JP3609668B2 - Capacitor charge / discharge ignition system - Google Patents

Capacitor charge / discharge ignition system Download PDF

Info

Publication number
JP3609668B2
JP3609668B2 JP31530999A JP31530999A JP3609668B2 JP 3609668 B2 JP3609668 B2 JP 3609668B2 JP 31530999 A JP31530999 A JP 31530999A JP 31530999 A JP31530999 A JP 31530999A JP 3609668 B2 JP3609668 B2 JP 3609668B2
Authority
JP
Japan
Prior art keywords
voltage
capacitor
charging
induced voltage
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31530999A
Other languages
Japanese (ja)
Other versions
JP2001132598A (en
Inventor
龍雄 鳴瀬
Original Assignee
池田デンソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 池田デンソー株式会社 filed Critical 池田デンソー株式会社
Priority to JP31530999A priority Critical patent/JP3609668B2/en
Publication of JP2001132598A publication Critical patent/JP2001132598A/en
Application granted granted Critical
Publication of JP3609668B2 publication Critical patent/JP3609668B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、2サイクルエンジン等に使用するコンデンサ充放電式点火装置に関するものである。
【0002】
【従来の技術】
刈り払い機、その他の小型の2サイクルエンジン等に使用するコンデンサ充放電式点火装置には、特開平8−86263号公報に記載のように、ロータを回転させたときに、発電コイルに誘起する主方向誘起電圧及び逆方向誘起電圧を利用して、その主方向誘起電圧により充放電コンデンサを充電し、逆方向誘起電圧によりスイッチング素子を導通させ、このスイッチング素子を経て充放電コンデンサの電荷を点火コイルに放電させて、点火コイルにより高電圧を発生させて点火するようにしている。
【0003】
この点火装置では、エンジンの過回転を防止し、安全性の向上、エンジン構成部材の寿命の延長、振動の低減等を図る必要から、ロータの回転により電圧を誘起するトリガコイルと、このトリガコイルの誘起電圧からエンジンの回転数を検出する回転数検出回路と、その検出出力によりスイッチング素子をトリガするトリガ回路とを備え、エンジンの回転数を検出してスイッチング素子のトリガ時期を制御して、過回転時に点火時期を遅らせるようにしている。
【0004】
【発明が解決しようとする課題】
従来のトリガコイル、回転数検出回路及びトリガ回路を備え、これらによって点火時期を制御するように構成しているため、その構成が複雑で部品点数が多く、製作コストがアップすると共に、装置全体が大型化する問題もある。
【0005】
本発明は、かかる従来の課題に鑑み、簡単な回路構成で容易且つ安価に製作できると共に、装置全体を小型化でき、しかも遅角開始、遅角幅を容易に設定できるコンデンサ充放電式点火装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、発電コイル1 の主方向誘起電圧A により充放電コンデンサ2 を充電し、前記発電コイル1 の逆方向誘起電圧B による駆動電圧が所定電圧まで上昇したときにスイッチング素子8 を導通させて、前記充放電コンデンサ2 の電荷を点火コイル4 に放電するようにしたコンデンサ充放電式点火装置において、前記スイッチング素子8 の駆動回路9 に、前記主方向誘起電圧A と前記スイッチング素子8 の駆動電圧とを比較して、その両者の差が所定以上のときに前記スイッチング素子8 の駆動電圧を低下させて点火時期を遅らせる遅角回路13を設けたものである。
【0007】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて詳述する。
【0008】
図面は本発明の一実施形態を例示する。図1において、1 は発電コイルで、固定側の鉄心等に設けられ、磁石を備えたロータの回転により、主方向誘起電圧A と逆方向誘起電圧B (図2、図3参照)とを順次誘起するようになっている。
【0009】
2 は充放電コンデンサで、発電コイル1 の主方向誘起電圧A により、発電コイル1 から整流ダイオード3 、充放電コンデンサ2 、点火コイル4 の1次側コイル5 等の充電回路を経て充電されるようになっている。点火コイル4 は、1次側コイル5 と2次側コイル6 とを備え、1次側コイル5 に充放電コンデンサ2 の放電電流が流れたときに、2次側コイル6 に高電圧が発生するようになっている。7 は点火プラグで、点火コイル4 の2次側コイル6 に接続されている。
【0010】
8 は放電用のスイッチング素子を構成するSCRで、充放電コンデンサ2 、点火コイル4 の1次側コイル5 を含む放電回路に直列に接続されている。そして、このSCR8 は、発電コイル1 の逆方向誘起電圧B による所定の駆動電圧が、駆動回路9 の分圧抵抗10,11 を経て駆動端子(トリガ端子)に印加したときに導通して、充放電コンデンサ2 の充電電荷を点火コイル4 の1次側コイル5 を経て放電させるようになっている。
【0011】
SCR8 の駆動回路9 は、発電コイル1 の逆方向誘起電圧B による駆動電圧をSCR8 の駆動端子に印加するためのもので、発電コイル1 の逆方向誘起電圧B を分圧する抵抗10〜12を備え、発電コイル1 の巻き始め端とSCR8 の駆動端子との間に介在されると共に、この駆動回路9 に遅角回路13が接続されている。なお、SCR8 の駆動端子は、抵抗11と抵抗12との間に接続されている。
【0012】
遅角回路13は、主方向誘起電圧A とSCR8 の駆動電圧とを比較して、その両者の差が所定以上のときにSCR8 の駆動電圧を低下させて点火時期を遅角させるためのものである。この遅角回路13は、遅角制御コンデンサ14、整流ダイオード15、ツェナーダイオード16、放電抵抗17、充電抵抗18等を備えている。
【0013】
遅角制御コンデンサ14、整流ダイオード15は、発電コイル1 、充放電コンデンサ2 、点火コイル4 の1次側コイル5 を含む第1の充電回路を構成するためのもので、発電コイル1 の巻き始め端側に直列に接続され、発電コイル1 の主方向誘起電圧A により、SCR8 の駆動電圧とは反対方向に充電されるようになっている。
【0014】
放電抵抗17は遅角開始回転数の設定であって、この放電抵抗17と遅角制御コンデンサ14との時定数により、遅角制御コンデンサ14の充放電量を調整して、遅角開始時のエンジン回転数、及び遅角幅を設定するようになっている。なお、この放電抵抗17には可変抵抗が使用され、遅角制御コンデンサ14の両端間に接続されている。
【0015】
ツェナーダイオード16、充電抵抗18は、遅角制御コンデンサ14と整流ダイオード15との接続点と、分圧抵抗10,11 の接続点との間に直列に接続されている。ツェナーダイオード16は、発電コイル1 、抵抗10,18 、遅角制御コンデンサ14、整流ダイオード19と共に第2の充電回路を構成するもので、そのSCR8 の駆動端子の駆動電圧と遅角制御コンデンサ14の充電電圧とのが、そのツェナー電圧VZ 以上になったときに、遅角制御コンデンサ14を主方向誘起電圧A による充電方向とは逆方向に充電して、SCR8 の駆動端子の駆動電圧を低下させるようになっている。つまり、ツェナーダイオード16は、発電コイル1 の主方向誘起電圧A と逆方向誘起電圧B とを比較して、その両者の差が所定のツェナー電圧VZ 以上のときに導通して、SCR8 の駆動電圧を低下させて点火時期を遅らせるようにしている。
【0016】
なお、発電コイル1 の主方向誘起電圧A に続いて誘起する逆方向の誘起電圧は、逆波処理手段(図示省略)により消去するようになっている。
【0017】
