JPS6123841B2 - - Google Patents

Info

Publication number
JPS6123841B2
JPS6123841B2 JP16798381A JP16798381A JPS6123841B2 JP S6123841 B2 JPS6123841 B2 JP S6123841B2 JP 16798381 A JP16798381 A JP 16798381A JP 16798381 A JP16798381 A JP 16798381A JP S6123841 B2 JPS6123841 B2 JP S6123841B2
Authority
JP
Japan
Prior art keywords
final product
powder
phosphorus
silicon
year
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16798381A
Other languages
Japanese (ja)
Other versions
JPS5798659A (en
Inventor
Shii Rin Jiin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amsted Industries Inc
Original Assignee
Amsted Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amsted Industries Inc filed Critical Amsted Industries Inc
Publication of JPS5798659A publication Critical patent/JPS5798659A/en
Publication of JPS6123841B2 publication Critical patent/JPS6123841B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】 本発明の背景 本発明の耐食性合金鋼粉末、及びこの粉末を使
用する最終製品の製法を提供するものである。詳
記すれば、上記の合金粉末は、300シリーズ型
(ASTM)ステンレス鋼の変型で、ケイ素とリン
の含有量の大きいものである。この合金粉末は粉
末冶金技術により高密度金属製品を作るのに有用
である。
DETAILED DESCRIPTION OF THE INVENTION BACKGROUND OF THE INVENTION The present invention provides a corrosion-resistant alloy steel powder and a process for making a final product using the powder. Specifically, the alloy powder described above is a variant of 300 series type (ASTM) stainless steel with high silicon and phosphorous content. This alloy powder is useful for making dense metal products by powder metallurgy techniques.

300シリーズ型ステンレス鋼は多くの工業的機
器に用いられる一般的ステンレス鋼である。この
型のステンレス鋼合金の微粒化、即ちアトマイズ
粉末で粉末冶金技術を用いて高密度製品を作る試
みでは、この合金シリーズ、即ち304型及び316型
の代表的組成の合金粉末は高密度に焼結すること
が困難なことが知られている。
300 series stainless steel is a common stainless steel used in many industrial equipment. In an attempt to make this type of stainless steel alloy atomized, i.e., atomized powder, using powder metallurgy technology to produce high-density products, alloy powders of typical compositions of this alloy series, i.e., types 304 and 316, are sintered to a high density. It is known that it is difficult to tie.

焼結の困難性は上記合金の固相温度と液相温度
間の差が小さいためとされている。この差は約5
℃(10〓)である。従つて上記の合金の液相焼結
範囲の幅が狭いので、商業生産でこの焼結温度を
十分正確に制御することは経済的に実施困難であ
ろう。
The difficulty in sintering is said to be due to the small difference between the solidus temperature and liquidus temperature of the alloy. This difference is about 5
℃(10〓). The narrow liquid phase sintering range of the above alloys therefore makes it economically impractical to control this sintering temperature with sufficient precision in commercial production.

従つて液相焼結が商業的に実施できるように固
相温度と液相温度間の差を大きくする必要があ
る。
Therefore, there is a need to increase the difference between solidus and liquidus temperatures for liquid phase sintering to be commercially viable.

本発明の目的は、粉末冶金技術により高密度の
耐食性製品を作るのに有用な合金鋼を提供するこ
とにある。
It is an object of the present invention to provide a steel alloy useful for making high density corrosion resistant products by powder metallurgy techniques.

本発明の要約 本発明は粉末冶金技術により高密度の耐食性製
品を作るのに有用な合金鋼粉末を提供するもので
ある。
SUMMARY OF THE INVENTION The present invention provides alloy steel powders useful in making high density corrosion resistant products by powder metallurgy techniques.

