JPS6123866A - Contactless ignitor for internal-combustion engine - Google Patents

Contactless ignitor for internal-combustion engine

Info

Publication number
JPS6123866A
JPS6123866A JP14551584A JP14551584A JPS6123866A JP S6123866 A JPS6123866 A JP S6123866A JP 14551584 A JP14551584 A JP 14551584A JP 14551584 A JP14551584 A JP 14551584A JP S6123866 A JPS6123866 A JP S6123866A
Authority
JP
Japan
Prior art keywords
signal
engine
coil
output
revolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14551584A
Other languages
Japanese (ja)
Other versions
JPH0578672B2 (en
Inventor
Toshihiro Saga
嵯峨 敏裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP14551584A priority Critical patent/JPS6123866A/en
Publication of JPS6123866A publication Critical patent/JPS6123866A/en
Publication of JPH0578672B2 publication Critical patent/JPH0578672B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/155Analogue data processing
    • F02P5/1558Analogue data processing with special measures for starting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

PURPOSE:To improve the ignition performance on starting by generating the electric discharge of main condensers by alternately putting two semiconductor opening/closing elements into electric conduction at each revolution of an engine. CONSTITUTION:The first and the second main condensers 9 and 10 are charged by a power generation coil 1, and other edges are connected to an ignition coil 19. The first and the second thyristors 11 and 12 control the electric discharge of the electric charges charging the main condensers 9 and 10. A signal output circuit 18 receives the signal of a revolution sensor 2 and outputs the gate trigger signals of two thyristors 11 and 12. Therefore, the electric discharge of one of the main condensers 9 and 10 forms regular spark and the electric charge in the case when the revolution after compression cycle is high can be used as the charge for regular spark, and the ignition performance on starting can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、磁石発電機を用いた内燃機関用の容量放電式
無接点点火装置に関するもので、特に、始動時の点火性
能に優れた装置を提供するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a capacitive discharge non-contact ignition device for an internal combustion engine using a magnet generator, and in particular to a device with excellent ignition performance during starting. It provides:

(従来の技術) 機関の始動時は、これ生直結されている磁石磁石発電機
の回転数が低い為、点火用コンデンサには充分な充電電
圧が得られず、従って、点火コイルの2次コイルには、
混合気の着火させるに充分な2次電圧が得られない。特
に、4サイクル単気筒の比較的排気量の大きい機関の始
動時は影響が大きく、機関の始動不良を起こす場合があ
る。第3図は、その例を示すもので、Nは機関の瞬時回
転数、Vsは信号電圧、Vcは点火用メインコンデンサ
の充電電圧であり、第3図はスタータ始動時の状態を表
している。スタータ始動時、機関は圧縮工程時に回転数
が急激に低下し、圧縮工程を超えた後は、圧縮された混
合気の膨張より回転数は急激に上昇する。そして、排気
バルブが開いている排気工程では、混合気の圧縮、膨張
が無いため、はぼ一定の回転となり、さらに圧縮工程で
急激に回転数が低下し、以下、これを繰り返す。
(Prior art) When an engine is started, the rotational speed of the magnet generator directly connected to it is low, so sufficient charging voltage cannot be obtained for the ignition capacitor, and therefore the secondary coil of the ignition coil for,
Sufficient secondary voltage cannot be obtained to ignite the mixture. In particular, when starting a four-stroke, single-cylinder engine with a relatively large displacement, the effect is significant, and the engine may start poorly. Figure 3 shows an example of this, where N is the instantaneous rotational speed of the engine, Vs is the signal voltage, and Vc is the charging voltage of the ignition main capacitor. Figure 3 shows the state at the time of starting the starter. . When the starter starts, the rotational speed of the engine rapidly decreases during the compression process, and after the compression process is exceeded, the rotational speed rapidly increases due to the expansion of the compressed air-fuel mixture. Then, during the exhaust process when the exhaust valve is open, there is no compression or expansion of the air-fuel mixture, so the rotation is almost constant, and then the rotation speed drops rapidly during the compression process, and this is repeated thereafter.

ここで、点火用メインコンデンサの充電電圧VCについ
て見ると、圧縮工程を超えた後は、回転数が高くなる。
Here, looking at the charging voltage VC of the main capacitor for ignition, after the compression process is exceeded, the rotation speed becomes high.

しかし、この充電電荷は排気工程で放電されて無駄火と
なってしまい、実際に正規火花として用いられるのは、
排気工程後の充電によってである。ところが、排気工程
後の回転数はそれほど高くはないので、結局第3図のV
c波形のように、無駄火である排気工程の充電電圧が高
く、肝心の圧縮工程での充電電圧は低くなり、混合気に
着火出来ない場合が生じるという問題点がある。
However, this charged charge is discharged during the exhaust process and becomes a wasted flame, and the spark that is actually used as a regular spark is
This is by charging after the exhaust process. However, the rotational speed after the exhaust process is not that high, so in the end V in Figure 3
As shown in the c waveform, the charging voltage in the exhaust process, which is wasteful combustion, is high, and the charging voltage in the important compression process becomes low, resulting in a problem that the air-fuel mixture may not be ignited.

この問題は、特開昭47−15522号公報に記載され
るごとく、2つのメインコンデンサの充電電荷を同一の
点火コイルの1次コイルに放電させるようにしたものに
おいても同様に生じる。
This problem also occurs in a device in which the charges of two main capacitors are discharged to the primary coil of the same ignition coil, as described in Japanese Patent Application Laid-Open No. 47-15522.

この対策としては、発電コイルの巻数を増す、あるいは
、磁石体格を増す等の方法があるが、前者の・場合は、
インダクタンスの増加により高速時の充電電圧が低下し
、後者の場合は発電コイルの発熱が増大するという問題
があり、結局はある程度の性能で妥協せざるを得ない。
As a countermeasure for this, there are methods such as increasing the number of turns of the generator coil or increasing the size of the magnet, but in the former case,
The increase in inductance causes the charging voltage to drop at high speeds, and in the latter case there is a problem in that the heat generation of the generator coil increases, and in the end, performance has to be compromised to a certain extent.

(発明が解決しようとする問題点) 本発明は、圧縮行程を超えた後の、回転の高い時の充電
を、正規火花用の充電電圧として用いるもので、磁石発
電機を変更することなく、高い2次電圧を得るものであ
る。
(Problems to be Solved by the Invention) The present invention uses charging at high revolutions after the compression stroke as the charging voltage for the regular spark, and without changing the magnet generator. This is to obtain a high secondary voltage.

(問題点を解決するための手段) 磁石発電機の発電コイルで、2つのメインコンデンサを
並列に充電し、機関1回転に付き1回の信号電圧を発生
する回転センサの信号電圧を信号出力回路により、機関
2回転に付き1回の信号を発生する2組の分配信号に分
離し、それぞれ第1゜第2の半導体開閉素子のトリガ信
号とする。
(Means for solving the problem) Two main capacitors are charged in parallel with the generating coil of the magnet generator, and the signal voltage of the rotation sensor that generates one signal voltage per engine rotation is output to the signal output circuit. As a result, a signal is generated once every two revolutions of the engine, and is separated into two sets of distribution signals, each of which is used as a trigger signal for the first and second semiconductor switching elements.

(作 用) 2つの半導体開閉素子は殿関1回転毎ムコ交互に導通さ
せて、それぞれ各メインコンデンサの放電を行なうが、
いずれかの放電が正規火花となり、他の一方は無駄火と
なる。しかし、ここで各メインコンデンサは、発電コイ
ルにより、並列に充電されるため、圧縮工程の後の回転
の高い時の充電電荷を必ず正規火花用として用いること
が出来、従って、点火コイルの2次コイルに高い2次電
圧が得られる。
(Function) The two semiconductor switching elements are made alternately conductive every rotation of the gate, and each main capacitor is discharged.
One of the discharges becomes a regular spark, and the other one becomes a wasteful fire. However, since each main capacitor is charged in parallel by the generator coil, the charged charge when the rotation is high after the compression process can always be used for the regular spark, and therefore the secondary of the ignition coil. A high secondary voltage can be obtained in the coil.

(実施例) 第1図は、本発明の一実施例を示すもので、1は磁石発
電機の発電コイル、2は磁石発電機のロータ外周に設け
られた長突起状誘電子の近接により、機関(ロータ〉 
1回転は付き、1回の正負の信号電圧を発生する回転セ
ンサ9,10はそれぞれダイオード6.7を介して発電
コイル1の正方向電圧により並列に充電される第1.第
2のメインコンデンサで、両者の他端は、共に同一の点
火コイル19の1次コイル19aに接続しである。
(Embodiment) FIG. 1 shows an embodiment of the present invention, in which 1 is a power generation coil of a magnet generator, and 2 is a long protruding inductor provided on the outer periphery of a rotor of the magnet generator. Engine (rotor)
The rotation sensors 9 and 10, which rotate one rotation and generate one positive and negative signal voltage, are charged in parallel by the positive direction voltage of the generating coil 1 via diodes 6.7, respectively. The other ends of the second main capacitor are both connected to the primary coil 19a of the same ignition coil 19.

11.12はそれぞれ各メインコンデンサ9,10の充
電電荷の放電制御を行なうための第1.第2のサイリス
クである。8は点火コイル19の1次コイル19aと並
列に接続された直流アーク用ダイオード、16はサイリ
スタ13、定電圧ダイオード14、安定抵抗15から成
るレギュレータで、発電コイル1の負方向電圧のピーク
値をレギュレータ16により一定値に抑え、直流電源用
コンデンサ17を充電する。18はセンサ2の信号を入
力として、2つのサイリスク11.12のゲートトリガ
信号を出力する信号出力回路である。
11 and 12 are the first . This is the second Cyrisk. 8 is a DC arc diode connected in parallel with the primary coil 19a of the ignition coil 19; 16 is a regulator consisting of a thyristor 13, a constant voltage diode 14, and a stabilizing resistor 15; The voltage is kept at a constant value by the regulator 16, and the DC power supply capacitor 17 is charged. A signal output circuit 18 receives the signal from the sensor 2 and outputs gate trigger signals for the two Cyrisks 11 and 12.

第2図は、信号出力回路18の詳細を表わすもので、2
1はセンサ2の正、負の信号を入力として、サイリスク
11.12のトリガ信号を機関1回転につき1パルス出
力する公知の点火時期制御回路である。27は、抵抗2
3.24,25、トランジスタ26から成るインバータ
回路で、ダイオード22によりセンサ2の正方向信号を
入力として、この間のみO″を出力する。2日はインバ
ータ27の出力を入力として1回の入力毎に状態を反転
するダウンエツジ動作型のT−FF(+−リガーフリッ
プフロップ)である。このT−FF28のQおよびQ出
力ば、それぞれ2つのAND回路29.30の一方の入
力とし、これら各AND回路29.30の他の入力端子
には、点火時期制御回路2゛1の出力が接続しである。
FIG. 2 shows details of the signal output circuit 18.
Reference numeral 1 designates a known ignition timing control circuit which inputs the positive and negative signals of the sensor 2 and outputs one pulse of the trigger signal of the Cyrisk 11.12 per engine revolution. 27 is resistance 2
3. An inverter circuit consisting of 24, 25, and a transistor 26 receives the positive direction signal of the sensor 2 through the diode 22 and outputs O'' only during this period.On the 2nd, the output of the inverter 27 is input and the output is This is a down-edge operation type T-FF (+- rigger flip-flop) that inverts the state.The Q and Q outputs of this T-FF 28 are each used as one input of two AND circuits 29 and 30, and each of these AND circuits 29 and 30 is used as an input. The output of the ignition timing control circuit 2'1 is connected to the other input terminals of the circuit 29, 30.

そして、一方のAND回路29の出力は、第1ザイリス
タ11のゲートに、また他方のAND回1830の出力
は第2のサイリスタ12のゲートに、それぞれ接続しで
ある。
The output of one AND circuit 29 is connected to the gate of the first thyristor 11, and the output of the other AND circuit 1830 is connected to the gate of the second thyristor 12.

以下、本回路の動作を第4図、第5図の波形図を参照し
つつ説明する。まず、信号出力回路18の動作について
、第4図で説明する。センサ2は機関1回転に付き1サ
イクルの正、負の信号電圧を発生する(第4図(a))
。そして、点火時期制御回路21は、この信号電圧を受
けて、機関の回転数に応じてセンサ信号の負方向電圧の
立上り位置θしから正方向電圧の立上り位置θHの間で
立上る進角信号を出力する。第4図fblは、この点火
時期制御回路21の出力波形で、ここでは進角途上での
出力波形を示している。一方、センサ2の正方向電圧は
、インバータ回路27の入力となり、インバータ回路2
7の出力は、第4図(C1の如く、センサ2の正方向電
圧が立上がると、”1”から′0°°に立下がる。T−
FF28はダウンエツジ動作型であるため、インバータ
27の出力が1”から”O”に立下がると同時に、それ
までの状態から反転し、そのQ出力は”■”から”0゛
へ、またQ出力は”0”から”■”へと変化する。そし
て、この状態は次にインパーク回路27の出力が1”か
ら”O”に立下がるまで保持され、QおよびQ出力はそ
れぞれ第4図(d+、 (elの如く、機関1回転毎に
、その状態が反転変化する。
The operation of this circuit will be explained below with reference to the waveform diagrams of FIGS. 4 and 5. First, the operation of the signal output circuit 18 will be explained with reference to FIG. Sensor 2 generates one cycle of positive and negative signal voltages per engine revolution (Figure 4 (a)).
. In response to this signal voltage, the ignition timing control circuit 21 generates an advance angle signal that rises between the rising position θ of the negative direction voltage and the rising position θH of the positive direction voltage of the sensor signal according to the engine rotation speed. Output. FIG. 4 fbl shows the output waveform of this ignition timing control circuit 21, and here the output waveform is shown in the middle of advancing. On the other hand, the positive voltage of the sensor 2 becomes an input to the inverter circuit 27, and the inverter circuit 2
As shown in Figure 4 (C1), when the positive voltage of sensor 2 rises, the output of 7 falls from "1" to '0°.T-
Since the FF28 is a down-edge operation type, at the same time the output of the inverter 27 falls from 1" to "O", the previous state is reversed, and its Q output changes from "■" to "0", and the Q output also changes from "■" to "0". changes from "0" to "■". This state is maintained until the output of the impark circuit 27 falls from 1'' to ``O'', and the Q and Q outputs are each rotated for each revolution of the engine as shown in FIG. 4 (d+, (el). The state is reversed.

Q、 Q出力は、それぞれ2つのAND回路29゜30
の一方の入力となり、また、点火時期制御回路2Iの出
力は各AND回路29.30の他方の入力となっている
ため、各AND回路29.30の出力は、それぞれ機関
2回転にイ11き1回の進角信号を出力し、しかもそれ
ぞれは機関1回転毎に交互に出力信号を出す。これら各
AND回路29゜30の出力波形をそれぞれ第41(o
、 Ig)に示す。
Q, Q outputs are each two AND circuits 29°30
Also, the output of the ignition timing control circuit 2I is the other input of each AND circuit 29.30, so the output of each AND circuit 29.30 is equal to One advance angle signal is output, and each output signal is output alternately every engine revolution. The output waveforms of these AND circuits 29°30 are the 41st (o
, Ig).

従って、サイリスタ11と12は、機関1回転毎に交互
に放電制御を行なうことになる。
Therefore, the thyristors 11 and 12 perform discharge control alternately every rotation of the engine.

次に、始動時の各メインコンデンサ9.10の充電電圧
について説明する。第一5図(・)〜(・)は、ス  
       (タータON時の機関の瞬時回転数N1
センサ2の信号電圧Vs、各メインコンデンサ9.10
のそれぞれの充電電圧VCI、Vc2を表している。
Next, the charging voltage of each main capacitor 9 and 10 at the time of starting will be explained. Figure 15 (・) to (・) are
(Instantaneous engine speed N1 when the starter is ON
Signal voltage Vs of sensor 2, each main capacitor 9.10
represents charging voltages VCI and Vc2, respectively.

ここで、各充電電圧Vc1.Vc2は、それぞれこれま
で説明したように、機関2回転に付き1回放電し、しか
も、それぞれは機関1回転毎に交互に放電する。
Here, each charging voltage Vc1. As explained above, Vc2 is discharged once every two revolutions of the engine, and is alternately discharged every one revolution of the engine.

今、t=QでスタータONし、機関が回り始めたとする
と、発電コイル1の正方向電圧で各メインコンデンサ9
,10は同時に充電される。そして、発電コイル1の負
方向電圧により直流電源コンデンサ17が充電され、信
号出力回路Iftが動作を開始する。ここで、T−FF
28のQ出力が”l”から始まるか”o°゛がら始まる
かは全くの偶然で決まるが、仮にQ−”o″がら始まっ
たとすると、(すなわちQ=” 1 ”)これまでの説
明から明らかなように、第1発目の点火は、他方のAN
D回路30の出力で第2のサイリスタ12がターンオン
し、第2のメインコンデンサ18の電荷が放電して行な
われるが、この時の火花は無駄火となる。一方、第1の
メインコンデンサ9の電荷は、ここでは放電せずに、次
のセンサ信号の正方向電圧によりT−FF28が反転し
Q−”1”となった後、一方のAND回路29出カによ
って、第1のサイリスタ11がターンオンして始めて放
電が行なわれる。そして、この後、機関の圧縮工程(2
)を超えると、回転数は急激に高くなり、発電コイル1
の発生電圧が高くなるため、各メインコンデンサ9およ
び1o充電電圧は図示の如く高くなる。なお、ここで同
時に2つのメインコンデンサ9.10を充電するため、
1つのメインコンデンサを充電する場合と比べ充電電圧
が低くなると思われがちであるが、実際は回転数が低い
、すなわち周波数が低いため、電流の遅れが小さいこと
、さらに、この低い回転数領域で共振現象が発生するた
め、充電電圧が低下することはない。そして、この圧縮
工程(2)後の高い回転で充電された各メインコンデン
サ9,1oの電荷は、機関1回転毎に交互に放電し、第
5図の如くとなる。すなわち、以後の機関の圧縮工程!
41. (61においても各メインコンデンサ9.10
はいずれも充分高い充電電圧にて放電することになるた
め、点火コイル19の2次コイル19bに充分な高電圧
が発生し、確実に混合気を着火させることが出来る。
Now, if the starter is turned on at t=Q and the engine starts rotating, each main capacitor 9 is
, 10 are charged simultaneously. Then, the DC power supply capacitor 17 is charged by the negative voltage of the generating coil 1, and the signal output circuit Ift starts operating. Here, T-FF
Whether the Q output of 28 starts from "l" or "o°" is determined by pure chance, but if it starts from Q - "o" (that is, Q = "1"), from the previous explanation, As is clear, the first ignition is caused by the other AN
The second thyristor 12 is turned on by the output of the D circuit 30, and the electric charge of the second main capacitor 18 is discharged, but the spark at this time becomes a wasted flame. On the other hand, the charge in the first main capacitor 9 is not discharged here, but after the T-FF 28 is inverted by the positive voltage of the next sensor signal and becomes Q-"1", one of the AND circuits 29 is output. Discharge occurs only when the first thyristor 11 is turned on by the force. After this, the engine compression process (2
), the rotation speed increases rapidly and the generator coil 1
Since the generated voltage becomes higher, the charging voltage of each main capacitor 9 and 1o becomes higher as shown in the figure. In addition, in order to charge the two main capacitors 9.10 at the same time,
It is often thought that the charging voltage will be lower than when charging one main capacitor, but in reality the rotation speed is low, that is, the frequency is low, so the delay in the current is small, and furthermore, resonance occurs in this low rotation speed region. Due to this phenomenon, the charging voltage will not drop. The charges in the main capacitors 9 and 1o, which were charged during the high rotation after the compression step (2), are alternately discharged every revolution of the engine, as shown in FIG. In other words, the subsequent compression process of the engine!
41. (In 61, each main capacitor 9.10
Since both are discharged at a sufficiently high charging voltage, a sufficiently high voltage is generated in the secondary coil 19b of the ignition coil 19, and the air-fuel mixture can be reliably ignited.

なお、上述した実施例においては、回転センサ2の出力
をダイオード22およびインバータ回路27を介してT
−FF28に供給するようにしたが、点火時期制御回路
21の出力をT−FF28に供給してダイオード22お
よびインバータ回路27を省略するようにしてもよく、
さらには点火時期制御回路21を有しないものにおいて
も、回転センサ2の出力をAND回路29’、30の各
一方の入力に直接印加することにより適用することがで
きる。
In the embodiment described above, the output of the rotation sensor 2 is connected to T via the diode 22 and the inverter circuit 27.
- Although the output of the ignition timing control circuit 21 is supplied to the T-FF 28, the diode 22 and the inverter circuit 27 may be omitted.
Furthermore, even in a device that does not have the ignition timing control circuit 21, the present invention can be applied by directly applying the output of the rotation sensor 2 to one input of each of the AND circuits 29' and 30.

(発明の効果) 以上述べたように本発明においては、2つの半導体開閉
素子を機関の1回転毎に交互に導通させて各メインコン
デンサの放電を交互に行なって、そのうちいずれか一方
の放電が正規火花となって、圧縮工程後の回転の高い時
の充電電荷を必ず正規火花用として用いることができて
、点火コイルの2次コイルに高い2次電圧が得られるゐ
・ら、磁石発電機を変更することな(、かつ高速時の2
次電圧の低下を来たすことなく、始動時の点火性能を向
上することができるという優れた効果がある。
(Effects of the Invention) As described above, in the present invention, the two semiconductor switching elements are alternately made conductive for each rotation of the engine to alternately discharge the main capacitors, so that only one of them is discharged. The magnet generator generates a regular spark, and the charged charge at high rotation speed after the compression process can be used for the regular spark, and a high secondary voltage can be obtained in the secondary coil of the ignition coil. (and 2 at high speed)
This has the excellent effect of improving ignition performance during starting without causing a drop in voltage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一実施例を示す電気回路図、第2
図は第1図図示装置における信号出力回路のより詳細な
電気回路図、第3図は従来装置における各部波形図、第
4図および第5図は上記実施例の作動説明に供する各部
波形図である。 1・・・発電コイル、2・・・回転センサ、9・・・第
1のメインコンデンサ、10・・・第2のメインコンデ
ンサ、11・・・第1の半導体開閉素子をなす第1のサ
イリスク、12・・・第2の半導体開閉素子をなす第2
のサイリスク、18・・・信号出力回路、19・・・点
火コイル、19a・・・1次コイル。
FIG. 1 is an electric circuit diagram showing one embodiment of the device of the present invention, and FIG.
The figure is a more detailed electric circuit diagram of the signal output circuit in the device shown in FIG. 1, FIG. 3 is a waveform diagram of various parts in the conventional device, and FIGS. 4 and 5 are waveform diagrams of various parts for explaining the operation of the above embodiment. be. DESCRIPTION OF SYMBOLS 1... Generator coil, 2... Rotation sensor, 9... First main capacitor, 10... Second main capacitor, 11... First cyrisk forming the first semiconductor switching element , 12...the second semiconductor switch forming the second semiconductor switching element
18...Signal output circuit, 19...Ignition coil, 19a...Primary coil.

Claims (1)

【特許請求の範囲】[Claims] 磁石発電機を電源とする容量放電式内燃機関用無接点点
火装置において、磁石発電機の発電コイルにより、並列
に充電される第1、第2のメインコンデンサと、これら
の各コンデンサのそれぞれの充電電荷を同一の点火コイ
ルの1次コイルに放電制御するための第1、第2の半導
体開閉素子と、機関の1回転に付き1回の信号を発生す
る回転センサと、このセンサの出力信号を機関の2回転
に付き1回の信号とし、しかも1回転毎に交互に第1、
第2の分配信号を発生する信号出力回路とを備え、この
信号出力回路の第1、第2の分配信号により、前記第1
、第2の半導体開閉素子を機関1回転毎に交互に導通さ
せることを特徴とする内燃機関用無接点点火装置。
In a capacitive discharge type non-contact ignition system for an internal combustion engine that uses a magnet generator as a power source, the first and second main capacitors are charged in parallel by the generator coil of the magnet generator, and each of these capacitors is charged. A first and a second semiconductor switching element for controlling the discharge of electric charge to the primary coil of the same ignition coil, a rotation sensor that generates a signal once per revolution of the engine, and an output signal of this sensor. One signal for every two revolutions of the engine, and the first, first, and
a signal output circuit that generates a second distribution signal, and the first and second distribution signals of the signal output circuit generate the first distribution signal.
, a non-contact ignition device for an internal combustion engine, characterized in that the second semiconductor switching element is made conductive alternately for each revolution of the engine.
JP14551584A 1984-07-12 1984-07-12 Contactless ignitor for internal-combustion engine Granted JPS6123866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14551584A JPS6123866A (en) 1984-07-12 1984-07-12 Contactless ignitor for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14551584A JPS6123866A (en) 1984-07-12 1984-07-12 Contactless ignitor for internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS6123866A true JPS6123866A (en) 1986-02-01
JPH0578672B2 JPH0578672B2 (en) 1993-10-29

Family

ID=15387020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14551584A Granted JPS6123866A (en) 1984-07-12 1984-07-12 Contactless ignitor for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6123866A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115507U (en) * 1987-01-23 1988-07-26
JP2003049697A (en) * 2001-08-07 2003-02-21 Denso Corp Ignition control system for internal combustion engine
EP1336754A2 (en) * 2002-02-15 2003-08-20 Meggitt (U.K.) Limited Ignition circuits

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115507U (en) * 1987-01-23 1988-07-26
JP2003049697A (en) * 2001-08-07 2003-02-21 Denso Corp Ignition control system for internal combustion engine
EP1336754A2 (en) * 2002-02-15 2003-08-20 Meggitt (U.K.) Limited Ignition circuits
EP1336754A3 (en) * 2002-02-15 2004-09-29 Meggitt (U.K.) Limited Ignition circuits

Also Published As

Publication number Publication date
JPH0578672B2 (en) 1993-10-29

Similar Documents

Publication Publication Date Title
JPS60195378A (en) Ignition timing controlling device for internal-combustion engine
US3280810A (en) Semiconductor ignition system
US4117820A (en) Ignition circuit
JPH0745865B2 (en) Ignition device for internal combustion engine
JPS6123866A (en) Contactless ignitor for internal-combustion engine
JPS5848777A (en) Ignition system for internal-combustion engine
JPS5849707B2 (en) Ignition system for internal combustion engines
JP3125587B2 (en) Capacitor discharge type ignition device for internal combustion engine
JPH0450460Y2 (en)
JPS6119972A (en) Contactless ignitor for internal-combustion engine
JPS6132151Y2 (en)
JPS5824628B2 (en) engine ignition system
US2835850A (en) High voltage ignition system
JPH06624Y2 (en) Ignition device for internal combustion engine
JPS60204968A (en) Contactless ignition unit for internal-combustion engine
JPH0118848Y2 (en)
JPS61241466A (en) Ignitor for internal-combustion engine
JPH021496Y2 (en)
JPS58135363A (en) Ignition timing controlling apparatus for internal-combustion engine
JPS6128054Y2 (en)
JP3609668B2 (en) Capacitor charge / discharge ignition system
JPH0248702Y2 (en)
JPS5920567A (en) Ignition-angle control unit in no-contact ignition device for internal-combustion engine
JPS6016785Y2 (en) engine ignition system
JPH0726605B2 (en) Capacitor discharge type internal combustion engine ignition device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term