次に図2及び図3の波形図を参照しながら、この点火装置における動作を説明する。なお、図2は遅角回路13が作動しない場合の電圧波形図、図3は遅角回路13が作動した場合の電圧波形図を示す。この図2及び図3に示すように、発電コイル1 の巻き終わり端側には主方向誘起電圧A が、発電コイル1 の巻き始め端側には逆方向誘起電圧B が夫々誘起する。図2及び図3のC は抵抗10と抵抗11との接続点の電圧、即ちSCR8 の駆動回路9 の駆動電圧を、D は遅角制御コンデンサ14の反アース側の充電電圧を夫々示し、この駆動電圧C と充電電圧D との和がツェナー電圧V以上になったときに、ツェナーダイオード16が導通する。
【0018】
起動に際してロータが回転すると、図2に示すように発電コイル1 に主方向誘起電圧A 、逆方向誘起電圧B が誘起する。そして、その主方向誘起電圧A が誘起すると、整流ダイオード3 、充放電コンデンサ2 、点火コイル4 の1次側コイル5 、遅角制御コンデンサ14、整流ダイオード15の充電回路を経て、この充放電コンデンサ2 と遅角制御コンデンサ14とが主方向誘起電圧A により充電される。
【0019】
主方向誘起電圧A により充放電コンデンサ2 を充電した後、発電コイル1 に逆方向誘起電圧B が誘起する。そして、この逆方向誘起電圧B が駆動回路9 の抵抗10,11 を介してSCR8 の駆動端子に印加し、その駆動電圧が図2に示すように所定のトリガレベルになれば、その時点TでSCR8 がトリガされて導通し、充放電コンデンサ2 の電荷がSCR8 、点火コイル4 の1次側コイル5 の放電回路を経て放電し、点火コイル4 の1次側コイル5 に放電電流が流れる。このため点火コイル4 の2次側コイル6 に高電圧が誘起し、点火プラグ7 に所定のスパークが発生して点火する。
【0020】
この点火装置は、このような点火動作により、低速回転から所定回転へと回転数の上昇と共に点火時期の進角制御を行いながら、そして、定常運転へと移行する。この通常運転中も、遅角制御コンデンサ14の充電電圧と逆方向誘起電圧B によりSCR8 の駆動端子側に印加される駆動電圧との和が所定以上、即ち、ツェナーダイオード16のツェナー電圧V以上になれば、このツェナーダイオード16が導通する。
【0021】
しかし、通常運転中は、図2に示す時間T〜T及び時間T〜Tでツェナーダイオード16が導通し、点火時点Tを含む点火時期制御範囲の前後の時間T〜Tではツェナーダイオード16が不導通となるため、エンジンの回転数に応じて駆動電圧のレベルが変化し、その回転数での最適な時期にSCR8 が導通して点火できる。
【0022】
エンジンの過回転状態が発生すると、逆方向誘起電圧B が大になるため、図3に示すように、遅角制御コンデンサ14が抵抗17を介して放電を開始した直後の時点Tから、遅角制御コンデンサ14が主方向誘起電圧A により再度充電を開始する直前の時間Tまでの間、SCR8 の駆動端子側の駆動電圧と遅角制御コンデンサ14の充電電圧との和がツェナーダイオード16のツェナー電圧V以上となり、ツェナーダイオード16が導通する。つまり、点火時期Tを含む点火時期制御範囲の前後の時間T〜Tではツェナーダイオード16が導通となる。
【0023】
これによってSCR8 の駆動端子に印加する駆動電圧のレベルが低下して、その駆動電圧がSCR8 のトリガレベルまで上昇するのに時間を要し、SCR8 が時間Tで導通することになる。従って、遅角回路13の働きによって、SCR8 の導通タイミングが図2の時間Tから図3の時間Tまで遅れ、これに従って点火時期が遅れるので、エンジンの過回転を防止できる。
【0024】
遅角制御コンデンサ14の充電電荷は、主方向誘起電圧A による充電後、放電抵抗17と遅角制御コンデンサ14とによって決まる時定数で放電抵抗17を介して放電する。従って、この放電抵抗17の抵抗値によって、逆方向誘起電圧B が誘起したときの遅角制御コンデンサ14の充電電圧が変化するため、放電抵抗17の抵抗値により、遅角開始時点のエンジン回転数、遅角量を容易且つ任意に設定できる。
【0025】
特に発電コイル1 の主方向誘起電圧A と逆方向誘起電圧B とを比較してSCR8 の駆動電圧のレベルを制御するようにしているため、点火時期制御機能を備えた装置全体の回路構成を簡素化でき、従来に比較して容易且つ安価に製作できると共に、装置全体を小型化できる利点がある。また回路の簡素化により、部品のバラツキも少なくできる。
【0026】
以上、本発明の実施形態について詳述したが、本発明はこの実施形態に限定されるものではない。例えば、スイッチング素子には、トランジスタ、その他のSCR8 以外のものを使用しても良い。
【0027】
また半導体素子は、主方向誘起電圧A と逆方向誘起電圧B との差が所定以上となったときに導通するものであれば良く、ツェナーダイオード16以外の制御素子、例えばトランジスタ等を使用しても良い。
【0028】
【発明の効果】
本発明では、発電コイル1 の主方向誘起電圧A により充放電コンデンサ2 を充電し、発電コイル1 の逆方向誘起電圧B による駆動電圧が所定電圧まで上昇したときにスイッチング素子8 を導通させて、充放電コンデンサ2 の電荷を点火コイル4 に放電するようにしたコンデンサ充放電式点火装置において、スイッチング素子8 の駆動回路9 に、主方向誘起電圧A とスイッチング素子8 の駆動電圧とを比較して、その両者の差が所定以上のときにスイッチング素子8 の駆動電圧を低下させて点火時期を遅らせる遅角回路13を設けているので、簡単な回路構成で容易且つ安価に製作できると共に、装置全体を小型化でき、しかも回路素子のバラツキによる問題も生じ難くなる。
【0029】
またスイッチング素子8 の駆動回路9 に、主方向誘起電圧A により充電される遅角制御コンデンサ14と、該遅角制御コンデンサ14の充電電圧と逆方向誘起電圧B により印加されるスイッチング素子8 の駆動電圧とのが所定以上になったときに導通してスイッチング素子8 の駆動電圧を低下させる半導体素子16とを備えているので、その回路構成を更に簡単にできる。
【0030】
更に遅角制御コンデンサ14を主方向誘起電圧A により充電する第1の充電回路と、半導体素子16が導通したときに逆方向誘起電圧B により遅角制御コンデンサ14を逆方向に充電する第2の充電回路とを備えているので、その回路構成を更に簡単にできる。
【0031】
しかも遅角制御コンデンサ14の電荷を放電する放電抵抗17を備えているので、遅角開始、遅角幅を容易に設定できる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す点火装置の回路図である。
【図2】本発明の一実施形態を示す波形図である。
【図3】本発明の一実施形態を示す波形図である。
【符号の説明】
1 発電コイル
2 充放電コンデンサ
4 点火コイル
8 SCR(スイッチング素子)
9 駆動回路
13 遅角回路
14 遅角制御コンデンサ
16 ツェナーダイオード(半導体素子)
17 放電抵抗
A 主方向誘起電圧
B 逆方向誘起電圧
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a capacitor charge / discharge igniter used for a two-cycle engine or the like.
[0002]
[Prior art]
In a capacitor charging / discharging ignition device used for a brush cutter, other small two-cycle engines, etc., as described in JP-A-8-86263, it is induced in a power generation coil when the rotor is rotated. Using the main direction induced voltage and the reverse direction induced voltage, the main direction induced voltage charges the charge / discharge capacitor, the reverse direction induced voltage makes the switching element conductive, and the charge of the charge / discharge capacitor is ignited through this switching element. The coil is discharged and a high voltage is generated by the ignition coil to ignite.
[0003]
In this ignition device, it is necessary to prevent over-rotation of the engine, improve safety, extend the life of engine components, reduce vibration, and the like. A rotation speed detection circuit that detects the rotation speed of the engine from the induced voltage and a trigger circuit that triggers the switching element based on the detection output thereof, detects the rotation speed of the engine and controls the trigger timing of the switching element, The ignition timing is delayed at the time of overspeed.
[0004]
[Problems to be solved by the invention]
Since the conventional trigger coil, rotation speed detection circuit and trigger circuit are provided and the ignition timing is controlled by these, the configuration is complicated, the number of parts is increased, the manufacturing cost is increased, and the entire apparatus is There is also a problem of increasing the size.
[0005]
In view of such conventional problems, the present invention is a capacitor charging / discharging ignition device that can be easily and inexpensively manufactured with a simple circuit configuration, can be downsized as a whole, and can easily set a retard start and a retard width. The purpose is to provide.
[0006]
[Means for Solving the Problems]
In the present invention, the charging / discharging capacitor 2 is charged by the main-direction induced voltage A of the power generation coil 1, and the switching element 8 is made conductive when the drive voltage due to the reverse direction induction voltage B of the power generation coil 1 rises to a predetermined voltage. In the capacitor charge / discharge type ignition device configured to discharge the charge of the charge / discharge capacitor 2 to the ignition coil 4, the main direction induced voltage A and the drive voltage of the switching element 8 are applied to the drive circuit 9 of the switching element 8. And a retard circuit 13 that delays the ignition timing by reducing the drive voltage of the switching element 8 when the difference between the two is equal to or greater than a predetermined value.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings.
[0008]
The drawings illustrate one embodiment of the invention. In FIG. 1, reference numeral 1 denotes a power generation coil, which is provided on a fixed iron core or the like. By rotating a rotor provided with a magnet, a main direction induced voltage A and a reverse direction induced voltage B (see FIGS. 2 and 3) are sequentially applied. Induces.
[0009]
A charging / discharging capacitor 2 is charged by a main circuit induced voltage A of the generator coil 1 through a charging circuit such as a rectifier diode 3, a charging / discharging capacitor 2, a primary coil 5 of an ignition coil 4 and the like. It has become. The ignition coil 4 includes a primary coil 5 and a secondary coil 6, and a high voltage is generated in the secondary coil 6 when the discharge current of the charge / discharge capacitor 2 flows through the primary coil 5. It is like that. A spark plug 7 is connected to the secondary coil 6 of the ignition coil 4.
[0010]
Reference numeral 8 denotes an SCR constituting a discharge switching element, which is connected in series to a discharge circuit including a charge / discharge capacitor 2 and a primary coil 5 of the ignition coil 4. The SCR 8 becomes conductive when a predetermined drive voltage due to the reverse induced voltage B 1 of the generator coil 1 is applied to the drive terminal (trigger terminal) via the voltage dividing resistors 10 and 11 of the drive circuit 9. The charge of the discharge capacitor 2 is discharged through the primary side coil 5 of the ignition coil 4.
[0011]
The drive circuit 9 of the SCR 8 is for applying a drive voltage based on the reverse induced voltage B 1 of the power generating coil 1 to the drive terminal of the SCR 8 and includes resistors 10 to 12 for dividing the reverse induced voltage B 1 of the power generating coil 1. In addition to being interposed between the winding start end of the power generation coil 1 and the drive terminal of the SCR 8, a retard circuit 13 is connected to the drive circuit 9. Note that the drive terminal of the SCR 8 is connected between the resistor 11 and the resistor 12.
