JPS61238245A - Ceramic-fibrin composite for prosthesis of living body and its production - Google Patents

Ceramic-fibrin composite for prosthesis of living body and its production

Info

Publication number
JPS61238245A
JPS61238245A JP60082020A JP8202085A JPS61238245A JP S61238245 A JPS61238245 A JP S61238245A JP 60082020 A JP60082020 A JP 60082020A JP 8202085 A JP8202085 A JP 8202085A JP S61238245 A JPS61238245 A JP S61238245A
Authority
JP
Japan
Prior art keywords
ceramic
particles
fibrin
bone
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60082020A
Other languages
Japanese (ja)
Inventor
三木 敬一
西風 脩
亘 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP60082020A priority Critical patent/JPS61238245A/en
Publication of JPS61238245A publication Critical patent/JPS61238245A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は生体補雇用に適したアパタイトセラミック−フ
ィブリン結合体とその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an apatite ceramic-fibrin composite suitable for biological replacement and a method for producing the same.

〔従来の技術〕[Conventional technology]

生体のとりわけ、硬組織の欠損を補綴する材質としては
、青成分に最も近似したヒドロキシアパタイトセラミッ
ク(以下、単にアパタイトという)の粒状体、あるいは
アパタイト粉末を所定形状に成形し焼結した材料が用い
られてきた。
As a material for prosthetic defects in the hard tissue of living organisms, granules of hydroxyapatite ceramic (hereinafter simply referred to as apatite), which is most similar to the blue component, or a material obtained by molding apatite powder into a predetermined shape and sintering it are used. I've been exposed to it.

このほか、骨欠損部形状に見合った形状に焼結シタアル
ミナ焼結体(アルミナセラミック体)などが補綴材とし
て多く用いられてきた。
In addition, sintered alumina sintered bodies (alumina ceramic bodies) and the like have been widely used as prosthetic materials in a shape that matches the shape of the bone defect.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上記のアパタイトから成る補綴材としては粒
状体、固形状体のものを生体の硬組織の一部に埋入して
用いるが、アパタイト自体無機質であるため、生体内に
おいて骨誘導能がなく、かつ粒状体を欠損部に充填する
ものにあっては該へ体を固定することが困難であるばか
りでなく、生体支持機能を持たないという欠点があシ、
また固形状体のもの1−あっては骨欠損部形状に合致し
た形状に整形する加工が困難であるばかシでなく、骨増
生に際し、骨の侵入を許容し、骨との結合を可能とする
ポロシティ−(空隙)をもったものが得られ難く、かつ
アパタイト焼結体は機械的強度が小さい欠点があった。
However, the above-mentioned prosthetic materials made of apatite are used in granular or solid form by being implanted into a part of the hard tissue of a living body, but since apatite itself is inorganic, it has no osteoinductive ability in the living body. In addition, in the case of filling the defect with granular material, it is not only difficult to fix the body to the defect, but also has the disadvantage that it does not have a biological support function.
In addition, solid materials are not difficult to process to match the shape of the bone defect, but they allow bone intrusion and bond with the bone during bone growth. It is difficult to obtain a sintered body having such porosity (voids), and the apatite sintered body has the drawback of low mechanical strength.

一方、アルミナセラミックで形成した粒状体、固形状体
から成る補綴材も上記アパタイトを用いたものと同様、
粒状体では固定性がなく、固形状体では成形性に乏しい
という欠点があった。
On the other hand, prosthetic materials made of granular or solid materials made of alumina ceramic are similar to those using apatite mentioned above.
Granular materials lack fixation properties, and solid materials have disadvantages of poor moldability.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明においては生体親和性のすぐれたアルミ
ナ、ジルコニア、ヒドロキシアパタイトのセラミックス
から成る粒状体とフィブリノーゲン液とを混ぜ合せた後
、この混合液にトロンビンを加えることによって作製し
て成る生体補綴部材トスるセラミック粒子とフィブリン
から成る複合体をもたらさんとするものである。
Therefore, in the present invention, a bioprosthetic member is produced by mixing a fibrinogen solution with a granular material made of ceramics such as alumina, zirconia, and hydroxyapatite, which have excellent biocompatibility, and then adding thrombin to this mixed solution. The aim is to produce a composite consisting of ceramic particles and fibrin that can be tossed.

〔実施例1〕 l m MCaO1z含有(7) 10111 M T
ris −Hcl baffer(PE(7,0)で2
.0%のフィブリノーゲン溶液を調製する。この2.0
%のフィブリノーゲン溶液3μlに平均粒子径が300
μ調のヒドロキシアパタイト(以下、HAPと称す)粒
子を60 mgを加えたものをミキサーにて撹拌して懸
濁させながら、100u/机濃度のトロンビン100μ
lを瞬間的に加えて、上記フィブリノーゲンとトロンビ
ンの酵素反応を起させ、ヒドロキシアパタイトの懸濁液
は瞬時にしてゲル状となる。これを所望の形状をした鋳
型中に流し込47.3 kg/ejの圧力を加え余分な
水分を除去するとともにE(AP粒子の充填率を高める
操作を行う。
[Example 1] l m MCaO1z-containing (7) 10111 M T
ris-Hcl buffer (2 with PE(7,0)
.. Prepare a 0% fibrinogen solution. This 2.0
% fibrinogen solution with an average particle size of 300
Add 60 mg of μ-sized hydroxyapatite (hereinafter referred to as HAP) particles and stir with a mixer to suspend the mixture, and add 100 μ of thrombin at a concentration of 100 μ/machine.
1 is added instantaneously to cause the enzymatic reaction between fibrinogen and thrombin, and the suspension of hydroxyapatite instantly becomes gel-like. This is poured into a mold having a desired shape, a pressure of 47.3 kg/ej is applied, excess water is removed, and E (operation to increase the filling rate of AP particles is performed).

この後、鋳型から取出し室温にて24時間以上かけて乾
燥させ寒天状をしたRAPセラミック−フィブリンの複
合体を得た。
Thereafter, it was removed from the mold and dried at room temperature for 24 hours or more to obtain an agar-like RAP ceramic-fibrin composite.

この場合、複合体のE(AP粒子の充填率は約40%、
平均空隙径は200μ鰐であった。
In this case, the E of the composite (the filling rate of AP particles is about 40%,
The average pore diameter was 200μ.

〔実施例2〕 0.5 #f M CeLQlz含有(7) IQ m
 MTris −HOI buffer(pH7,0)
で1.0%のフィブリノーゲン溶液を調製する。この1
.0%のフィブリノーゲン溶液500μlに平均粒子径
が3μmのアルミナ粒子を100■を加えた後、ミキサ
ーにて強力に攪拌して懸濁させながら100μlのトロ
ンビンを瞬間的に加えて上記フィブリノーゲンとトロン
ビンとは酵素反応を起すことによりアルミナ粒子を含ん
だ懸濁液はゲル状となる。これを所望の形状をした鋳型
中に流し込んで18.5 kg/cdの圧力を加えて余
分の水分を除去するとともにアルミナ粒子の充填率を高
める操作を行った後、鋳型から取出して室温にて24時
間以上かけて乾燥させ、水分を完全に除去し、寒天状の
アルミナセラミック−フィブリンの複合体を得た。
[Example 2] 0.5 #f M CeLQlz containing (7) IQ m
MTris-HOI buffer (pH 7,0)
Prepare a 1.0% fibrinogen solution. This one
.. After adding 100 µl of alumina particles with an average particle diameter of 3 µm to 500 µl of 0% fibrinogen solution, 100 µl of thrombin was added instantaneously while stirring vigorously with a mixer to suspend it. Due to the enzymatic reaction, the suspension containing alumina particles becomes gel-like. This was poured into a mold with the desired shape, and a pressure of 18.5 kg/cd was applied to remove excess moisture and increase the filling rate of alumina particles, and then it was taken out of the mold and left at room temperature. It was dried for 24 hours or more to completely remove water, and an agar-like alumina ceramic-fibrin composite was obtained.

この複合体ではアルミナ粒子の充填率は20%で平均空
隙径は20μmであった。
In this composite, the filling rate of alumina particles was 20% and the average pore diameter was 20 μm.

〔実施例3〕 l m ld CaQlz含有(7) 10 m M 
Tris −Tlcl buffer(PH7,0’)
で2.0%のフィブリノーゲン溶液を調整する。この2
.0%のフィブリノーゲン溶液250゜adに、平均粒
子径が3 am 、 100 μm、30011m %
1500μmの4種類のアパタイト粒子を60 mg加
え、懸濁させ、そこへ濃度が100 u/mlのトロン
ビン100μlを加えてゲル状とする。
[Example 3] l m ld CaQlz-containing (7) 10 m M
Tris-Tlcl buffer (PH7,0')
Prepare a 2.0% fibrinogen solution. This 2
.. 0% fibrinogen solution at 250°ad with an average particle size of 3am, 100μm, 30011m%
Add 60 mg of four types of apatite particles of 1500 μm and suspend them, and add 100 μl of thrombin at a concentration of 100 u/ml to form a gel.

次にこのゲル状液を所定の金型中に充填して、10 k
g/14の圧力でもって加圧成型し、余分な水分を排除
し、乾燥させ、第1表に示した4種類の試料A−Dを作
成した。
Next, this gel-like liquid was filled into a predetermined mold, and 10 k
Four types of samples A to D shown in Table 1 were prepared by pressure molding at a pressure of g/14 g/14, removing excess moisture, and drying.

上記の実施例のようにして得られた寒天状をしたセラミ
ック−フィブリン複合体はある程度の弾性をもちナイフ
やハサミなどでもって切断したり所望の形状に整形加工
することができ、しかも再゛び水分を吸収させると脱気
乾燥前のゲル状成形体に戻る。
The agar-like ceramic-fibrin composite obtained in the above example has a certain degree of elasticity and can be cut with a knife or scissors or shaped into a desired shape, and can be reused. When it absorbs moisture, it returns to the gel-like molded product before deairing and drying.

したがって、かかるセラミック−フィブリン複は人工骨
、骨充環材として使用することができる。
Therefore, such a ceramic-fibrin composite can be used as an artificial bone or a bone filling material.

この場合、セラミック粒子間にはフィブリンや空気によ
って埋められ、セラミック粒子はフィブリンによって集
合担持されている。しかもブイプリン自体は生体によっ
て漸次吸収されるが、吸収された後の空隙中に新生骨が
次第に増生侵入していくことによって早期なる骨との癒
合が達成される。
In this case, the spaces between the ceramic particles are filled with fibrin or air, and the ceramic particles are collectively supported by the fibrin. Furthermore, V-purin itself is gradually absorbed by the living body, but as new bone gradually grows and invades the gap after absorption, early fusion with the bone is achieved.

ところで、上記の如く骨と癒合すべく、骨が増生侵入す
る最適範囲をもった生体補綴材料を得るため、上記実施
例において、使用するRAPAP粒子ルミナ粒子、アパ
タイト粒子の平均粒径が0.3〜3000μmの範囲で
変化させ、かつ粒子充填率を2〜70%まで変化させた
セラミック粒子−フィブリン複合体を試作し、その複合
体が有する平均空隙径を測定した。この測定結果を第1
図、第2図、第3図の各グラフに示した。これによれば
平均空隙径は用いるセラミック粒子の種類による差は認
められず、0.5〜3000μのセラミック粒子径で、
粒子充填率が2〜65%の範囲のものが、空隙径30〜
2000μmを有していた。しかし、セラミックの平均
粒子径が1μm以下のものはセラミック粒子の均一な分
散が困難であった。また粒子充填率が5%未満のものも
粒子を均一に分散させルコトが難しかった。一方、セラ
ミック粒子径が2000μm以上のものや粒子充填率が
55%以上のモノにあってはハサミ、ナイフ等による任
意の切断加工が困難であった。
By the way, in order to obtain a bioprosthetic material having an optimal range for bone growth and penetration in order to fuse with the bone as described above, in the above example, the average particle diameter of the RAPAP particles, lumina particles, and apatite particles used is 0.3. Ceramic particle-fibrin composites were prototyped with varying particle filling rates ranging from 2 to 70%, and the average pore diameter of the composites was measured. This measurement result is the first
It is shown in the graphs of FIG. 2, FIG. 3, and FIG. According to this, there is no difference in the average pore diameter depending on the type of ceramic particles used, and with a ceramic particle diameter of 0.5 to 3000μ,
Those with a particle filling rate in the range of 2 to 65% have a pore diameter of 30 to 65%.
It had a diameter of 2000 μm. However, when the average particle diameter of the ceramic is 1 μm or less, it is difficult to uniformly disperse the ceramic particles. In addition, it was difficult to uniformly disperse the particles when the particle filling rate was less than 5%. On the other hand, when the ceramic particle size is 2000 μm or more or the particle filling rate is 55% or more, it is difficult to perform arbitrary cutting using scissors, a knife, etc.

なお、セラミック粒子−フィブリン複合体が有する平均
空隙径と所定形状に成形する時の圧力との関係を4種類
の平均粒径をもったアパタイト粒子を用い成形圧力を変
えて作成した粒子充填率を測定した。この結果を第4図
にて示すが、これによれば成形圧力が20 kg/cJ
以上になっても粒子充填率は50%以上とはならず飽和
状態となっていることから、成形圧力は5〜20kg/
c11程度でもって成形すればよく、またE(AP粒子
、アルミナ粒子などの粒子の種類には無関係であった。
In addition, the relationship between the average pore diameter of the ceramic particle-fibrin composite and the pressure when molded into a predetermined shape was calculated by using apatite particles with four types of average particle diameters and changing the molding pressure. It was measured. The results are shown in Figure 4, which shows that the molding pressure was 20 kg/cJ.
Even if the particle filling rate is above 50%, it is in a saturated state, so the molding pressure is 5 to 20 kg/
It is sufficient to form the molding with c11 or so, and it is unrelated to the type of particles such as E (AP particles, alumina particles, etc.).

次に実施例3でもって作成したA、B、C,D4種類の
試験片を各々15個ずつ家兎の脛骨頚部に埋入した。同
時に試験片と同一寸法(直径5mm、厚さ3mm)の骨
欠損部を作シ、平均粒子径が300μmのアパタイト粒
子を充填した(これを比較群とする)。このように試料
Aの試験片を埋入したものをA群、試料Bの試験片を埋
入したものをB群とし、0群、D群も各々同様に名づけ
て動物実験を行った。この場合、属人後、3週間、6週
間、12週間後に家兎を層殺し、A−D群、比較群につ
いて各々5個ずつの試験片がそれを含む生骨とともに採
取され、ホルマリン固定され、非脱灰標本として、光学
顕微鏡などでもって組織学的検討を行ったところ次の通
υであった。
Next, 15 pieces each of the four types of test pieces A, B, C, and D prepared in Example 3 were implanted into the tibia neck of a domestic rabbit. At the same time, a bone defect with the same dimensions as the test piece (5 mm in diameter, 3 mm in thickness) was created and filled with apatite particles having an average particle diameter of 300 μm (this is used as a comparison group). The animals in which the test piece of Sample A was embedded in this way were called Group A, and those in which the test piece of Sample B was embedded were called Group B, and Groups 0 and D were similarly named and subjected to animal experiments. In this case, the rabbits were sacrificed 3 weeks, 6 weeks, and 12 weeks after incubation, and 5 specimens from each of the A-D and comparison groups were collected together with fresh bones and fixed in formalin. When the non-decalcified specimen was examined histologically using an optical microscope, the following findings were found.

1)  埋入後3週間後では、A群の試験片に接する部
分の組織に軽微な炎症が認められた。しかし、B、C,
D群の試験片の外周は新生骨で覆われておシ、炎症は全
く認められなかった。これに対し比較群では骨欠損部周
囲からの骨増生は認められるが、B、C,D群はどは顕
著ではなかった。またA=D群のすべてのものがフィブ
リンの溶出が認められた。
1) Three weeks after implantation, slight inflammation was observed in the tissue in contact with the test piece in Group A. However, B, C,
The outer periphery of the specimen in Group D was covered with new bone, and no inflammation was observed. On the other hand, in the comparison group, bone growth from around the bone defect was observed, but it was not remarkable in Groups B, C, and D. In addition, elution of fibrin was observed in all samples in the A=D group.

1:)属人後、6週間では4周間のA群の試験片に接す
る部分の組織に見られた軽微な炎症所見は消失していた
。またA−D群のすべてのもので試験片のまわシは完全
に新生骨で覆われ、更にRAP粒子間の隙間中への骨侵
入が認められた。B群、0群、D群では特に、これら著
しかった。
1:) Six weeks after treatment, the slight inflammatory findings observed in the tissue in contact with the test piece in Group A during the 4th week had disappeared. In addition, in all of the test pieces of Groups A to D, the edges of the test pieces were completely covered with new bone, and furthermore, bone intrusion into the gaps between the RAP particles was observed. These effects were particularly remarkable in Group B, Group 0, and Group D.

一方、比較群では、アパタイト粒子間への骨の侵入は認
められるが、B群、0群、D群にくらべて侵入量が少く
、A群と同様であった。
On the other hand, in the comparison group, bone intrusion between the apatite particles was observed, but the amount of intrusion was smaller than in Groups B, 0, and D, and was similar to Group A.

111)属人後、12週間ではA−D群ともに試験片の
内部に骨が侵入し、アパタイト粒子間の隙間にあったフ
ィブリンは完全に消失し、これに代って骨で増生侵入し
ていた。これに対して比較群ではアパタイト粒子間の隙
間の約70%に骨が侵入していたが残シの30%には空
隙の状態のままであった。
111) After 12 weeks, bone invaded the inside of the test specimen in both groups A to D, and the fibrin in the gaps between apatite particles completely disappeared, and in its place, bone grew and invaded. Ta. On the other hand, in the comparison group, bone had invaded approximately 70% of the gaps between the apatite particles, but 30% of the remaining gaps remained void.

〔発明の効果〕〔Effect of the invention〕

斜上のように本発明によれば、生体との親和性にすぐれ
たセラミックから成る平均粒子径が0.5〜3000μ
mの粒子と、該粒子をフィブリンで結合一体化させたも
のであることから、骨の増生侵入に好適な空隙径30〜
2000βmをもち、補綴部位の形状に応じた所望形状
に即座にハサミなどで切断加工することができ、かつ骨
との早期なる癒合が図れるなどすぐれた生体補綴用のセ
ラミック−フィブリン複合体を提供することができる。
As shown above, according to the present invention, the average particle diameter of ceramic particles having excellent affinity with living organisms is 0.5 to 3000μ.
Since the particles are integrally bonded with fibrin, the pore diameter is 30 to 30, which is suitable for bone growth penetration.
To provide an excellent ceramic-fibrin composite for a bioprosthesis, which has a diameter of 2000βm, can be immediately cut into a desired shape according to the shape of a prosthetic site with scissors, etc., and can achieve early fusion with the bone. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図はそれぞれヒドロキシアパタイ
ト粒子、アルミナ粒子アパタイト粒子の各平均粒径と着
均空隙径の関係をグラフ化した図、第4図は製造工程に
おける成形圧力とアパタイトの粒子充填率の関係をグラ
フ化した図である。
Figures 1, 2, and 3 are graphs showing the relationship between average particle diameters of hydroxyapatite particles, alumina particles, and apatite particles, respectively, and uniform pore diameter, and Figure 4 is a graph showing the relationship between molding pressure in the manufacturing process and apatite particle size. FIG. 3 is a graph showing the relationship between the particle filling ratio of the particles.

Claims (3)

【特許請求の範囲】[Claims] (1)アルミナ、ジルコニア、ヒドロキシアパタイトな
どのセラミック粒子とフィブリンで構成したことを特徴
とする生体補綴用セラミック−フィブリン複合体。
(1) A ceramic-fibrin composite for bioprosthesis, characterized by being composed of ceramic particles such as alumina, zirconia, and hydroxyapatite and fibrin.
(2)上記セラミック粒子の平均径が1.0〜2000
μmで、かつ該セラミック粒子の充填率が5〜55%で
あることを特徴とする特許請求の範囲第1項記載の生体
補綴用セラミック−フィブリン複合体。
(2) The average diameter of the ceramic particles is 1.0 to 2000.
The ceramic-fibrin composite for bioprosthesis according to claim 1, wherein the ceramic particles have a filling rate of 5 to 55%.
(3)アルミナ、ジルコニア、ヒドロキシアパタイトな
どのセラミック粒子とフィブリノーゲン液とを混ぜ合せ
た後の混合液にトロンビンを添加する工程による生体補
綴用セラミック−フィブリン結合体の製造方法。
(3) A method for producing a ceramic-fibrin composite for bioprosthesis, which involves the step of mixing ceramic particles such as alumina, zirconia, hydroxyapatite, etc. with a fibrinogen solution and then adding thrombin to the mixed solution.
JP60082020A 1985-04-16 1985-04-16 Ceramic-fibrin composite for prosthesis of living body and its production Pending JPS61238245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60082020A JPS61238245A (en) 1985-04-16 1985-04-16 Ceramic-fibrin composite for prosthesis of living body and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60082020A JPS61238245A (en) 1985-04-16 1985-04-16 Ceramic-fibrin composite for prosthesis of living body and its production

Publications (1)

Publication Number Publication Date
JPS61238245A true JPS61238245A (en) 1986-10-23

Family

ID=13762837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60082020A Pending JPS61238245A (en) 1985-04-16 1985-04-16 Ceramic-fibrin composite for prosthesis of living body and its production

Country Status (1)

Country Link
JP (1) JPS61238245A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288161A (en) * 1987-05-21 1988-11-25 Kyocera Corp Prosthetic member for living body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60256461A (en) * 1984-05-31 1985-12-18 株式会社 ミドリ十字 Kit for preparing composition for filling bone lost part andgap part

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60256461A (en) * 1984-05-31 1985-12-18 株式会社 ミドリ十字 Kit for preparing composition for filling bone lost part andgap part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288161A (en) * 1987-05-21 1988-11-25 Kyocera Corp Prosthetic member for living body

Similar Documents

Publication Publication Date Title
US6203574B1 (en) Prosthetic bone filler and process for the production of the same
Yokoyama et al. Biomimetic porous scaffolds with high elasticity made from mineralized collagen—an animal study
JP4873555B2 (en) Method for producing porous body containing apatite / collagen composite fiber
US5356436A (en) Materials for living hard tissue replacements
JPH025087B2 (en)
KR20140009282A (en) Bone substitute material
JPH11512069A (en) Artificial stabilizing composition of calcium phosphate phase specifically tailored to support bone cell activity
JP2008541958A (en) Modeled product
JPH11276510A (en) Surface modifying bone prothesis member and method for manufacturing the same
Ebrahimi et al. In vitro biocompatibility analysis of novel nano‐biphasic calcium phosphate scaffolds in different composition ratios
EP0166263A1 (en) Filler composition for filling in defect or hollow portion of bone and kit or set for the preparation of the filler composition
JPH05305134A (en) Porous calcium phosphate material for bone formation
Gelinsky et al. Biphasic, but monolithic scaffolds for the therapy of osteochondral defects
JP4968639B2 (en) Composite made of calcium phosphate and apatite / collagen composite
Lim et al. Effectiveness of biphasic calcium phosphate block bone substitutes processed using a modified extrusion method in rabbit calvarial defects
KR102636183B1 (en) Collagen matrix or granulated blend of bone substitute materials
JPH09299472A (en) Implant material for living body and its preparation
EP2121056B1 (en) Bone-replacement materials, methods and devices
JPS61238245A (en) Ceramic-fibrin composite for prosthesis of living body and its production
EP0276836A2 (en) Implant material and method of producing the same
JP3170339B2 (en) Biotransplant material
JP2001198208A (en) Calcium phosphate type biocompatible ceramic sintered body and method of manufacturing the same
JPH0214866A (en) Solution of calcium phosphate compound ceramic precursor and production thereof
EP0401793A1 (en) Use of ceramic materials for living hard tissue replacements
RU2297249C1 (en) Method for preparing composition material for filling osseous defects