本発明の耐食性合金鋼粉末の製法では、300シ
リーズ型ステンレス鋼の代表的組成がケイ素とリ
ンの添加で変えられ、最終組成は、重量で、16〜
19%のクロム、12〜13%のニツケル、4%以下の
モリブデン、2%以下のマンガン、0.1以下の炭
素、1.7〜3.0%のケイ素、0.05〜0.24%のリン、
を含み、残部は鉄である。固相温度の液相温度の
差はケイ素とリンの添加により14℃(25〓)以上
になり、この温度範囲内では焼結が商業的に可能
になる。ケイ素は粉末を作る融解合金のアトマイ
ズ前の予備合金操作間に通常添加される。リンは
予備合金操作間に添加できるが、混合操作間に添
加することもできる。この混合操作間にリンは通
常フエロホスホル粉末で合金粉末に添加される。
In the method of manufacturing the corrosion-resistant alloy steel powder of the present invention, the typical composition of 300 series stainless steel is modified by the addition of silicon and phosphorus, and the final composition is, by weight,
19% chromium, 12-13% nickel, 4% or less molybdenum, 2% or less manganese, 0.1 or less carbon, 1.7-3.0% silicon, 0.05-0.24% phosphorus,
, and the remainder is iron. The difference between the solidus temperature and the liquidus temperature is greater than 14°C (25°C) with the addition of silicon and phosphorus, making sintering commercially possible within this temperature range. Silicon is usually added during a pre-alloying operation prior to atomization of the molten alloy to form a powder. Phosphorus can be added during the pre-alloying operation, but it can also be added during the mixing operation. During this mixing operation, phosphorus is added to the alloy powder, usually in the form of ferrophosphor powder.

詳細な説明 高密度の耐食性製品の製法を下記の例で示す: 例 1 水アトマイズ法で微粒化した一種の鉄基合金を
88メツシユ以下の粒子をふるい分けして下記の初
期重量分析値を有する粉末金属を得た: クロム 19% ニツケル 12% モリブデン 2.5% マンガン 1.3% ケイ素 3% リン 0.08% 炭素 0.08% 鉄 残部 上記粉末金属は成形型の潤滑を目的として重量
で約1%のアクラワツクス(Acrawax:商品
名)と混合した。任意の同様な潤滑剤を使用する
こともできる。上記の粉末試料は成形型内で7047
Kg/cm2(50tsi)で圧縮成形し、潤滑剤を加熱間
に焼尽除去し、この成形試料を1327℃(2420F)
で90分間真空焼結した。理論密度97%以上、極限
引張強さ7047Kg/cm2(100000lb/in2)、降伏強さ
3452Kg/cm2(49000lb/in2)、伸び10%及び無切
込試料で衝撃強さ43ジユール(32ft−lb)の最終
製品が得られた。この最終製品の腐食速度は0.25
cm/年(0.1インチ/年)であつた。この腐食テ
ストはASTM−A262のB法で行つた。上記の最
終製品は又ASTM−B117−63による5%塩霧環
境下で発錆しなかつた。
Detailed Description The manufacturing method for high-density corrosion-resistant products is shown in the following example: Example 1 A type of iron-based alloy that has been atomized by water atomization is
Particles of less than 88 mesh were sieved to obtain a powdered metal with the following initial weight analysis: Chromium 19% Nickel 12% Molybdenum 2.5% Manganese 1.3% Silicon 3% Phosphorus 0.08% Carbon 0.08% Iron Balance The above powder metal is For the purpose of lubricating the mold, about 1% by weight of Acrawax (trade name) was mixed. Any similar lubricant can also be used. The above powder sample is 7047 in the mold.
Kg/cm 2 (50tsi), the lubricant was burned out during heating, and the molded sample was heated to 1327℃ (2420F).
vacuum sintered for 90 minutes. Theoretical density 97% or more, ultimate tensile strength 7047Kg/cm 2 (100000lb/in 2 ), yield strength
A final product with an impact strength of 3452 Kg/cm 2 (49000 lb/in 2 ), 10% elongation, and an impact strength of 43 joules (32 ft-lb) was obtained for the uncut sample. The corrosion rate of this final product is 0.25
cm/year (0.1 inch/year). This corrosion test was conducted using method B of ASTM-A262. The final product also did not rust in a 5% salt fog environment according to ASTM-B117-63.

必要に応じ、上記の最終製品は水焼入れで耐食
性、延性、靭性等を改良できる。上記の例では、
1150℃(2100〓)の溶体化処理温度から水焼入れ
した最終製品は、40%の伸び、及び無切込み試料
で163ジユール(120ft−lb)以上の衝撃強さを有
する、最終製品の腐食速度は、ASTM−A262の
B法による沸騰硫酸内で1mm/年(0.04インチ/
年)であつた。
If necessary, the above final product can be water quenched to improve corrosion resistance, ductility, toughness, etc. In the above example,
The final product, water quenched from a solution treatment temperature of 1150°C (2100〓), has an elongation of 40% and an impact strength of over 163 joules (120 ft-lb) for uncut samples, and the corrosion rate of the final product is , 1 mm/year (0.04 inch/year) in boiling sulfuric acid according to method B of ASTM-A262.
year).

類似組成の他の試料を1305−1350℃(2380−
2460〓)の温度で焼結し好結果が得られた。
Other samples of similar composition were heated at 1305-1350℃ (2380-
Good results were obtained by sintering at a temperature of 2460 〓).

例 2 水アトマイズ法で微粒化した他の鉄基合金を88
メツシユ以下の粒径にふるい分けし、下記の初期
重量分析値を有する粉末金属を得た。: クロム 19% ニツケル 12% モリブデン 2.5% マンガン 0.3% ケイ素 3% リン 0.08% 炭素 0.08% 鉄 残部 上記の粉末合金を例1と類似の方法で圧縮成形
後焼結した。最終製品は伸びが26%に改良された
こと以外は例1の最終製品に類似した性質を有し
ていた。腐食速度は1.2mm/年(0.047インチ/
年)であつた。
Example 2 Another iron-based alloy atomized by water atomization method is 88
The powder metal was sieved to a particle size of mesh size or less, and had the following initial weight analysis value. : Chromium 19% Nickel 12% Molybdenum 2.5% Manganese 0.3% Silicon 3% Phosphorus 0.08% Carbon 0.08% Iron Balance The above powder alloy was compressed and sintered in a similar manner to Example 1. The final product had similar properties to the final product of Example 1, except that the elongation was improved to 26%. Corrosion rate is 1.2 mm/year (0.047 inch/year)
year).

例 3 水アトマイズ法で微粒化した他の鉄基合金を88
メツシユ以下の粒径にふるい分けして下記の初期
重量分析値を有する粉末金属を得た: クロム 16% ニツケル 13% モリブデン 2.5% マンガン 0.3% ケイ素 3.0% リン 0.08% 炭素 0.04% 鉄 残部 上記の粉末金属に、成形型の潤滑を目的として
重量で約1%のアクラワツクスを混合した。任意
の類似潤滑済も使用できる。上記の粉末試料を成
形型内で7047Kg/cm2(50tsi)で圧縮成形し、潤
滑剤を焼尽除去し、この成形試料を1332℃
(2430F)で90分間真空焼結した。理論密度99
%、極限引張強さ6553Kg/cm2(93000lb/in2)、
降伏強さ2607Kg/cm2(37000lb/in2)、伸び45
%、無切込試料で衝撃強さ161ジユール(120ft−
lb)以上、切込試料の衝撃強さ23ジユール(17ft
−lb)の最終製品が得られた。
Example 3 Another iron-based alloy atomized by water atomization method is 88
A powder metal was obtained by sieving to a particle size of mesh size or less with the following initial weight analysis: Chromium 16% Nickel 13% Molybdenum 2.5% Manganese 0.3% Silicon 3.0% Phosphorus 0.08% Carbon 0.04% Iron Balance above powder metal About 1% by weight of Akra Wax was mixed into the mold for the purpose of lubricating the mold. Any similar lubricant may also be used. The above powder sample was compression molded in a mold at 7047Kg/cm 2 (50tsi), the lubricant was burned out, and the molded sample was heated to 1332℃.
Vacuum sintered at (2430F) for 90 minutes. Theoretical density 99
%, ultimate tensile strength 6553Kg/cm 2 (93000lb/in 2 ),
Yield strength 2607Kg/cm 2 (37000lb/in 2 ), elongation 45
%, impact strength 161 joules (120 ft−
lb) or more, the impact strength of the cut sample is 23 joules (17ft)
-lb) final product was obtained.

この例で最終製品を1150℃(2100〓)の溶体化
処理温度から送風冷却すると、57%の伸びと、51
ジユール(38ft−in)の切込試料の衝撃強さを有
する製品が得られた。腐食速度は4mm/年(0.16
インチ/年)であつた。
In this example, when the final product is blast cooled from the solution treatment temperature of 1150°C (2100°C), the elongation is 57% and the elongation is 51%.
A product with the impact strength of the 38 ft-in cut sample was obtained. The corrosion rate is 4mm/year (0.16
inches/year).

例 4 水アトマイズ法で微粒化した他の鉄基合金を88
メツシユ以下の粒径にふるい分けして下記の初期
重量分析値を有する粉末金属を得た: クロム 19% ニツケル 12% モリブデン 2.5% マンガン 0.3% ケイ素 2% リン 0.05% 炭素 0.08% 鉄 残部 この粉末金属は例1と同様に圧縮成形後焼結し
た。この最終製品は、腐食速度が0.94mm/年
(0.037インチ/年)であること以外は例1の最終
製品と類似の性質を有していた。
Example 4 Another iron-based alloy atomized by water atomization method is 88
A powdered metal was obtained by sieving to a particle size of less than mesh size with the following initial weight analysis: Chromium 19% Nickel 12% Molybdenum 2.5% Manganese 0.3% Silicon 2% Phosphorus 0.05% Carbon 0.08% Iron Balance This powdered metal was It was compression molded and sintered in the same manner as in Example 1. This final product had similar properties to the final product of Example 1 except that the corrosion rate was 0.94 mm/year (0.037 inch/year).

例 5 水アトマイズ法で微粒化した他の鉄基合金を88
メツシユ以下の粒径にふるい分けして下記の初期
重量分析値を有する粉末金属を得た: クロム 18% ニツケル 12% モリブデン 2.5% マンガン 0.2% ケイ素 1.7% リン 0.09% 炭素 0.08% 鉄 残部 この粉末金属を例1と同様に圧縮成形後焼結し
た。この最終製品は、腐食速度が1.25mm/年
(0.049インチ/年)であること以外は例1の最終
製品と類似の性質を有していた。
Example 5 Another iron-based alloy atomized by water atomization method is 88
A powdered metal was obtained by sieving to a particle size of mesh size or less with the following initial weight analysis: Chromium 18% Nickel 12% Molybdenum 2.5% Manganese 0.2% Silicon 1.7% Phosphorus 0.09% Carbon 0.08% Iron Balance This powdered metal It was compression molded and sintered in the same manner as in Example 1. This final product had similar properties to the final product of Example 1 except that the corrosion rate was 1.25 mm/year (0.049 inch/year).

例 6 水アトマイズ法で微粒化した他の鉄基合金を88
メツシユ以下の粒径にふるい分けして下記の初期
重量分析値を有する粉末金属を得た: クロム 18% ニツケル 12% モリブデン 2.5% マンガン 0.3% ケイ素 2% リン 0.1% 炭素 0.08% 鉄 残部 この粉末金属を例1と同様に圧縮成形後焼結し
た。この最終製品は例1の最終製品と類似の性質
を有していた。
Example 6 Another iron-based alloy atomized by water atomization method is 88
A powdered metal was obtained by sieving to a particle size of mesh size or less with the following initial weight analysis: Chromium 18% Nickel 12% Molybdenum 2.5% Manganese 0.3% Silicon 2% Phosphorus 0.1% Carbon 0.08% Iron Balance This powdered metal It was compression molded and sintered in the same manner as in Example 1. This final product had similar properties to the final product of Example 1.

例 7 水アトマイズ法で微粒化した他の鉄基合金を88
メツシユ以下の粒径にふるい分けして下記の初期
重量分析値を有する粉末金属を得た: クロム 18% ニツケル 12% モリブデン 2.5% マンガン 0.3% ケイ素 3% リン 0.24% 炭素 0.08% 鉄 残部 この粉末合金を例1と同様に圧縮成形後焼結し
た。この最終製品は、腐食速度が2.5mm/年
(0.10インチ/年)であること以外は例1の最終
製品と類似の性質を有していた。
Example 7 Another iron-based alloy atomized by water atomization method is 88
A powdered metal was obtained by sieving to a particle size of mesh size or less with the following initial weight analysis: Chromium 18% Nickel 12% Molybdenum 2.5% Manganese 0.3% Silicon 3% Phosphorus 0.24% Carbon 0.08% Iron Balance This powder alloy It was compression molded and sintered in the same manner as in Example 1. This final product had similar properties to the final product of Example 1 except that the corrosion rate was 2.5 mm/year (0.10 inch/year).

本発明は、重量で、16〜19%のクロム、12〜13
%のニツケル、4%以下のモリブデン、2%以下
のマンガン、0.1%以下の炭素、1.7〜3.0%のケイ
素、0.05〜0.24%のリン及び残部鉄からなる耐食
性合金粉末である。前記のように本発明は、アメ
リカ合衆国ASTM300シリーズ型ステンレス鋼に
おける液相焼結温度範囲の改良である。このステ
ンレス鋼に対し一定範囲内の含有量でリンとケイ
素を添加することにより固相温度と液相温度との
差を14℃以上拡大することによつて液相焼結温度
を正確に制御できる利点を得ることができる。ク
ロム、ニツケル、モリブデン、マンガン及び炭素
を上記含有量に限定することは、ASTM300シリ
ーズ型ステンレス鋼本来の組織を得るために必要
で、これらの含有量の範囲外では、耐食性が低下
する。添加するリン及びケイ素は、それぞれ、
0.05ないし0.24%及び1.7〜3.0%であるが、これ
らの範囲より低い含有量で添加された場合には、
固相温度と液相温度との差をあまり拡大できず、
又、高い含有量で添加された場合にはステンレス
鋼が脆くなつたり耐食性が低下する傾向がある。
The invention contains, by weight, 16-19% chromium, 12-13
% nickel, 4% or less molybdenum, 2% or less manganese, 0.1% or less carbon, 1.7-3.0% silicon, 0.05-0.24% phosphorus, and the balance iron. As mentioned above, the present invention is an improvement in the liquid phase sintering temperature range of American ASTM 300 series stainless steels. By adding phosphorus and silicon within a certain range to this stainless steel, the difference between the solidus temperature and the liquidus temperature can be increased by 14℃ or more, making it possible to accurately control the liquidus sintering temperature. benefits can be obtained. It is necessary to limit the contents of chromium, nickel, molybdenum, manganese and carbon to the above-mentioned values in order to obtain the original structure of ASTM 300 series stainless steel, and if the contents are outside these ranges, corrosion resistance will decrease. The phosphorus and silicon to be added are, respectively,
0.05 to 0.24% and 1.7 to 3.0%, but when added at a content lower than these ranges,
The difference between solidus temperature and liquidus temperature cannot be increased much,
Furthermore, when added in a high content, stainless steel tends to become brittle and corrosion resistance tends to decrease.

Claims (1)

【特許請求の範囲】[Claims] 1 重量で、16〜19%のクロム、12〜13%のニツ
ケル、4%以下のモリブデン、2%以下のマンガ
ン、0.1%以下の炭素、1.7〜3.0%のケイ素、0.05
〜0.24%のリン、及び残部鉄からなる耐食性合金
鋼粉末。
1 By weight: 16-19% chromium, 12-13% nickel, 4% or less molybdenum, 2% or less manganese, 0.1% or less carbon, 1.7-3.0% silicon, 0.05
Corrosion resistant alloy steel powder consisting of ~0.24% phosphorus and balance iron.
JP16798381A 1980-10-24 1981-10-22 Anticorrosive alloy steel powder Granted JPS5798659A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US20052780A 1980-10-24 1980-10-24

Publications (2)

Publication Number Publication Date
JPS5798659A JPS5798659A (en) 1982-06-18
JPS6123841B2 true JPS6123841B2 (en) 1986-06-07

Family

ID=22742085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16798381A Granted JPS5798659A (en) 1980-10-24 1981-10-22 Anticorrosive alloy steel powder

Country Status (8)

Country Link
EP (1) EP0050969B1 (en)
JP (1) JPS5798659A (en)
BR (1) BR8106856A (en)
CA (1) CA1193891A (en)
DE (1) DE3164598D1 (en)
ES (1) ES8300872A1 (en)
IN (1) IN153975B (en)
MX (1) MX156202A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0102102D0 (en) * 2001-06-13 2001-06-13 Hoeganaes Ab High density stainless steel products and method of preparation thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3620690A (en) * 1968-07-10 1971-11-16 Minnesota Mining & Mfg Sintered austenitic-ferritic chromium-nickel steel alloy
SE372293B (en) * 1972-05-02 1974-12-16 Hoeganaes Ab
DE2708916C2 (en) * 1977-03-02 1985-07-18 Robert Bosch Gmbh, 7000 Stuttgart Use of a high-strength sintered iron alloy

Also Published As

Publication number Publication date
DE3164598D1 (en) 1984-08-09
IN153975B (en) 1984-09-08
ES506504A0 (en) 1982-11-01
JPS5798659A (en) 1982-06-18
MX156202A (en) 1988-07-25
CA1193891A (en) 1985-09-24
ES8300872A1 (en) 1982-11-01
EP0050969A1 (en) 1982-05-05
BR8106856A (en) 1982-07-06
EP0050969B1 (en) 1984-07-04

Similar Documents

Publication Publication Date Title
TW201833346A (en) Stainless steel powder for producing duplex sintered stainless steel
SE523855C2 (en) Iron-based brazing material for joining elm and soldered product made herewith
US20180363105A1 (en) Method Of Manufacturing A Ferrous Alloy Article Using Powder Metallurgy Processing
JPH1060610A (en) Austenitic stainless steel having high strength and corrosion resistance, and compacted article
JPS5921267B2 (en) Surface hardening method for metal substrates
JPH068484B2 (en) Article made from processable boron-containing stainless steel alloy and method of making the same
US3716354A (en) High alloy steel
US4474732A (en) Fully dense wear resistant alloy
EP0200691B1 (en) Iron-based powder mixture for a sintered alloy
US5529604A (en) Modified stainless steel powder composition
JPS6123841B2 (en)
CA2261707C (en) Nickel-containing strengthened sintered ferritic stainless steels
JP2023549731A (en) maraging steel
US4028094A (en) Stainless steel powder
US2289365A (en) Iron-phosphorus-silicon alloy
US4246028A (en) Powder mixture of iron alloy silicon-carbon
Brown The ‘Core’Properties of a Range of Powder-Forged Steels for Carburizing Applications
SU1647034A1 (en) Process for manufacturing parts from metal powders
DE587117C (en) Process for the production of shaped objects of high strength from carbides in alloy with metal or metalloid
JPS5823462B2 (en) Fe-Cr-Co spinodal decomposition type sintered magnetic material with high density
RU1775487C (en) Tool steel
JPS5920401A (en) Alloy powder for powder metallurgy and its sintered body
AT227966B (en) Cast alloy based on molybdenum and / or tungsten and process for the production of this cast alloy
JPH01104747A (en) High-hardness member
Kothari Relationship between Microstructure and Strength Properties of Copper-Tin-Nickel Alloys Prepared by Powder Metallurgy