[0012]
The retarding circuit 13 compares the main direction induced voltage A and the driving voltage of the SCR8, and delays the ignition timing by reducing the driving voltage of the SCR8 when the difference between the two is more than a predetermined value. is there. The retard circuit 13 includes a retard control capacitor 14, a rectifier diode 15, a Zener diode 16, a discharge resistor 17, a charge resistor 18, and the like.
[0013]
The retard control capacitor 14 and the rectifier diode 15 are for constituting a first charging circuit including the power generation coil 1, the charge / discharge capacitor 2, and the primary coil 5 of the ignition coil 4. It is connected in series to the end side, and is charged in the direction opposite to the drive voltage of the SCR 8 by the main direction induced voltage A 1 of the generator coil 1.
[0014]
The discharge resistor 17 is used for setting the retard start speed, and the charge / discharge amount of the retard control capacitor 14 is adjusted by the time constant between the discharge resistor 17 and the retard control capacitor 14 to start the retard start. The engine speed and retard angle range are set. Note that a variable resistor is used as the discharge resistor 17 and is connected between both ends of the retardation control capacitor 14.
[0015]
The Zener diode 16 and the charging resistor 18 are connected in series between the connection point between the retardation control capacitor 14 and the rectifier diode 15 and the connection point between the voltage dividing resistors 10 and 11. The Zener diode 16 constitutes a second charging circuit together with the generator coil 1, resistors 10 and 18, the retard control capacitor 14, and the rectifier diode 19, and the drive voltage of the drive terminal of the SCR 8 and the retard control capacitor 14 When the difference from the charging voltage becomes equal to or higher than the Zener voltage V Z , the retard control capacitor 14 is charged in the direction opposite to the charging direction by the main direction induced voltage A, and the driving voltage of the driving terminal of the SCR 8 is set. It is supposed to decrease. In other words, the Zener diode 16 compares the main-direction induced voltage A and the reverse-direction induced voltage B of the generator coil 1 and is turned on when the difference between the two is equal to or higher than the predetermined Zener voltage V Z , thereby driving the SCR 8. The ignition timing is delayed by reducing the voltage.
[0016]
The reverse induced voltage induced following the main direction induced voltage A 1 of the generator coil 1 is erased by reverse wave processing means (not shown).
[0017]
Next, the operation of this ignition device will be described with reference to the waveform diagrams of FIGS. 2 is a voltage waveform diagram when the retard circuit 13 is not activated, and FIG. 3 is a voltage waveform diagram when the retard circuit 13 is activated. As shown in FIGS. 2 and 3, the main direction induced voltage A 1 is induced on the winding end end side of the power generating coil 1, and the reverse direction induced voltage B 2 is induced on the winding start end side of the power generating coil 1. 2 and 3 indicate the voltage at the connection point between the resistor 10 and the resistor 11, that is, the driving voltage of the driving circuit 9 of the SCR 8, and D indicates the charging voltage on the anti-ground side of the retard control capacitor 14, respectively. when the sum of the charging voltage D and the driving voltage C is equal to or greater than the Zener voltage V Z, zener diode 16 conducts.
[0018]
When the rotor is rotated at the time of starting, as shown in FIG. 2, a main direction induced voltage A 1 and a reverse direction induced voltage B 1 are induced in the power generating coil 1. When the main-direction induced voltage A 1 is induced, the charge / discharge capacitor 3 passes through the charge circuit of the rectifier diode 3, the charge / discharge capacitor 2, the primary coil 5 of the ignition coil 4, the retard control capacitor 14, and the rectifier diode 15. 2 and the retardation control capacitor 14 are charged by the main direction induced voltage A 1.
[0019]
After charging / discharging capacitor 2 is charged by main direction induced voltage A 1, reverse direction induced voltage B 1 is induced in power generating coil 1. Then, the reverse induced voltage B is applied to the driving terminal of SCR8 through the resistor 10, 11 of the drive circuit 9, if the drive voltage is a predetermined trigger level, as shown in FIG. 2, the time T 1 Thus, the SCR 8 is triggered to conduct, and the charge of the charge / discharge capacitor 2 is discharged through the discharge circuit of the primary coil 5 of the ignition coil 4 and the discharge current flows through the primary coil 5 of the ignition coil 4. Therefore, a high voltage is induced in the secondary coil 6 of the ignition coil 4 and a predetermined spark is generated in the spark plug 7 to ignite.
[0020]
With this ignition operation, the ignition device shifts to a steady operation while performing an advance control of the ignition timing as the rotational speed increases from a low speed rotation to a predetermined rotation. Again during normal operation, the retard control capacitor 14 charging voltage and a reverse induced voltage B by the sum of the driving voltage applied to the driving terminal of SCR8 is more than predetermined, i.e., the Zener voltage V Z or more Zener diode 16 Then, the Zener diode 16 becomes conductive.
[0021]
However, during normal operation, the Zener diode 16 is turned on at time T 2 to T 3 and time T 4 to T 5 shown in FIG. 2, and the time T 5 to T before and after the ignition timing control range including the ignition time T 1. 2 , the Zener diode 16 becomes non-conductive, so that the level of the drive voltage changes according to the engine speed, and the SCR 8 is turned on and can be ignited at the optimum time at that speed.
[0022]
When the engine overspeed occurs, the reverse induced voltage B 1 becomes large. Therefore, as shown in FIG. 3, from the time T 6 immediately after the retard control capacitor 14 starts discharging through the resistor 17, The sum of the drive voltage on the drive terminal side of the SCR 8 and the charge voltage of the retard control capacitor 14 is equal to that of the Zener diode 16 until the time T 8 immediately before the angle control capacitor 14 starts charging again with the main direction induced voltage A 1. It becomes Zener voltage V Z above, the Zener diode 16 becomes conductive. That is, the Zener diode 16 in time before and after T 6 through T 8 of the ignition timing control range including the ignition timing T 7 becomes conductive.
[0023]
As a result, the level of the drive voltage applied to the drive terminal of the SCR 8 decreases, and it takes time for the drive voltage to rise to the trigger level of the SCR 8, and the SCR 8 becomes conductive at time T 7 . Thus, by the action of the retarding circuit 13, delays the conduction timing SCR8 from time T 1 of the 2 to time T 7 of FIG. 3, since accordingly the ignition timing is delayed, it is possible to prevent overspeed of the engine.
[0024]
The charge of the retard control capacitor 14 is discharged through the discharge resistor 17 with a time constant determined by the discharge resistor 17 and the retard control capacitor 14 after being charged by the main direction induced voltage A 1. Accordingly, since the charging voltage of the retard control capacitor 14 when the reverse induced voltage B 1 is induced is changed by the resistance value of the discharge resistor 17, the engine speed at the start of the retard is determined by the resistance value of the discharge resistor 17. The retardation amount can be set easily and arbitrarily.
[0025]
In particular, since the main direction induced voltage A and the reverse direction induced voltage B of the generator coil 1 are compared to control the level of the driving voltage of the SCR 8, the circuit configuration of the entire apparatus having the ignition timing control function is simplified. There is an advantage that it can be manufactured easily and inexpensively as compared with the prior art, and the entire apparatus can be downsized. In addition, the simplification of the circuit can reduce variations in parts.
[0026]
As mentioned above, although embodiment of this invention was explained in full detail, this invention is not limited to this embodiment. For example, a transistor other than the SCR 8 may be used as the switching element.
[0027]
The semiconductor element may be any element that conducts when the difference between the main direction induced voltage A and the reverse direction induced voltage B exceeds a predetermined value. A control element other than the Zener diode 16, such as a transistor, may be used. Also good.
[0028]
【The invention's effect】
In the present invention, the charging / discharging capacitor 2 is charged by the main direction induced voltage A of the power generation coil 1, and when the drive voltage by the reverse direction induced voltage B of the power generation coil 1 rises to a predetermined voltage, the switching element 8 is made conductive, In the capacitor charge / discharge type ignition device in which the charge of the charge / discharge capacitor 2 is discharged to the ignition coil 4, the drive circuit 9 of the switching element 8 is compared with the main-direction induced voltage A and the drive voltage of the switching element 8. Since the retard circuit 13 is provided to reduce the drive voltage of the switching element 8 and delay the ignition timing when the difference between the two is greater than a predetermined value, it can be easily and inexpensively manufactured with a simple circuit configuration, and the entire device Can be reduced in size, and problems due to variations in circuit elements are less likely to occur.
[0029]
Further, the retard control capacitor 14 charged by the main direction induced voltage A and the drive of the switching element 8 applied by the charge voltage of the retard control capacitor 14 and the reverse induced voltage B to the drive circuit 9 of the switching element 8 are driven. Since the semiconductor device 16 is provided which conducts when the difference from the voltage exceeds a predetermined value and reduces the drive voltage of the switching device 8, the circuit configuration can be further simplified.
[0030]
Further, a first charging circuit that charges the retard control capacitor 14 with the main direction induced voltage A 2 and a second charge circuit that charges the retard control capacitor 14 in the reverse direction with the reverse direction induced voltage B 2 when the semiconductor element 16 becomes conductive. Since the charging circuit is provided, the circuit configuration can be further simplified.
[0031]
In addition, since the discharge resistor 17 for discharging the charge of the retard control capacitor 14 is provided, the retard start and the retard width can be easily set.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of an ignition device showing an embodiment of the present invention.
FIG. 2 is a waveform diagram showing an embodiment of the present invention.
FIG. 3 is a waveform diagram showing an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Generating coil 2 Charging / discharging capacitor | condenser 4 Ignition coil 8 SCR (switching element)
9 Drive circuit 13 Retardation circuit 14 Retardation control capacitor 16 Zener diode (semiconductor element)
17 Discharge resistance A Main direction induced voltage B Reverse direction induced voltage

Claims (4)

発電コイル(1) の主方向誘起電圧(A) により充放電コンデンサ(2) を充電し、前記発電コイル(1) の逆方向誘起電圧(B) による駆動電圧が所定電圧まで上昇したときにスイッチング素子(8) を導通させて、前記充放電コンデンサ(2) の電荷を点火コイル(4) に放電するようにしたコンデンサ充放電式点火装置において、前記スイッチング素子(8) の駆動回路(9) に、前記主方向誘起電圧(A) と前記スイッチング素子(8) の駆動電圧とを比較して、その両者の差が所定以上のときに前記スイッチング素子(8) の駆動電圧を低下させて点火時期を遅らせる遅角回路(13)を設けたことを特徴とするコンデンサ充放電式点火装置。The charging / discharging capacitor (2) is charged by the main direction induced voltage (A) of the generator coil (1), and switching is performed when the drive voltage due to the reverse direction induced voltage (B) of the generator coil (1) rises to a predetermined voltage. In the capacitor charging / discharging ignition device in which the element (8) is conducted to discharge the charge of the charging / discharging capacitor (2) to the ignition coil (4), the drive circuit (9) of the switching element (8) In addition, the main direction induced voltage (A) and the driving voltage of the switching element (8) are compared, and when the difference between the two is greater than or equal to a predetermined value, the driving voltage of the switching element (8) is decreased and ignition is performed. A capacitor charge / discharge igniter comprising a retard circuit (13) for delaying the timing. 前記スイッチング素子(8) の駆動回路(9) に、前記主方向誘起電圧(A) により充電される遅角制御コンデンサ(14)と、該遅角制御コンデンサ(14)の充電電圧と前記逆方向誘起電圧(B) により印加される前記スイッチング素子(8) の駆動電圧とのが所定以上になったときに導通して前記スイッチング素子(8) の駆動電圧を低下させる半導体素子(16)とを備えたことを特徴とする請求項1に記載のコンデンサ充放電式点火装置。In the drive circuit (9) of the switching element (8), the retard control capacitor (14) charged by the main direction induced voltage (A), the charge voltage of the retard control capacitor (14) and the reverse direction A semiconductor element (16) that conducts when the difference between the driving voltage of the switching element (8) applied by the induced voltage (B) exceeds a predetermined value and reduces the driving voltage of the switching element (8); The capacitor charging / discharging ignition device according to claim 1, further comprising: 前記遅角制御コンデンサ(14)を前記主方向誘起電圧(A) により充電する第1の充電回路と、前記半導体素子(16)が導通したときに前記逆方向誘起電圧(B) により前記遅角制御コンデンサ(14)を逆方向に充電する第2の充電回路とを備えたことを特徴とする請求項2に記載のコンデンサ充放電式点火装置。A first charging circuit that charges the retardation control capacitor (14) with the main direction induced voltage (A), and the retardation by the reverse direction induced voltage (B) when the semiconductor element (16) is conductive. The capacitor charging / discharging ignition device according to claim 2, further comprising a second charging circuit for charging the control capacitor (14) in the reverse direction. 前記遅角制御コンデンサ(14)の電荷を放電する放電抵抗(17)を備えたことを特徴とする請求項2又は3に記載のコンデンサ充放電式点火装置。The capacitor charging / discharging ignition device according to claim 2 or 3, further comprising a discharge resistor (17) for discharging electric charge of the retardation control capacitor (14).
JP31530999A 1999-11-05 1999-11-05 Capacitor charge / discharge ignition system Expired - Fee Related JP3609668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31530999A JP3609668B2 (en) 1999-11-05 1999-11-05 Capacitor charge / discharge ignition system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31530999A JP3609668B2 (en) 1999-11-05 1999-11-05 Capacitor charge / discharge ignition system

Publications (2)

Publication Number Publication Date
JP2001132598A JP2001132598A (en) 2001-05-15
JP3609668B2 true JP3609668B2 (en) 2005-01-12

Family

ID=18063854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31530999A Expired - Fee Related JP3609668B2 (en) 1999-11-05 1999-11-05 Capacitor charge / discharge ignition system

Country Status (1)

Country Link
JP (1) JP3609668B2 (en)

Also Published As

Publication number Publication date
JP2001132598A (en) 2001-05-15

Similar Documents

Publication Publication Date Title
JPS6230301B2 (en)
JP3609668B2 (en) Capacitor charge / discharge ignition system
JPH0663499B2 (en) Capacitor charge / discharge ignition device
JP3125587B2 (en) Capacitor discharge type ignition device for internal combustion engine
JPH0118846Y2 (en)
US5024204A (en) Capacitive discharge ignition system with continuous timing advance
EP1483500A1 (en) Processor controlled discharge ignition with fixed firing angle at startup
JPH0430381Y2 (en)
JP2806102B2 (en) Ignition device for internal combustion engine
JPS622299Y2 (en)
JPH0639097Y2 (en) Ignition device for internal combustion engine
JP3531534B2 (en) Ignition device for internal combustion engine
JPS631008Y2 (en)
JPS6146216Y2 (en)
JPS5941669A (en) Capacitor discharge type ignition system in internal-combustion engine
JPS6237229B2 (en)
JP3178361B2 (en) Capacitor discharge type ignition device for internal combustion engine
JPH0118848Y2 (en)
JP3097457B2 (en) Ignition device for internal combustion engine
JP3371386B2 (en) Contactless ignition device for internal combustion engine
JPS621421Y2 (en)
JP2623706B2 (en) Ignition device for internal combustion engine
JPH0726605B2 (en) Capacitor discharge type internal combustion engine ignition device
JPS59113261A (en) Ignition device for internal-combustion engine
JPH0791352A (en) Igniter for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041014

R150 Certificate of patent or registration of utility model

Ref document number: 3609668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees