JPS61239251A - Method for developing electrostatic latent image - Google Patents

Method for developing electrostatic latent image

Info

Publication number
JPS61239251A
JPS61239251A JP7933985A JP7933985A JPS61239251A JP S61239251 A JPS61239251 A JP S61239251A JP 7933985 A JP7933985 A JP 7933985A JP 7933985 A JP7933985 A JP 7933985A JP S61239251 A JPS61239251 A JP S61239251A
Authority
JP
Japan
Prior art keywords
bias
duty ratio
toner
latent image
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7933985A
Other languages
Japanese (ja)
Other versions
JPH07111605B2 (en
Inventor
Takasumi Wada
孝澄 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP60079339A priority Critical patent/JPH07111605B2/en
Publication of JPS61239251A publication Critical patent/JPS61239251A/en
Publication of JPH07111605B2 publication Critical patent/JPH07111605B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/09Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer using magnetic brush
    • G03G15/0907Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer using magnetic brush with bias voltage

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dry Development In Electrophotography (AREA)
  • Magnetic Brush Developing In Electrophotography (AREA)
  • Developing For Electrophotography (AREA)

Abstract

PURPOSE:To attain optimum images by setting a maximum potential of the switching DC bias applied to a developing area, the duty ratio, and the periodical grounding time of the DC bias determined with the duty ratio and the frequency to values in prescribed ranges. CONSTITUTION:A photosensitive drum 11 is rotated clockwise, and a non magnetic sleeve 12 is rotated counterclockwise. The nonmagnetic sleeve 12 involves a fixed magnet gathered body 13, and a magnetic blade 14 is arranged above near the sleeve 12. A DC power source 16 is connected to the nonmagnetic sleeve 12 through a switching circuit 15 whose duty ratio is varied by a timer. A maximum voltage Vmax of the DC bias applied to the nonmagnetic sleeve 12, a toner restraining potential Vt of an electrostatic latent image holding surface, a maximum potential Vd of an image part, a periodical power supply time t1 of the DC bias, and a periodical grounding time t2 of the DC bias are set to satisfy 2Vt<=Vmax<=Vd, t1/t2>=0.3, and t2>=0.2msec.

Description

【発明の詳細な説明】 ゛「産業上の利用分野」 本発明は一成分の高抵抗磁性トナーを用いた静電潜像現
像方法に係り、更に詳細にはトナー担持体に担持された
トナー層を静電潜像保持面に直接接触させずに静電潜像
の電界によりトナーを選択的に転移させる現像方法に関
する。
[Detailed Description of the Invention] ``Field of Industrial Application'' The present invention relates to a method for developing an electrostatic latent image using a single-component high-resistance magnetic toner, and more specifically relates to a toner layer supported on a toner carrier. The present invention relates to a developing method in which toner is selectively transferred by the electric field of an electrostatic latent image without directly contacting the electrostatic latent image holding surface.

「先願の技術」 本発明者は先に、かぶりの発生を防止しつつ階調性の向
上を図る為に、トナー担持体に担持されたトナー層厚よ
り犬なる離間間隔をもって配置された静電潜像保持体と
トナー相持体間の現像領域中に反発磁界を形成すると共
に、該現像領域中にスイッチング直流バイアスを印加さ
せた現像方法を提案している。(特願昭59−2097
7)この種の現像方法は、ファンデルワース力その他の
拘束力によりトナー相持体表面に拘束されているトナー
を、前記反発磁界により担持体表面より浮き上がらせる
と共に、静電保持面の画像部及び非画像部のいずれにお
いても往復運動、即ち転移−逆転移することなくいずれ
か一方のみに移動するよう制御されたスイッチング直流
バイアスにより、非画像部におけるトナーの転移を防止
しつつ、潜像部の表面電位に対応させて画像部にのみト
ナーを転移させ、この結果、前記効果を達成させるもの
である。
"Technique of the Prior Application" The present inventor previously discovered that in order to prevent the occurrence of fogging and improve gradation, the present inventors developed a method for creating a static image with a distance greater than the thickness of the toner layer carried on the toner carrier. A developing method is proposed in which a repulsive magnetic field is formed in a developing region between an electrolatent image carrier and a toner carrier, and a switching DC bias is applied to the developing region. (Special application 1982-2097
7) In this type of development method, the toner which is restrained on the surface of the toner carrier due to Van der Waals force or other restraining force is lifted from the surface of the carrier by the repulsive magnetic field, and the image area and the electrostatic holding surface are The switching DC bias is controlled so that both non-image areas move in either direction without reciprocating or reverse transfer, thereby preventing the toner from transferring in the non-image areas while preventing the toner from moving in the latent image area. The toner is transferred only to the image area in accordance with the surface potential, and as a result, the above effect is achieved.

そして前記「転移−逆転移することなくいずれか一方の
みに移動するよう制御されたスイッチング直流バイアス
」とは具体的には、静電潜像保持面の画像部最大電位(
Vd)と同極性で、且つ下記イ°)式の範囲に制御され
た略矩形波状のスイッチング直流パルスを指す旨記載さ
れているが、その後の確認実験の結果、イ′)式によっ
て設定される範囲内において特にスイッチング直流パル
スの周期的通電時間と周期的接地時間の比であるデユー
ティ比に着目した場合に、デユーティ比と直流バイアス
の最大電圧と、周波数が密接な関係にあると共に、それ
らが特定範囲に設定される必要があることを知見した。
Specifically, the above-mentioned "switching DC bias controlled to move only in one direction without transfer or reverse transfer" refers to the maximum potential of the image area of the electrostatic latent image holding surface (
Although it is stated that it refers to a switching DC pulse with a substantially rectangular waveform that has the same polarity as Vd) and is controlled within the range of formula A') below, as a result of subsequent confirmation experiments, it was set by Formula A'). Within the range, if we focus on the duty ratio, which is the ratio of the periodic conduction time of the switching DC pulse to the periodic grounding time, we find that the duty ratio, the maximum voltage of the DC bias, and the frequency are closely related, and that they are We found that it is necessary to set it within a specific range.

Vt<  Vmax  ≦Vd   ・・・イ’)Vm
ax :直流バイアスの最大電圧 vt:静電潜像保持面のトナー拘束電位Vd:画像部最
大電位 「発明が解決しようとする問題点」 先願発明によれば、先ず地かぶりを防止する為に一旦非
画像部に付着したトナーを、トナー担持体に向う逆転移
電界(Vmax −Vt)によりトナー引き戻しく逆転
移)を行っている訳であるが、その引き戻し量は、引き
戻し速度と対応するα(Vmax−Vt)と引き戻し時
間t1によって定まるものである為に、高周波数領域下
において、デユーティ比を1に設定した場合に直流バイ
アス最大電位Vmaxがトナー拘束電位Vtに近接した
場合は前記トナーの引き戻しを十分行うことが出来ず、
地かぶりが生じる場合がある。(αは帯電量により決定
される定数) 一方、前記欠点を解除する為に、周期的通電時間tlを
大に且つ周期的接地時間t2を小にデユーティ比を設定
すると、逆に画像部における現像濃度が低下する。
Vt< Vmax ≦Vd...I')Vm
ax: Maximum voltage of DC bias vt: Toner restraint potential on the electrostatic latent image holding surface Vd: Maximum potential at the image area "Problem to be solved by the invention" According to the prior invention, first, in order to prevent background fog, The toner that has once adhered to the non-image area is pulled back (reverse transfer) by a reverse transfer electric field (Vmax - Vt) directed toward the toner carrier, and the amount of pullback is α corresponding to the pullback speed. (Vmax - Vt) and the pullback time t1. Therefore, in a high frequency region, when the duty ratio is set to 1, if the DC bias maximum potential Vmax approaches the toner restraint potential Vt, the toner Unable to pull back sufficiently,
Background fogging may occur. (α is a constant determined by the amount of charge) On the other hand, in order to eliminate the above drawback, if the duty ratio is set to a large periodic energization time tl and a small periodic grounding time t2, the development in the image area will be reversed. concentration decreases.

即ち、画像部における転移は主に転移速度と対応するα
(Vd −V5)と転移時間t2によって定まる・もの
である為に(Vsは非画像部電位で一般にOv又はそれ
に近い値である)、デユーティ比を大にすればする程、
画像部におけるトナー転移量が低下することが理解され
る。
That is, the transition in the image area mainly depends on α, which corresponds to the transition speed.
(Vd - V5) and the transition time t2 (Vs is the non-image area potential and is generally Ov or a value close to it), so the larger the duty ratio, the more
It is understood that the amount of toner transfer in the image area is reduced.

本発明はかかる先願技術の問題点を解消する為に、前記
スイッチング直流電圧の最大電位、周波数、及びデユー
ティ比を適宜選択し、最適画像を得る上で最も好ましい
現像条件を得ることを目的とする。
In order to solve the problems of the prior art, the present invention aims to appropriately select the maximum potential, frequency, and duty ratio of the switching DC voltage to obtain the most favorable developing conditions for obtaining an optimal image. do.

又本発明の他の目的とする所は、バイアス電圧のデユー
ティ比を制御することにより、高い周波数でも良好な画
像を得ることが出来、この結実現像速度の高速化に対応
し得る現像方法を提供することにある。
Another object of the present invention is to provide a developing method that can obtain a good image even at a high frequency by controlling the duty ratio of the bias voltage, and that can cope with an increase in the image formation speed. It's about doing.

r問題点を解決する為の手段」 本発明はかかる技術的課題を達成する為に、前記スイッ
チング直流バイアスの最大電位、デユーティ比、及び該
デユーティ比と周波数で決定される前記直流バイアスの
周期的接地時間を下記イ、口、ハ式の範囲に、特に前記
直流バイアスの高周波数化に反比例して前記デユーティ
比が小になる如く設定することにより、直流バイアスの
最大電圧Vmaxを一定電圧以上に維持し、α(Vma
x −Vt)Xttにより決定される非画像部における
トナー引戻し量を地かぶりが生じない程度にすると共に
、高周波数領域化においても転移時間t2を一定時間に
設定し、α(Vd −Vs) X t2により決定され
るトナー転移量を大にし、良好な画像濃度を得るように
した静電潜像現像方法を提案する。
In order to achieve such technical problems, the present invention provides a maximum potential of the switching DC bias, a duty ratio, and a periodic period of the DC bias determined by the duty ratio and frequency. The maximum voltage Vmax of the DC bias can be increased to a certain voltage or higher by setting the grounding time within the range of formulas A, C, and C below, and in particular, by setting the duty ratio to become smaller in inverse proportion to the higher frequency of the DC bias. and α(Vma
The amount of toner pullback in the non-image area determined by x - Vt) An electrostatic latent image developing method is proposed in which the amount of toner transfer determined by t2 is increased to obtain good image density.

2Vt≦ Vmax  ≦ Vd   ・・・イ)t1
/t2≧0.3       ・・・ロ)t2≧0.2
 m5ec      −・・ハ)Vmax :直流バ
イアスの最大電圧 Vt:静電潜像保持面のトナー拘束電位Vd:画像部最
大電位 tl:直流バイアスの周期的通電時間 t2:直流バイアスの周期的接地時間 「作用」 かかる現像法の作用を第1図にもとづいて説明する。
2Vt≦Vmax≦Vd...a) t1
/t2≧0.3...b)t2≧0.2
m5ec -... C) Vmax: Maximum voltage of DC bias Vt: Toner restraint potential of electrostatic latent image holding surface Vd: Maximum potential of image area tl: Periodic energization time of DC bias t2: Periodic grounding time of DC bias Effects The effects of this developing method will be explained based on FIG.

先ず1図■は後記作用の説明の為に、最大電圧Vma 
xとデユーティ比t1/t2を夫々変化させた直流バイ
アス電圧と潜像電位Vd 、 Vsとの関係を時間変化
で示し、第1図■■は直流バイアス電圧Vの時間変化と
対応して保持面の画像部と非画像部におけるトナー転移
と逆転移の態様を示したものである。
First, Figure 1 ■ shows the maximum voltage Vma to explain the effect described later.
The relationship between the DC bias voltage and the latent image potentials Vd and Vs when x and the duty ratio t1/t2 are changed, respectively, is shown as a time change. This figure shows the mode of toner transfer and countertransference in the image area and non-image area.

先ず同図(A)■より理解されるように、本発明におい
てはVmax≧2Vtに設定した為に、直流バイアスを
I KH2以上の高周波数に設定したとしても非画像部
における引き戻し速度α(Vmax−Vt)が大である
為に高周波数領域下においてもトナーの引き戻しを行う
のに十分なる引き戻し速度を有することとなり、地かぶ
りを防止することが出来る。而もこの場合においては前
記口)、ハ)式より0.Of3msec以上の引き戻し
時間t1を保証している為に、αCVrnax−Vt)
 tlが地かぶりを防止するに足る十分なるトナーの引
き戻し量を得ることが出来る。
First, as can be understood from (A) in the same figure, in the present invention, since Vmax is set to 2Vt, even if the DC bias is set to a high frequency of IKH2 or higher, the pullback speed α (Vmax -Vt) is large, the toner has a pullback speed sufficient to pull back toner even in a high frequency range, and background fogging can be prevented. In this case, 0. Since the pullback time t1 of Of3msec or more is guaranteed, αCVrnax-Vt)
It is possible to obtain a sufficient amount of toner to pull back tl to prevent background fogging.

又、第1図(B)■より理解されるように、Vwax≦
Vdに設定している為に、前記VmaxとVdが逆転す
ることがなく、而もt2≧0.2 ttrsecの条件
下でデユーティ比(tl/ t2)を0.3以上に設定
した為に、t2がtlより極めて小になる事なく、画像
部において所定の転移量を維持し得ると共に、特にデユ
ーティ比(tl/ t2)を1.2以下に設定する事に
より、良好な階調性と画像濃度の低下を防ぐことが出来
る。
Also, as understood from Figure 1 (B) ■, Vwax≦
Since the duty ratio (tl/t2) is set to 0.3 or more under the condition of t2≧0.2 ttrsec, the above-mentioned Vmax and Vd do not reverse because it is set to Vd. It is possible to maintain a predetermined amount of transfer in the image area without t2 becoming extremely smaller than tl, and in particular, by setting the duty ratio (tl/t2) to 1.2 or less, good gradation and image quality can be achieved. It is possible to prevent the concentration from decreasing.

即ち、前記作用を逆から見てみると、(tl/ t2)
 <0.3 、 t2<0.2 m5ecで且つVma
x < 2 Vtの場合は逆転移が達成されず、非画像
部においてカブリが増大する。
That is, if we look at the above effect from the reverse side, (tl/t2)
<0.3, t2<0.2 m5ec and Vma
When x < 2 Vt, reverse transfer is not achieved and fog increases in non-image areas.

又t2<0.2 m5ecで且つ(t1/t2) <0
.3の場合は所定の転移量を維持出来ず、画像濃度が低
下すると共に、スイッチング直流バイアスの円滑な効果
が達成されず、階調性も低下する。
Also, t2<0.2 m5ec and (t1/t2)<0
.. In the case of No. 3, the predetermined amount of transfer cannot be maintained, the image density decreases, the smooth effect of the switching DC bias cannot be achieved, and the gradation quality also decreases.

更に、(t1/t2) >1.2高周波数領域化でのス
イッチング直流バイアスの円滑な効果が達成されず、階
調性と画像濃度が低下するものである。
Furthermore, the smooth effect of the switching DC bias in the high frequency region (t1/t2)>1.2 is not achieved, and the gradation and image density are reduced.

而も本発明によれば、前記デユーティ比tl/ t2を
、直流バイアスの高周波数化に反比例して小に設定する
ことにより、良好な階調性と画像濃度を維持しつつ周波
数を400082前後にまで高めることが出来、現像速
度の高速化に対応し得る。
Moreover, according to the present invention, by setting the duty ratio tl/t2 to be small in inverse proportion to the increase in the frequency of the DC bias, the frequency can be increased to around 400082 while maintaining good gradation and image density. This makes it possible to increase the development speed to a high speed.

「実施例」 以下、本発明の好適な実施態様を例示的に詳しく説明す
る。ただしこの実施態様に記載されている電界強度、磁
束密度、回転速度、構成部品の寸法、材質、形状、・そ
の相対配置などは特に特定的な記載がない限りは、この
発明の範囲をそれのみに限定する趣旨ではなく、単なる
説明例に過ぎない。
"Example" Hereinafter, preferred embodiments of the present invention will be described in detail by way of example. However, the scope of this invention shall be limited to the electric field strength, magnetic flux density, rotational speed, dimensions, materials, shapes, and relative arrangement of components described in this embodiment unless otherwise specified. It is not intended to be limiting, but is merely an illustrative example.

第3A図は本発明に基ずいて構成された現像装置の概略
構成を示す。
FIG. 3A shows a schematic structure of a developing device constructed according to the present invention.

11は感光体ドラム、12は固定磁石集成体13を内包
する非磁性スリーブで、両部材11.12は、その最近
接位置(以下現像中心位置C−Cという)において空隙
間隔が約300 JLになるよう対向して配置すると共
に、感光体ドラム11は時計方向に、非磁性スリーブ1
2は反時計方向に、夫々周速100mm#ecの等速で
回転するよう構成されている。
11 is a photosensitive drum, 12 is a non-magnetic sleeve containing a fixed magnet assembly 13, and both members 11 and 12 have a gap distance of about 300 JL at the closest position (hereinafter referred to as the development center position C-C). The photoreceptor drums 11 are arranged to face each other so that the non-magnetic sleeve 1
2 are configured to rotate counterclockwise at a constant speed of a peripheral speed of 100 mm#ec.

非磁性スリーブ12の上流側には磁性ブレード14が近
接して配置され、該ブレード14により100〜130
 ILの層厚に規制されたトナー層が非磁性スリーブ1
2上に担持されたまま現像領域A (後記するように反
発磁界が形成されている領域)まで搬送されるよう構成
する。
A magnetic blade 14 is disposed close to the upstream side of the non-magnetic sleeve 12.
A toner layer regulated to the layer thickness of IL is a non-magnetic sleeve 1.
2 and is transported to a development area A (an area where a repulsive magnetic field is formed as described later).

第3B図において、現像領域Aにおける非磁性スリーブ
12内側には、同極性の固定磁石13a、13bが隣接
して配置され、非磁性スリーブ12と感光体ドラム11
間の固定磁石13a、 13bに挟まれる領域(現像領
域A)に反発磁界を形成する。
In FIG. 3B, fixed magnets 13a and 13b of the same polarity are arranged adjacent to each other inside the non-magnetic sleeve 12 in the developing area A, and the non-magnetic sleeve 12 and the photosensitive drum 11 are placed adjacent to each other.
A repulsive magnetic field is formed in the area (development area A) sandwiched between the fixed magnets 13a and 13b.

又、非磁性スリーブ12には図示しないタイマによりデ
ユーティ比が可変可能に構成されたスイッチング回路1
5を介して直流電源18が接続され、前記現像領域Aに
方形波パルスが印加されるよう構成する。 そして、前
記固定磁石13a、 13bの非磁性スリーブ12表面
の最大磁束密度はいずれも500ガウスに設定され、且
つ再固定磁石13a、 13b間中間位置の最大落込み
高さが100〜200ガウスになるよう設定する。けだ
し、前記最大落込み高さが100ガウス以下及び200
ガウス以上では良好な反発磁界の形成が困難になる為で
ある。
The non-magnetic sleeve 12 also includes a switching circuit 1 whose duty ratio can be varied by a timer (not shown).
A DC power supply 18 is connected through 5, and a square wave pulse is applied to the development area A. The maximum magnetic flux density on the surface of the non-magnetic sleeve 12 of the fixed magnets 13a and 13b is both set to 500 Gauss, and the maximum fall height at the intermediate position between the re-fixed magnets 13a and 13b is 100 to 200 Gauss. Set it like this. The maximum drop height is 100 gauss or less and 200 gauss or less.
This is because it becomes difficult to form a good repulsive magnetic field when the magnetic field exceeds Gauss.

この結果、前記反発磁界が形成されている現像領域Aに
於けるトナー穂先高さがトナー層の略1゜5倍、即ち1
50〜180pの高さになり、感光体ドラム11に極め
て近接すると共に、該反発磁界によりトナー粒子間、及
びトナー粒子と非磁性スリーブ12間の拘束力を弱め、
トナー4の転移が容易になる。
As a result, the height of the toner tip in the development area A where the repulsive magnetic field is formed is approximately 1.5 times that of the toner layer, that is, 1.
It has a height of 50 to 180p, is very close to the photoreceptor drum 11, and the repulsive magnetic field weakens the binding force between the toner particles and between the toner particles and the non-magnetic sleeve 12,
Transfer of the toner 4 becomes easy.

前記固定磁石13a、13bと現像中心位置C−Gとの
相対配設位置は、各固定磁石13a、13bの最大磁束
線間距離を 2見、その中心線をOl及び非磁性スリー
ブ12の回転方向下流側を正とした場合において、現像
中心位置C−Cの偏位量θが下記二)式の範囲内、即ち
反発磁界の中心線より僅かに下流側にずらして配置する
The relative arrangement position of the fixed magnets 13a, 13b and the development center position C-G is determined based on the distance between the maximum magnetic flux lines of each fixed magnet 13a, 13b, and the center line is set in the direction of rotation of Ol and the non-magnetic sleeve 12. In the case where the downstream side is positive, the deviation amount θ of the development center position C-C is within the range of the following equation 2), that is, it is arranged slightly shifted downstream from the center line of the repulsive magnetic field.

Oくθ<+(1/2) l  ・・・二)前記固定磁石
13a、13bをこのように形成した理由は、反発磁界
により形成されるトナー4穂先が、該トナー4を搬送す
る非磁性スリーブ12の回転によって下流側に流れる為
、該流れだトナー穂先位置と現像位置を一致させる為で
ある。
O x θ<+(1/2) l ...2) The reason why the fixed magnets 13a and 13b are formed in this way is that the toner 4 tips formed by the repulsive magnetic field are non-magnetic, which transports the toner 4. Since the toner flows downstream due to the rotation of the sleeve 12, the purpose of this flow is to match the position of the tip of the toner tip with the development position.

さて、かかる構成において、感光体ドラム11表面の感
光体に担持される静電潜像電位は1画像部約500v、
非画像部Ovに設定され、又トナ−4拘束電位は120
V (実験値)とした場合において、下記に詳説するよ
うな確認実験を行った。
Now, in such a configuration, the electrostatic latent image potential carried on the photoreceptor on the surface of the photoreceptor drum 11 is approximately 500 V for one image portion,
It is set in the non-image area Ov, and the toner-4 restraint potential is 120.
V (experimental value), a confirmation experiment was conducted as detailed below.

尚、本現像装置に使用されるトナーとして平均粒径9〜
20IL11電気抵抗率1014Ω・C1、比誘電率2
.0以下、磁性保持力Ha、50〜1000e、飽和磁
化30〜40emu/gの高抵抗磁性トナーであって、
流動補助剤として疎水性シリカを含有したものを用いて
いる。
Note that the toner used in this developing device has an average particle size of 9 to 9.
20IL11 Electrical resistivity 1014Ω・C1, relative dielectric constant 2
.. 0 or less, a magnetic coercive force Ha of 50 to 1000e, and a saturation magnetization of 30 to 40 emu/g,
A fluid containing hydrophobic silica is used as a flow aid.

又、転写紙自体の紙温度すは0.06から0.08であ
った・ a)非画像部における逆転移(地かぶり)と直流バイア
ス電圧との関係確認、 周波数を2.5 KH2、デユーティ比(tt/12)
を0.3 (t2 : 0.3 m5ec)に設定した
直流バイアスの最大電位をを200V、 250V、 
300V、 400Vに設定した場合の夫々の画像濃度
と感光体表面電位の関係を示す7曲線を第4A図に示す
In addition, the paper temperature of the transfer paper itself was 0.06 to 0.08. a) Confirmation of the relationship between reverse transition (background fog) in the non-image area and DC bias voltage, setting the frequency to 2.5 KH2 and the duty. Ratio (tt/12)
The maximum potential of the DC bias was set to 0.3 (t2: 0.3 m5ec) at 200V, 250V,
FIG. 4A shows seven curves showing the relationship between image density and photoreceptor surface potential when set to 300V and 400V, respectively.

第4A図においてバイアス電圧Vmaxが2Vdより小
さい200vの場合は感光体表面電位が100〜120
V前後で画像濃度が0.2以上となり、かぶりが生じ!
ていることが理解出来る。又Vmaxが250V以上で
は画像濃度が0.1前後であり、はとんどかぶりが生じ
ていないことが理解出来る。
In FIG. 4A, when the bias voltage Vmax is 200V, which is smaller than 2Vd, the photoreceptor surface potential is 100 to 120V.
The image density becomes 0.2 or more before and after V, and fogging occurs!
I can understand what is going on. Further, when Vmax is 250 V or more, the image density is around 0.1, and it can be seen that fog does not occur in most cases.

b)直流バイアス電圧のデユーティ比(tt/12)と
階調性の関係確認 周波数を1.1  KH2、最大電位を350V、デユ
ーティ比を夫々10/3 (t2: 0.21 m5e
c)  、 E115 (t2: 0.41  m5e
c)1/2  (t2:  0.61 m5ec)1/
3  (t2:  0.88m5ec)に設定した場合
の夫々の画像濃度と感光体表面電位の関係を示す7曲線
を第4B図に示す。
b) Confirm the relationship between DC bias voltage duty ratio (tt/12) and gradation.The frequency is 1.1 KH2, the maximum potential is 350V, and the duty ratio is 10/3 (t2: 0.21 m5e).
c) , E115 (t2: 0.41 m5e
c) 1/2 (t2: 0.61 m5ec) 1/
FIG. 4B shows seven curves showing the relationship between the image density and the surface potential of the photoreceptor when the image density was set at 3 (t2: 0.88 m5ec).

本図より理解されるようにデユーティ比が10/3 (
t2: 0.21 tasec)ではγ値が立上がり、
かぶりが大で且つ階調性が悪いことが確認された。
As can be understood from this figure, the duty ratio is 10/3 (
At t2: 0.21 tasec), the γ value rises,
It was confirmed that the fog was large and the gradation was poor.

而も本実施例においては1.5  KH2以上の高周波
数領域化では、デユーティ比が低くなるにつれ、かぶり
防止と共に前記γ値が低くなり、一層良好な階調性と現
像濃度の安定性が増していることが理解出来る。
However, in this embodiment, in the high frequency range of 1.5 KH2 or more, as the duty ratio becomes lower, fogging is prevented and the γ value is lowered, resulting in better gradation and stability of development density. I can understand what is going on.

C)直流バイアス電圧の周期的接地時間t2と階調性の
関係確認 最大電位を350v、デユーティ比315に設定し  
  2、周波数を3.8 KH2(t2: 0.18 
m5ec) 、 3.0 KH2(t2: 0.21m
5ec) 2.5 KH2(t2:0.25m5ec)
に設定した場合の夫々の画像濃度と感光体表面電位の関
係を示す7曲線を第4C図に示す。
C) Check the relationship between the periodic grounding time t2 of the DC bias voltage and the gradation. Set the maximum potential to 350v and the duty ratio to 315.
2. Set the frequency to 3.8 KH2 (t2: 0.18
m5ec), 3.0 KH2 (t2: 0.21m
5ec) 2.5 KH2 (t2:0.25m5ec)
FIG. 4C shows seven curves showing the relationship between image density and photoreceptor surface potential when the image density is set to .

本図より理解されるようにt2が0.16 m5ecは
かぶりが発生しないが全体的に濃度が低くなることが確
認された。
As can be understood from this figure, when t2 was 0.16 m5ec, no fogging occurred, but it was confirmed that the overall density decreased.

尚、全体的な傾向として周波数が大きく(t2が小さく
)なるにつれ、画像濃度が低く且つγ値が小さくなる傾
向にあった。
As a general trend, as the frequency becomes larger (t2 becomes smaller), the image density tends to become lower and the γ value becomes smaller.

次に周波数を4 KHzデユーティ比を3/10 (t
2: Q、2Qmsec)に変換した所、第4C図グラ
フAに示すように濃度を回復させることが出来た。
Next, change the frequency to 4 KHz and the duty ratio to 3/10 (t
2: Q, 2Q msec), the concentration was able to be recovered as shown in graph A of Fig. 4C.

かかる実施例によれば本発明と実施例との作用効果が整
合性を有し相関が取れていることが理解出来る。
According to these examples, it can be understood that the effects of the present invention and the examples are consistent and correlated.

「発明の効果」 以上記載した如く本発明によれば、前記先願技術の問題
点を克服し、非画像部における地かぶりが全く生じるこ
となく、又画像部においては現像濃度の安定化と一層良
好な画像の階調性の向上を図ることが出来る。
"Effects of the Invention" As described above, the present invention overcomes the problems of the prior art, eliminates background fogging in non-image areas, and further stabilizes the developed density in image areas. It is possible to improve the gradation of a good image.

又、本発明によれば、周波数を高くしてもそれに対応し
てデユーティ比を低くすることにより、所定のトナー転
移時間を維持する事が出来、画像濃度を低下することな
く、高速化に対応出来る現像装置を提供する事が出来る
Furthermore, according to the present invention, even if the frequency is increased, by lowering the duty ratio correspondingly, a predetermined toner transfer time can be maintained, and it is possible to support higher speeds without reducing image density. We can provide a developing device that can.

更にスイッチング直流バイアスを用いた為に、デユーテ
ィ比の制御は容易であり、且つこれらの制御機構の小形
化、低価格化が可能となる。
Furthermore, since a switching DC bias is used, the duty ratio can be easily controlled, and these control mechanisms can be made smaller and lower in price.

等の著効を有す。It has the same effect as the above.

【図面の簡単な説明】[Brief explanation of the drawing]

第2A乃至2B図は本発明に基ずいて構成された現像装
置の概略構成を示し、第2A図は全体図、第2B図は要
部拡大図である。 第1会−41図、は現像領域に本発明に係る直流バイア
スを印加した場合の画像部と非画像部の電界強度の状態
を示す説明図、 第3A〜30図は前記直流バイアス、デユーティ比、周
波数を本発明の技術的範囲で変化させた場合の7曲線を
示すグラフ図である。 第1図 トナー泪ν■不 第2A図 第2B図 第3A図 *@ 電a          (V)第3B図
2A and 2B schematically show the structure of a developing device constructed according to the present invention, with FIG. 2A being an overall view and FIG. 2B being an enlarged view of essential parts. Figure 1-41 is an explanatory diagram showing the state of electric field strength in the image area and non-image area when the DC bias according to the present invention is applied to the development area, and Figures 3A to 30 are the DC bias and duty ratio. , is a graph diagram showing seven curves when the frequency is changed within the technical range of the present invention. Fig. 1 Toner tear ν ■ No Fig. 2A Fig. 2B Fig. 3A *@ Electric a (V) Fig. 3B

Claims (1)

【特許請求の範囲】 1)トナー担持体に担持されたトナー層厚より大なる離
間間隔をもって配置された静電潜像保持体とトナー担持
体間の現像領域中に反発磁界を形成すると共に、該現像
領域中に感光体の潜像電位より小なる電位を有するスイ
ッチング直流バイアスを印加させた静電潜像現像方法に
おいて、前記スイッチング直流バイアスの最大電位、デ
ューティ比、及び該デューティ比と周波数で決定される
前記直流バイアスの周期的接地時間を下記式の範囲に設
定したことを特徴とする静電潜像現像方法 2vt≦Vmax≦Vd・・・イ) t1/t2≧0.3・・・ロ) t2≧0.2msec・・・ハ) Vmax:直流バイアスの最大電圧 Vt:静電潜像保持面のトナー拘束電位 Vd:画像部最大電位 t1:直流バイアスの周期的通電時間 t2:直流バイアスの周期的接地時間 2)前記直流バイアスの高周波数化に反比例して前記デ
ューティ比が小になる如く設定した事を特徴とする特許
請求の範囲第1項記載の静電潜像現像方法
[Scope of Claims] 1) A repulsive magnetic field is formed in a development area between an electrostatic latent image carrier and a toner carrier that are arranged with a distance greater than the thickness of the toner layer carried on the toner carrier, and In the electrostatic latent image developing method in which a switching DC bias having a potential smaller than the latent image potential of the photoreceptor is applied in the development area, the maximum potential of the switching DC bias, the duty ratio, and the duty ratio and frequency An electrostatic latent image developing method characterized in that the determined periodic grounding time of the DC bias is set within the range of the following formula: 2vt≦Vmax≦Vd...a) t1/t2≧0.3... b) t2≧0.2msec...c) Vmax: Maximum voltage of DC bias Vt: Toner restraint potential on the electrostatic latent image holding surface Vd: Maximum potential of image area t1: Periodic energization time of DC bias t2: DC bias 2) The electrostatic latent image developing method according to claim 1, characterized in that the duty ratio is set to become smaller in inverse proportion to the higher frequency of the DC bias.
JP60079339A 1985-04-16 1985-04-16 Electrostatic latent image development method Expired - Fee Related JPH07111605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60079339A JPH07111605B2 (en) 1985-04-16 1985-04-16 Electrostatic latent image development method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60079339A JPH07111605B2 (en) 1985-04-16 1985-04-16 Electrostatic latent image development method

Publications (2)

Publication Number Publication Date
JPS61239251A true JPS61239251A (en) 1986-10-24
JPH07111605B2 JPH07111605B2 (en) 1995-11-29

Family

ID=13687140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60079339A Expired - Fee Related JPH07111605B2 (en) 1985-04-16 1985-04-16 Electrostatic latent image development method

Country Status (1)

Country Link
JP (1) JPH07111605B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642263U (en) * 1987-06-24 1989-01-09
JPH0413164A (en) * 1990-05-02 1992-01-17 Ricoh Co Ltd Developing device
JP2001005266A (en) * 1999-06-17 2001-01-12 Ricoh Co Ltd Developing device for digital image

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55118051A (en) * 1979-03-06 1980-09-10 Canon Inc Method and apparatus for developing
JPS55161257A (en) * 1979-06-01 1980-12-15 Canon Inc Stray light preventing device in electric discharger
JPS584153A (en) * 1981-06-30 1983-01-11 Konishiroku Photo Ind Co Ltd Electrostatic image developing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55118051A (en) * 1979-03-06 1980-09-10 Canon Inc Method and apparatus for developing
JPS55161257A (en) * 1979-06-01 1980-12-15 Canon Inc Stray light preventing device in electric discharger
JPS584153A (en) * 1981-06-30 1983-01-11 Konishiroku Photo Ind Co Ltd Electrostatic image developing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642263U (en) * 1987-06-24 1989-01-09
JPH0413164A (en) * 1990-05-02 1992-01-17 Ricoh Co Ltd Developing device
JP2001005266A (en) * 1999-06-17 2001-01-12 Ricoh Co Ltd Developing device for digital image

Also Published As

Publication number Publication date
JPH07111605B2 (en) 1995-11-29

Similar Documents

Publication Publication Date Title
JPS6333148B2 (en)
JPS59181362A (en) Developing method
JPS61239251A (en) Method for developing electrostatic latent image
JPH0451028B2 (en)
JPS60123859A (en) Developing method
JPS60217370A (en) Developing method
JP3084465B2 (en) Developing device
JP3366968B2 (en) Developing device
JPS59223467A (en) Developing method
JPH047506B2 (en)
JPS60125863A (en) Developing device
JP2877163B2 (en) Electrophotographic developing device
JPH0511617A (en) Developing device
JP2003345136A (en) Developing device
JP3103998B2 (en) Developing device
JPS5846349A (en) Method for reversely developing electrostatic latent image
JPS641021B2 (en)
JPH021882A (en) Electrophotographic developing method
JPH0225856A (en) Development method
JPS59154469A (en) Developing device
JPH05210301A (en) Developing method
JPH0695242B2 (en) Image forming method
JPH10232559A (en) Image forming device
JPS60130770A (en) Developing device
JPH08234572A (en) Image forming device and developing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees