the gas packing 25A, and the gas packing 25B.
The cooling water packings 25C are formed by matching the drilling positions.

【0026】波形溝の周辺に設けられた酸化剤ガス,燃
料ガス,冷却水の各導入孔群は、波形溝の周辺の異なる
位置に設けられた酸化剤ガス,燃料ガス,冷却水の各排
出孔群とマニホルド23A、波形溝22の転じた酸化剤
ガス流路30,燃料ガス流路29または冷却水流路31
の各流路、マニホルド23Bを介して連通する。各単電
池の金属セパレータは固定ピン26により結合される。
The oxidant gas, fuel gas, and cooling water introduction hole groups provided around the corrugated groove respectively discharge the oxidant gas, fuel gas, and cooling water provided at different positions around the corrugated groove. Hole group and manifold 23A, oxidant gas flow channel 30, fuel gas flow channel 29 or cooling water flow channel 31 in which corrugated groove 22 is turned
Through each manifold and the manifold 23B. The metal separator of each unit cell is connected by a fixing pin 26.

【0027】図5はこの発明の実施例に係る固体高分子
電解質型燃料電池の膜押さえ弁を示す斜視図である。ガ
スパッキン25A,25B,冷却水パッキン25Cの各
切り欠き溝には膜押さえ弁35が載置される。膜押さえ
弁35は金属セパレータ接触面38と固体高分子膜/電
極接合体接触面37を持ち流体流路36を持つ。膜押さ
え弁35は切り欠き溝が加圧ガス室の加圧により閉塞さ
れるのを防止し反応ガスまたは冷却水の自由な流通を確
保する。またガスパッキン25A,25Bの周辺にはス
ペーサ34が配置される。スペーサ34は固体高分子膜
/電極接合体27を所定の厚さに保持する。
FIG. 5 is a perspective view showing a membrane pressure valve of a solid polymer electrolyte fuel cell according to an embodiment of the present invention. A membrane pressing valve 35 is placed in each of the cutout grooves of the gas packings 25A and 25B and the cooling water packing 25C. The membrane pressing valve 35 has a metal separator contact surface 38, a solid polymer membrane / electrode assembly contact surface 37, and a fluid flow path 36. The membrane pressing valve 35 prevents the notch groove from being blocked by the pressurization of the pressurized gas chamber and secures free flow of the reaction gas or the cooling water. A spacer 34 is arranged around the gas packings 25A and 25B. The spacer 34 holds the solid polymer film / electrode assembly 27 at a predetermined thickness.

【0028】図6はこの発明の異なる実施例に係る固体
高分子電解質型燃料電池のガスパッキンを示す平面図で
ある。このガスパッキンはアノード半電池用である。図
7はこの発明の異なる実施例に係る固体高分子電解質型
燃料電池のガスパッキンを示す平面図である。このガス
パッキンはカソード半電池用である。
FIG. 6 is a plan view showing a gas packing of a polymer electrolyte fuel cell according to another embodiment of the present invention. This gas packing is for the anode half cell. FIG. 7 is a plan view showing a gas packing of a solid polymer electrolyte fuel cell according to another embodiment of the present invention. This gas packing is for the cathode half cell.

【0029】[0029]

【発明の効果】この発明によれば加圧板保持器と、加圧
板により形成される加圧ガス室のガス圧により加圧板を
スタックの積層方向に全体的にしゅう動させるので、ス
タックが均一且つ安定に押圧され、スタック積層におけ
る接触抵抗に起因する内部抵抗の低減、反応ガスや冷却
水のシールの確実化がもたらされ特性と信頼性に優れる
固体高分子電解質型燃料電池が得られる。
According to the present invention, the pressure plate retainer and the gas pressure of the pressure gas chamber formed by the pressure plate cause the pressure plates to slide in the stacking direction of the stack as a whole. It is possible to obtain a solid polymer electrolyte fuel cell that is stably pressed, reduces internal resistance caused by contact resistance in stack stacking, and ensures sealing of reaction gas and cooling water, and is excellent in characteristics and reliability.

【0030】また凹凸の波形成型により金属板の中央部
に波形溝を有する金属セパレータの一方の面に反応ガス
を他方の面に冷却水を流通させるので、スタックの単電
池毎に冷却が可能となり、温度分布が良好で且つ経済性
にも優れる固体高分子電解質型燃料電池が得られる。金
属セパレータは表面が金メッキまたは銀メッキされてい
ると他の金属パッキンとの間,金属パッキンと固体高分
子膜/電極接合体との間または金属パッキンと膜押さえ
弁との間の接触抵抗が小さくなり内部抵抗の小さい固体
高分子電解質型燃料電池が得られる。
Further, since the reaction gas is circulated to one surface of the metal separator having the corrugated groove in the central portion of the metal plate and the cooling water is circulated to the other surface by the corrugation of the corrugations, it is possible to cool the individual cells of the stack. A solid polymer electrolyte fuel cell having a good temperature distribution and excellent economical efficiency can be obtained. When the surface of the metal separator is gold-plated or silver-plated, the contact resistance between the metal packing and other metal packing, between the metal packing and the solid polymer membrane / electrode assembly, or between the metal packing and the membrane control valve is small. A solid polymer electrolyte fuel cell having a small internal resistance can be obtained.

【0031】金属セパレータは周辺部がガスパッキンま
たは冷却水パッキン保持用に突起を有しているとガスパ
ッキンや冷却水パッキンを金属セパレータの間に保持す
ることが容易になり反応ガスや冷却水のシールが確実な
固体高分子電解質型燃料電池が得られる。パッキンの切
り欠き溝は凹部に膜加圧弁を装着するとスタックを加圧
板により押圧するときに切り欠き溝の流体流路が閉塞す
ることを防止し所要の反応ガスや冷却水の流通が確実と
なる。
If the peripheral portion of the metal separator has a protrusion for holding the gas packing or the cooling water packing, it becomes easy to hold the gas packing or the cooling water packing between the metal separators, and the reaction gas or the cooling water will be held. A solid polymer electrolyte fuel cell with a reliable seal can be obtained. When the membrane pressurizing valve is installed in the recess, the cutout groove of the packing prevents the fluid flow path of the cutout groove from being blocked when the stack is pressed by the pressure plate, and ensures the flow of the required reaction gas and cooling water. .

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例に係る固体高分子電解質型燃
料電池を示す断面図
FIG. 1 is a sectional view showing a solid polymer electrolyte fuel cell according to an embodiment of the present invention.

【図2】この発明の実施例に係る固体高分子電解質型燃
料電池につき積層された単電池を示す金属セパレータに
関する透視図
FIG. 2 is a perspective view of a metal separator showing stacked unit cells of a solid polymer electrolyte fuel cell according to an embodiment of the present invention.

【図3】この発明の実施例に係る固体高分子電解質型燃
料電池につき図2に示す積層された単電池のA―A矢視
断面図
FIG. 3 is a cross-sectional view taken along the line AA of the stacked unit cells shown in FIG. 2 for the solid polymer electrolyte fuel cell according to the embodiment of the present invention.

【図4】この発明の実施例に係る固体高分子電解質型燃
料電池につき図2に示す積層された単電池のB―B矢視
断面図
FIG. 4 is a sectional view of the solid polymer electrolyte fuel cell according to the embodiment of the present invention, taken along the line BB of the stacked unit cells shown in FIG.

【図5】この発明の実施例に係る固体高分子電解質型燃
料電池の膜押さえ弁を示す斜視図
FIG. 5 is a perspective view showing a membrane pressure valve of a polymer electrolyte fuel cell according to an embodiment of the present invention.

【図6】この発明の異なる実施例に係る固体高分子電解
質型燃料電池のガスパッキンを示す平面図
FIG. 6 is a plan view showing a gas packing of a solid polymer electrolyte fuel cell according to another embodiment of the present invention.

【図7】この発明の異なる実施例に係る固体高分子電解
質型燃料電池のガスパッキンを示す平面図
FIG. 7 is a plan view showing a gas packing of a solid polymer electrolyte fuel cell according to another embodiment of the present invention.

【図8】従来の固体高分子電解質型燃料電池の単電池を
示す平面図
FIG. 8 is a plan view showing a unit cell of a conventional solid polymer electrolyte fuel cell.

【図9】従来の固体高分子電解質型燃料電池のスタック
を示す側面図
FIG. 9 is a side view showing a stack of a conventional solid polymer electrolyte fuel cell.

【符号の説明】[Explanation of symbols]

1 固体高分子電解質型燃料電池 2 アノード 3 カソード 4 ガス流通孔 5 セパレータ板 6 単電池 7 冷却板 8 集電板 9 絶縁板 10 締めつけ板 11 締めつけボルト 12 スタック 13 加圧板 14 加圧板保持器 15 締結棒 16 Oリング 17 加圧ガス室 18 分配板 19A 燃料ガス入口 19B 燃料ガス出口 19C 燃料ガス導入孔 19D 燃料ガス排出孔 20A 酸化剤ガス入口 20B 酸化剤ガス出口 20C 酸化剤ガス導入孔 20D 酸化剤ガス排出孔 21A 冷却水入口 21B 冷却水出口 21C 冷却水導入孔 21D 冷却水排出孔 22 波形溝 23A マニホルド 23B マニホルド 24A ガスパッキンの切り欠き溝 24B ガスパッキンの切り欠き溝 24C 冷却水パッキンの切り欠き溝 24D ガスパッキンの切り欠き溝 24E ガスパッキンの切り欠き溝 24F 冷却水パッキンの切り欠き溝 25A ガスパッキン 25B ガスパッキン 25C 冷却水パッキン 26 固定ピン 27 固体高分子膜/電極接合体 28 金属セパレータ 29 燃料ガス流路 30 酸化剤ガス流路 31 冷却水流路 34 スペーサ 35 膜押さえ弁 36 流体流路 37 固体高分子膜/電極接合体接触面 38 金属セパレータ接触面 1 Solid Polymer Electrolyte Fuel Cell 2 Anode 3 Cathode 4 Gas Flow Hole 5 Separator Plate 6 Single Cell 7 Cooling Plate 8 Current Collector 9 Insulating Plate 10 Clamping Plate 11 Clamping Bolt 12 Stack 13 Pressure Plate 14 Pressure Plate Cage Holder 15 Fastening Rod 16 O-ring 17 Pressurized gas chamber 18 Distribution plate 19A Fuel gas inlet 19B Fuel gas outlet 19C Fuel gas introduction hole 19D Fuel gas discharge hole 20A Oxidizing gas inlet 20B Oxidizing gas outlet 20C Oxidizing gas introducing hole 20D Oxidizing gas Discharge hole 21A Cooling water inlet 21B Cooling water outlet 21C Cooling water introducing hole 21D Cooling water discharge hole 22 Waveform groove 23A Manifold 23B Manifold 24A Gas packing notch groove 24B Gas packing notch groove 24C Cooling water packing notch groove 24D Gas packing notch 2 E Gas packing notch groove 24F Cooling water packing notch groove 25A Gas packing 25B Gas packing 25C Cooling water packing 26 Fixing pin 27 Solid polymer membrane / electrode assembly 28 Metal separator 29 Fuel gas flow path 30 Oxidant gas flow Channel 31 Cooling water channel 34 Spacer 35 Membrane pressure valve 36 Fluid channel 37 Solid polymer membrane / electrode assembly contact surface 38 Metal separator contact surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新藤 義彦 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshihiko Shindo 1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】固体高分子電解質膜とその両面に配設され
た電極からなる固体高分子膜/電極接合体を反応ガス流
路群を備えた二つのセパレータで挟んで単電池を構成す
るとともに該単電池を複数個積層してスタックを形成
し、前記スタックに燃料ガスと酸化剤ガスの反応ガスお
よび冷却水を供給する固体高分子電解質型燃料電池にお
いて、加圧板と合体して加圧ガス室を形成し所定圧力の
ガスが内蔵される位置固定の加圧板保持器と、しゅう動
自在且つ気密に加圧板保持器に取り付けられ加圧ガス室
のガス圧によりスタックの端部をスタックの積層方向に
全体加圧する加圧板を備えることを特徴とする固体高分
子電解質型燃料電池。
1. A unit cell is formed by sandwiching a solid polymer membrane / electrode assembly comprising a solid polymer electrolyte membrane and electrodes arranged on both sides thereof with two separators having a reaction gas flow channel group. In a solid polymer electrolyte fuel cell in which a plurality of the unit cells are stacked to form a stack, and a reaction gas of a fuel gas and an oxidant gas and cooling water are supplied to the stack, a pressurized gas is integrated with a pressure plate. A fixed pressure plate holder that forms a chamber and contains gas of a predetermined pressure, and a stackable stack end that is slidably and airtightly attached to the pressure plate holder by the gas pressure of the pressurized gas chamber. A solid polyelectrolyte fuel cell, comprising a pressure plate for totally pressing in a direction.
【請求項2】固体高分子電解質膜とその両面に配設され
た電極からなる固体高分子膜/電極接合体を反応ガス流
路群を備えた二つのセパレータで挟んで単電池を構成す
るとともに該単電池を複数個積層してスタックを形成
し、前記スタックに燃料ガスと酸化剤ガスの反応ガスお
よび冷却水を供給する固体高分子電解質型燃料電池にお
いて、凹凸の波形成型により金属板の中央部に設けられ
た波形溝と、該波形溝の周辺に設けられた酸化剤ガスと
燃料ガスと冷却水の各導入孔群と、波形溝の周辺の異な
る位置に設けられた酸化剤ガスと燃料ガスと冷却水の各
排出孔群を有する金属セパレータと、前記金属セパレー
タの導入孔群と排出孔群に対応して導入孔群と排出孔群
が設けられるとともに燃料ガス導入孔と燃料ガス排出孔
にセパレータの波形溝に連通する切り欠き溝を備え、金
属セパレータの波形溝の周辺において、固体高分子膜/
電極接合体と第一の金属セパレータの間に、導入孔群と
排出孔群をセパレータのものと一致させて介挿される第
一のガスパッキンと、 前記金属セパレータの導入孔群と排出孔群に対応して導
入孔群と排出孔群が設けられるとともに酸化剤ガス導入
孔と酸化剤ガス排出孔にセパレータの波形溝に連通する
切り欠き溝を備え、金属セパレータの波形溝の周辺にお
いて、固体高分子膜/電極接合体と第二の金属セパレー
タの間に、導入孔群と排出孔群をセパレータのものと一
致させて介挿される第二のガスパッキンと、 前記金属セパレータの導入孔群と排出孔群に対応して導
入孔群と排出孔群が設けられるとともに冷却水導入孔と
冷却水排出孔にセパレータの波形溝に連通する切り欠き
溝を備え、金属セパレータの波形溝の周辺において、第
二の金属セパレータと前記第二のセパレータに隣接する
単電池を構成する第三の金属セパレータの間に、導入孔
群と排出孔群をセパレータのものと一致させて介挿され
る冷却水パッキンを備えることを特徴とする固体高分子
電解質型燃料電池。
2. A unit cell is formed by sandwiching a solid polymer membrane / electrode assembly comprising a solid polymer electrolyte membrane and electrodes arranged on both sides thereof with two separators having a reaction gas flow channel group. In a solid polymer electrolyte fuel cell in which a plurality of the unit cells are stacked to form a stack, and a reaction gas of a fuel gas and an oxidant gas and cooling water are supplied to the stack, the center of a metal plate is formed by corrugation of unevenness. Portion of the corrugated groove, an introduction hole group of the oxidizing gas, fuel gas and cooling water provided around the corrugated groove, and an oxidizing gas and fuel provided at different positions around the corrugated groove A metal separator having each discharge hole group of gas and cooling water, and a fuel gas introduction hole and a fuel gas discharge hole provided with an introduction hole group and a discharge hole group corresponding to the introduction hole group and the discharge hole group of the metal separator. Waveform on the separator It includes a notch groove communicating, in the periphery of the waveform groove of the metallic plates, solid polymer membrane /
Between the electrode assembly and the first metal separator, a first gas packing inserted by matching the introduction hole group and the discharge hole group with those of the separator, and the introduction hole group and the discharge hole group of the metal separator. Correspondingly, a group of inlet holes and a group of outlet holes are provided, and a notch groove communicating with the corrugated groove of the separator is provided in the oxidizing gas inlet hole and the oxidizing gas exhaust hole, and the solid height around the corrugated groove of the metal separator A second gas packing inserted between the molecular membrane / electrode assembly and the second metal separator with the introduction hole group and the discharge hole group matching that of the separator, and the introduction hole group and the discharge of the metal separator. The introduction hole group and the discharge hole group are provided corresponding to the hole group, and the cooling water introduction hole and the cooling water discharge hole are provided with a cutout groove communicating with the corrugated groove of the separator. Second Between the metal separator and the third metal separator that constitutes the unit cell adjacent to the second separator, a cooling water packing is provided that is inserted so that the introduction hole group and the discharge hole group match those of the separator. A characteristic solid polymer electrolyte fuel cell.
【請求項3】請求項2記載の燃料電池において、金属セ
パレータは表面が金メッキまたは銀メッキされてなるこ
とを特徴とする固体高分子電解質型燃料電池。
3. The solid polymer electrolyte fuel cell according to claim 2, wherein the surface of the metal separator is gold-plated or silver-plated.
【請求項4】請求項2記載の燃料電池において、金属セ
パレータは周辺部がガスパッキンまたは冷却水パッキン
保持用に突起を有することを特徴とする固体高分子電解
質型燃料電池。
4. The solid polymer electrolyte fuel cell according to claim 2, wherein the metal separator has a protrusion at its peripheral portion for holding a gas packing or a cooling water packing.
【請求項5】請求項2記載の燃料電池において、パッキ
ンの切り欠き溝は凹部に膜加圧弁を装着してなることを
特徴とする固体高分子電解質型燃料電池。
5. The solid polymer electrolyte fuel cell according to claim 2, wherein the notch groove of the packing is provided with a membrane pressurizing valve in the recess.
JP30256194A 1994-12-07 1994-12-07 Solid polymer electrolyte fuel cell Expired - Lifetime JP3350260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30256194A JP3350260B2 (en) 1994-12-07 1994-12-07 Solid polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30256194A JP3350260B2 (en) 1994-12-07 1994-12-07 Solid polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH08162145A true JPH08162145A (en) 1996-06-21
JP3350260B2 JP3350260B2 (en) 2002-11-25

Family

ID=17910462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30256194A Expired - Lifetime JP3350260B2 (en) 1994-12-07 1994-12-07 Solid polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3350260B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528980A (en) * 2000-03-28 2003-09-30 セラミック・フューエル・セルズ・リミテッド Surface-treated conductive metal member and method for producing the same
KR100452866B1 (en) * 2002-05-31 2004-10-14 현대자동차주식회사 An apparatus for piling up battery stack of electric automobile
WO2005050766A1 (en) * 2003-11-19 2005-06-02 Nitto Denko Corporation Fuel cell
JP2005259676A (en) * 2003-11-19 2005-09-22 Nitto Denko Corp Fuel cell
JP2020519767A (en) * 2017-05-15 2020-07-02 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Water electrolysis or co-electrolytic reactor (SOEC) or fuel cell (SOFC) for pressurizing operation with a clamping system suitable for pressurizing operation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528980A (en) * 2000-03-28 2003-09-30 セラミック・フューエル・セルズ・リミテッド Surface-treated conductive metal member and method for producing the same
JP4955178B2 (en) * 2000-03-28 2012-06-20 セラミック・フューエル・セルズ・リミテッド Member for solid electrolyte fuel cell assembly and method for improving conductivity thereof
KR100452866B1 (en) * 2002-05-31 2004-10-14 현대자동차주식회사 An apparatus for piling up battery stack of electric automobile
WO2005050766A1 (en) * 2003-11-19 2005-06-02 Nitto Denko Corporation Fuel cell
JP2005259676A (en) * 2003-11-19 2005-09-22 Nitto Denko Corp Fuel cell
US7862954B2 (en) 2003-11-19 2011-01-04 Aquafairy Corporation Fuel cell
JP4643178B2 (en) * 2003-11-19 2011-03-02 アクアフェアリー株式会社 Fuel cell
JP2020519767A (en) * 2017-05-15 2020-07-02 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Water electrolysis or co-electrolytic reactor (SOEC) or fuel cell (SOFC) for pressurizing operation with a clamping system suitable for pressurizing operation

Also Published As

Publication number Publication date
JP3350260B2 (en) 2002-11-25

Similar Documents

Publication Publication Date Title
US6974648B2 (en) Nested bipolar plate for fuel cell and method
JP3460346B2 (en) Solid polymer electrolyte fuel cell
US7189468B2 (en) Lightweight direct methanol fuel cell
US6858338B2 (en) Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in fuel cell
US7851105B2 (en) Electrochemical fuel cell stack having staggered fuel and oxidant plenums
US7759014B2 (en) Fuel cell having a seal member
KR100699659B1 (en) Polymer Electrolyte Fuel Cell
JP3920018B2 (en) Fuel cell stack
US8003273B2 (en) Polymer electrolyte fuel cell and fuel cell sealing member for the same
US20080050629A1 (en) Apparatus and method for managing a flow of cooling media in a fuel cell stack
US7232582B2 (en) Fuel cell
JPH08167424A (en) Solid high polymer electrolyte fuel cell
US7186476B2 (en) One piece bipolar plate with spring seals
US7368199B2 (en) Fuel cell stack
JPH05251097A (en) Solid high polymer electrolyte type fuel cell
JPH08203553A (en) Solid polymer electrolyte fuel cell
JPH08162145A (en) Solid polymer electrolytic fuel cell
US20060003206A1 (en) Fuel cell
JPH05190193A (en) Solid high polymeric electrolyte type fuel cell
JPH0963623A (en) Solid polymer electrolyte fuel cell
JP4430311B2 (en) Fuel cell stack
KR20190101000A (en) Fuel cell and Fuel cell stack comprising the same
JP2005166420A (en) Fuel cell stack
US20210119242A1 (en) Fuel cell
JPH09161821A (en) Solid polymer electrolytic fuel cell

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070913

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130913

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term