JPS6123797A - Electrode body in electrolytic apparatus - Google Patents

Electrode body in electrolytic apparatus

Info

Publication number
JPS6123797A
JPS6123797A JP14284184A JP14284184A JPS6123797A JP S6123797 A JPS6123797 A JP S6123797A JP 14284184 A JP14284184 A JP 14284184A JP 14284184 A JP14284184 A JP 14284184A JP S6123797 A JPS6123797 A JP S6123797A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
block
treated
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14284184A
Other languages
Japanese (ja)
Inventor
Hisashi Tomioka
富岡 久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KATSUKAWA KOGYO KK
Original Assignee
KATSUKAWA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KATSUKAWA KOGYO KK filed Critical KATSUKAWA KOGYO KK
Priority to JP14284184A priority Critical patent/JPS6123797A/en
Publication of JPS6123797A publication Critical patent/JPS6123797A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To perform uniform coating treatment for the material to be treated by providing block-shaped electrodes made of insoluble material which are finely divided into many pieces in accordance with the surfaces of the material to be treated, performing suitably different electric conduction to be respective electrodes and simultaneously performing electrolysis. CONSTITUTION:The respective block-shaped electrodes 1a-5d finely divided are electrically insulated by the auxiliary members 6 independently and fitted tightly with a main body 8 to be opposed to the material 10 to be treated. Electricity is supplied to the material 10 immersed into an electrolyte 12 via a wiring 9 from the electric sources R1, R2 and conducted to respective elecrodes 1a-5d of each electrode body A, B via a lead wire 7 to perform coating treatment. In this time, low electrical voltage and current density are charged to the electrodes 1a-1d of the uppermost step, the electrodes 2a, 2d, 3a, 3d, 4a, 4d of both sides of middlie step and the electrodes 5a-5d of the lowermost step and high electrical voltage and current density are charged to the other electrodes 2b, 2c, 3b, 3c, 4b, 4c provided to the central part and simultaneously the electrolytic treatment is performed. Thereby, the uniform coating treatment is performed on the central part and the peripheral parts of the material 10 to be treated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電解装置における電解楕円に使用される電解処
理用の電極体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an electrode body for electrolytic treatment used in an electrolytic ellipse in an electrolytic device.

従来の技術 従来の電解装置における電解槽中の電極は全体が電極と
して働く一体形のものであり、同従米電極全使用しての
電解装置は第7図に示されたものが基本構造である。即
ち被処理物i o’ c i’は電極、11′は電解槽
、12′は電解液、R′は電源)の形状や電解条件に対
して基〜本釣に要求されることは、被処理物10′への
)表面処理、例えば鍍金被膜処理、陽極酸化皮膜処理、
エツチング処理等において、処理された被膜厚さ、処理
深さ等につき各部分共に均一的でムラなく処理されるこ
とが望まれているが、結局処理ムラを除くことは容易で
ない。
2. Prior Art The electrodes in the electrolytic cell in conventional electrolyzers are all integrated and work as electrodes, and the basic structure of an electrolyzer using all of the conventional electrolyzers is shown in Figure 7. . In other words, the requirements for basic to main fishing regarding the shape and electrolytic conditions of the object to be treated (i o' c i' is the electrode, 11' is the electrolytic tank, 12' is the electrolytic solution, and R' is the power source) are as follows: surface treatment on the treated object 10', such as plating coating treatment, anodic oxidation coating treatment,
In the etching process, etc., it is desired that each part be treated uniformly and evenly in terms of the thickness of the treated film, the depth of the process, etc. However, it is not easy to remove the process unevenness.

例えば第7図のととく4角な平板の被処理物10’の表
裏両面を陽極酸化皮膜処理?する場合でさえも、平板被
処理物10′ヲ電解槽11′内において水平位置で処理
するか、垂直位置で処理するかによっても現象が異なり
、両面ケ同時処理する時、水平位置で処理すると下面に
なった側は電解時の発生ガス気泡の影響等もあり、上面
側と同様な通電をしても処理結果に支障が発生し、」二
面側と下面側との処理被膜厚さ等にムラヶ生ずる。その
ためこのような場合には垂直位置で電解させるのが常道
となっている。しかしこれでも平板の中央部と端部に近
い部分では処理深さに差が生じる。即ち平板の上部と下
部、巾方向の中央と端部の方とでは、対電極の広さ等を
工夫しても均一化は容易でない。
For example, the front and back surfaces of the rectangular flat plate 10' shown in FIG. 7 are treated with anodic oxide coatings. Even when processing the flat plate 10' in the electrolytic bath 11' in a horizontal position or in a vertical position, the phenomenon differs. The bottom side is also affected by gas bubbles generated during electrolysis, so even if you apply electricity in the same way as the top side, the processing results will be affected. Unevenness occurs. Therefore, in such cases, it is common practice to perform electrolysis in a vertical position. However, even with this, there is a difference in the processing depth between the central part and the parts near the edges of the flat plate. That is, it is not easy to achieve uniformity between the upper and lower portions of the flat plate, and between the center and end portions in the width direction, even if the width of the counter electrode is adjusted.

これらの現象の主因に電気化学的処理について生ずる電
気の集中現象(コンセントレーションフがあり、これが
結果的に被処理物表面の中で電気的に集り易い部分と、
到達し難い部分との差が生じて処理皮膜の厚さその他の
処理ムラにつながっている。
The main cause of these phenomena is the concentration phenomenon of electricity that occurs during electrochemical processing, which results in areas on the surface of the object being treated where electricity tends to accumulate.
Differences in the hard-to-reach areas occur, leading to unevenness in the thickness of the treated film and other treatments.

この対策として現在一般的方法として前述の電気的に到
達し難い部分には補助電極1’a”(r併用し、集中し
易い部分には被処理物側か対電極側にマスキングl’b
”k配設する等の面倒な手段を施してムラを減少させて
いる。
As a countermeasure for this, the current common method is to use the auxiliary electrode 1'a'' (r) in the areas that are electrically difficult to reach, and to mask the areas where concentration is likely to occur either on the workpiece side or on the counter electrode side.
The unevenness is reduced by taking troublesome measures such as ``k placement''.

発明が解決しようとする問題点 本発明は上記従来の基本現象と現状対策による処理ムラ
防止効果不足に対応し、処理ムラを極力減少させる電解
装置における電極体を提供することを目的とするもので
ある。
Problems to be Solved by the Invention The present invention addresses the above-mentioned basic phenomena and the lack of effectiveness in preventing processing unevenness caused by current countermeasures, and aims to provide an electrode body for an electrolytic device that reduces processing unevenness as much as possible. be.

問題点を解決するための手段 本発明は上記目的全達成するため従来の一体形電極と異
り、被処理物に対応する本体(電気絶縁性と耐薬品性等
を備えている9の表面部位に、縦横方向へ細分割配列し
た多数のブロック状電極(不溶解材質で作成〕盆補助部
材(密着接合等全強化するもの)k介して嵌着固定して
いる。その場合各ブロック状電極の前面部は電解液側に
露出しているが、背面部には夫々各別にリード線を接続
し、これらリード線群は本体上端部から電解液外に引き
出され、各終端部は夫々各別に電解用電源に連結されて
いる。
Means for Solving the Problems In order to achieve all of the above objects, the present invention differs from conventional integrated electrodes in that it has a main body corresponding to the object to be treated (9 surface areas having electrical insulation and chemical resistance, etc.). A large number of block-shaped electrodes (made of insoluble material) arranged vertically and horizontally are fitted and fixed through tray auxiliary members (those that fully strengthen tight joints, etc.).In that case, each block-shaped electrode The front part is exposed to the electrolyte side, but each lead wire is connected to the back part separately, and these lead wire groups are pulled out of the electrolyte from the upper end of the main body, and each terminal part is connected to the electrolyte separately. connected to the power supply.

即ち本発明においては、前記本体と、その表面部位に細
分割配列し補助部材全弁し7て嵌着固定した多数のブロ
ック状電極と、同各電極の背面部に夫々各別に連結した
リード線群とを組み合わせ集合して一体の合成構造の電
極体全構成しており、前記細分割多数のブロック状電極
に夫々独立して給電することにエリ夫々個別の電圧また
は電流密度等の通電条件を付加できるように構成したも
のである。
That is, in the present invention, the main body, a large number of block-shaped electrodes that are subdivided and arranged on the surface thereof and fitted and fixed with auxiliary members 7, and lead wires that are respectively connected to the back surface of each electrode. The entire electrode body has an integrated composite structure by combining and assembling the electrodes, and in order to independently supply power to each of the many subdivided block-shaped electrodes, it is necessary to set individual energizing conditions such as voltage or current density to each of the subdivided block-shaped electrodes. It is configured so that it can be added.

実施例 第1実施例〔第1図ないし第3図参照〕第1図は第2図
を■矢視方向に見た正面図、第2図は第1図2w矢視方
向に見た縦断側面図、第3図は第1図第2図の本発明電
極体を配設した電解装置の説明図である。第3図におい
て1oは被処理物、11は電解槽、12は電解液、A、
 Bは本発明の電極体である。各電極体A、Bは同一構
造であるので、一方の電極体Aについて説明する。
Embodiment 1 Embodiment 1 [See Figs. 1 to 3] Fig. 1 is a front view of Fig. 2 seen in the direction of the arrow ■, and Fig. 2 is a longitudinal cross-sectional side view of Fig. 1 seen in the direction of the arrow 2w. 3 are explanatory diagrams of an electrolysis device in which the electrode body of the present invention shown in FIG. 1 and FIG. 2 is disposed. In Fig. 3, 1o is the object to be treated, 11 is the electrolytic tank, 12 is the electrolytic solution, A,
B is the electrode body of the present invention. Since each electrode body A and B have the same structure, one electrode body A will be explained.

8は本体で、電気絶縁性耐薬品性等ケ有する材質で作成
され、上端部にのみ開ロケ有する細長い箱状体を呈して
いる。この本体8の表面部位にUla〜5a、1b〜5
b、1c〜5c、1d〜5d(20個)で示すごとくブ
ロック状電極が縦横方向に細分割配列して嵌着固定され
ている。即ち本体80表面部位には上記20個の細分割
ブロック状電極1a〜5dk夫々嵌入固定するための貫
通穴を設け、同各貫通穴に各電極1a〜5dの前面部全
電解液側に露出せしめて嵌入し、各貫通穴と各電極の側
面外周部との間に、両者の密着接合等を強化して電解液
12の本体8内部への滲入等全防除する補助部材6(例
えば軟質樹脂材又はゴム材等のバンキングや接着剤等の
密着性や弾性を有するもの〕音用いて各電極1a〜5d
k夫々個別に電気的に絶縁して本体8に強固に嵌着して
いる。
Reference numeral 8 denotes the main body, which is made of a material having electrical insulation properties and chemical resistance, and has an elongated box-like shape with an opening only at the upper end. Ula~5a, 1b~5 on the surface of this main body 8
As shown by b, 1c to 5c, and 1d to 5d (20 pieces), block-shaped electrodes are arranged in subdivisions in the vertical and horizontal directions and are fitted and fixed. That is, a through hole is provided on the surface of the main body 80 for fitting and fixing each of the 20 subdivided block-shaped electrodes 1a to 5dk, and the entire front surface of each electrode 1a to 5d is exposed to the electrolyte side in each through hole. An auxiliary member 6 (for example, a soft resin material) is inserted between each through hole and the outer periphery of the side surface of each electrode to strengthen the tight bond between the two and completely prevent the electrolyte 12 from seeping into the main body 8. [Or a material with adhesiveness or elasticity such as banking of rubber material or adhesive] Each electrode 1a to 5d is
k are individually electrically insulated and firmly fitted into the main body 8.

同各ブロック状電極1a〜5dの各背面部(本体8の内
部に位置する)には夫々各別に導電性のり−F線7の一
端が強固に接続され、これらリード線群は本体上端部の
開口(この部分は電解時電解液面上方の位置[あって電
解液12等の影響?受けない)から導き出され、各終端
部は夫々各別に一方の電解用電源式に連結されている。
One end of the conductive glue-F wire 7 is firmly connected to the back side of each of the block-shaped electrodes 1a to 5d (located inside the main body 8), and these lead wire groups are attached to the upper end of the main body. It is led out from the opening (this part is located above the surface of the electrolytic solution during electrolysis [and is not affected by the electrolytic solution 12, etc.]), and each terminal end is connected to one of the electrolytic power sources separately.

また被処理物10に対応しその左側に配置される他方の
電極体Bの各ブロック状電極1a−5dは上記右側の電
極体Aの各ブロック状電極1a〜5dと夫々対応した位
置にあり、夫々上記同様各別のリード線7を介して他方
の電解用電源R2に連結されてお5、FJt電源制御機
構を示し例えばシーケンサ−やコンピュータ一点連動機
能させて前記電源R1几、から個々のブロック状電極に
対し、夫々に理論値又は実験値を基本とした電解条件(
電圧、電流密度等)全付加できる工うになっている。
Furthermore, the block-shaped electrodes 1a to 5d of the other electrode body B, which corresponds to the object to be processed 10 and is arranged on the left side thereof, are located at positions corresponding to the block-shaped electrodes 1a to 5d of the right side electrode body A, respectively, Each of them is connected to the other electrolytic power source R2 through separate lead wires 7 as described above, and the FJt power source control mechanism is shown, for example, by linking a sequencer or computer to each block from the power source R1. Electrolytic conditions (based on theoretical values or experimental values) for electrodes of
(voltage, current density, etc.) can be added.

即ち電解槽11内の電解液12甲に没入した被処理物1
0に、電解用電源”l+”2の共通iから配線9を通じ
て給電し、左右位置に夫々配置の各電極体A、Bに配設
の各ブロック状電極1a〜5dに通電されるとき、被処
理物10の両面は冬ブロック状電極1a〜5dの各対面
部分で個別に与えた通電条件に応じた電解作用を夫々受
けるようになっている。
That is, the workpiece 1 immersed in the electrolytic solution 12A in the electrolytic bath 11
0, when power is supplied through the wiring 9 from the common i of the electrolytic power source "l+" 2, and the block-shaped electrodes 1a to 5d arranged in the electrode bodies A and B arranged at the left and right positions are energized, the Both surfaces of the object to be treated 10 are subjected to electrolytic action according to individually given energization conditions at the facing portions of the winter block-shaped electrodes 1a to 5d.

例えば被処理物10の4角な平板の周辺部に対応する第
1図の最上段全ブロック状電極1a、lb。
For example, the uppermost block-shaped electrodes 1a and lb in FIG.

lc、ldと、中段両側の2a 2dと3a3dと4a
4dと最下段全ブロック状電極5a、5b。
lc, ld and 2a 2d and 3a 3d and 4a on both sides of the middle row
4d and the lowermost block-shaped electrodes 5a and 5b.

5c、5dに低い電圧、電流密度等全付加し、中央部に
対応するブロック状電極2b2cと3b3cと、4b4
cには高い電圧、電流密度等を与えて同時に電解処理を
施せば、被処理物10には中央部は勿論周辺部も平均化
された被膜処理が得られることになる。
A low voltage, current density, etc. are all added to 5c and 5d, and block-shaped electrodes 2b2c, 3b3c, and 4b4 corresponding to the center are added.
If a high voltage, current density, etc. are applied to c and the electrolytic treatment is performed at the same time, an even coating treatment can be obtained not only in the central portion but also in the peripheral portion of the object 10 to be treated.

なおまた、各対極ブロック状電極1a〜5dに電圧、電
流密度等?与える電源RI、R2からの個々   ゛の
条件は、前に述べた電源制御機構Eによって決定される
ようにすれば、各部位での給電条件は理論値又ハ実験値
を基本として与えることも出来るので、表面処理の均一
化に大きな効果が得られる。
Furthermore, is the voltage, current density, etc. applied to each counter electrode block-shaped electrode 1a to 5d? If the conditions for the individual power supplies RI and R2 to be supplied are determined by the power supply control mechanism E described earlier, the power supply conditions at each part can be given based on theoretical values or experimental values. Therefore, a great effect can be obtained in making the surface treatment uniform.

さらにまた、各ブロック状電極全嵌設する本体は例えば
硬質樹脂材PVOやFRP等による箱形成形品もしくは
半硬質や軟質のモールド加工その他の成形法によって任
意の全体形状音形成することが出来る。
Furthermore, the main body into which each block-shaped electrode is completely fitted can be formed into an arbitrary overall shape by, for example, a box-shaped product made of a hard resin material such as PVO or FRP, or by semi-hard or soft molding or other molding methods.

また第3図に示されている事例で、例えば被処理物10
の長さが違う品物(例えばブロック状電極1a〜3dに
対応する長さのもの)が処理される場合、通電する対極
部位を変えて他のブロック状電極4a段のもの5a段の
ものに通電させないことによって、余分な給電による無
駄を排除すると共に、被処理物に対する悪影響を防止し
て夫々の被処理物に対応した処理の均一性の効果が確保
出来る。つまシ、被処理物の大きさく巾、長さ)に比し
て巾、長さ、共に大きい本発明の電極体全用意しておけ
ば、1部のブロック状電極への通電付加を省略すること
によシ被処理物の形状の大小の変化にも容易に対応でき
る。この点は以下示す第2ないし第4笑施例の場合も同
じである。
Further, in the case shown in FIG. 3, for example, the workpiece 10
When processing items with different lengths (for example, items with lengths corresponding to the block-shaped electrodes 1a to 3d), change the counter electrode part to be energized and energize the other block-shaped electrodes 4a and 5a. By not allowing this, it is possible to eliminate waste due to extra power supply, prevent adverse effects on the objects to be processed, and ensure uniformity of processing corresponding to each object to be processed. If the entire electrode body of the present invention is prepared, which is larger in width and length than the width and length of the object to be processed, the need to apply electricity to some of the block-shaped electrodes can be omitted. In particular, changes in size of the shape of the object to be processed can be easily accommodated. This point also applies to the second to fourth embodiments shown below.

第2実施例(第4図参照) との実施例では被処理物lOが異形(凹凸を有する曲面
体)の場合を断面で示しており、被処理物10の左側表
面は電解しない場合(片面電解)を示している。被処理
物10の右側に配置される本発明の電極体に、その本体
80表面が図示のごとく被処理形状と同じ形状に曲げら
れ、その表面部位(曲面部分をも含む)に1列からn列
の多数のブロック状電極が嵌着固定されている点が前実
施例と相違し、他の部分は同じ構成となっている。
In the second embodiment (see Fig. 4), the case where the object to be treated 10 has an irregular shape (a curved body with unevenness) is shown in cross section, and the left surface of the object to be treated 10 is shown in the case where no electrolysis is performed (one side electrolysis). The electrode body of the present invention, which is placed on the right side of the object to be treated 10, has a main body 80 whose surface is bent into the same shape as the object to be treated as shown in the figure. This embodiment differs from the previous embodiment in that a large number of block-shaped electrodes in a row are fitted and fixed, and other parts have the same structure.

この実施例の場合、電気的集中現象は被処理物10と対
電極双方の形状に応じて凸部に多く発生し、到達し難い
現象は凹部が対象となる。よって、電解用電源から各別
のリード線7を介して被処理物100片面に対し配置し
た本発明の電極体に配備し友各ブロック状電極に独立し
て通電し、夫々各別に適切な電EEま几は電流密度等を
付加すれば被処理物全面にわたって表面ムラの少ない均
一化し次処理被膜を得ることが出来る。
In the case of this embodiment, the electrical concentration phenomenon often occurs in the convex portions depending on the shapes of both the object 10 and the counter electrode, and the phenomenon that is difficult to reach occurs in the concave portions. Therefore, electricity is applied independently to each of the block-shaped electrodes arranged in the electrode body of the present invention placed on one side of the object to be treated 100 via separate lead wires 7 from the electrolytic power source, and an appropriate voltage is applied to each of them. By applying current density or the like to the EE machine, it is possible to obtain a uniform coating with less surface unevenness over the entire surface of the object to be treated.

第3冥施例(第5図参照〕 この実施例において11は電解槽、12は電解液、10
は被処理物(長尺の帯状体で連続処理される被処理物)
、13,14,1.5はローラであり、本体8に1列な
いし5列に配設されたブロック状電極で構成された本発
明の電極体A、Bは第1実施例の場合と同じであるが、
同電極体A、 Bの中央には電解液12への被処理物導
入側、引出側に対応してもう1つの電極体Cが設けられ
ており、これは前記電極体A、Bの2体を背中合せに1
体化したものと同じに考えればよい。従って図示されて
いないが各電極体A、BK、対する各別のリード線と各
別の電源が設けられていることは前実施例と同様である
が、この実施例においては中央の電極体Cに対しても上
記同様の別個のリード線と電源を備えている。
Third embodiment (see Figure 5) In this embodiment, 11 is an electrolytic tank, 12 is an electrolytic solution, and 10
is the object to be processed (the object to be processed continuously in a long strip)
, 13, 14, and 1.5 are rollers, and the electrode bodies A and B of the present invention, which are composed of block-shaped electrodes arranged in one to five rows on the main body 8, are the same as in the first embodiment. In Although,
Another electrode body C is provided in the center of the electrode bodies A and B, corresponding to the introduction side and the extraction side of the object to be treated into the electrolytic solution 12. 1 back to back
You can think of it in the same way as something that has become physical. Therefore, although not shown, separate lead wires and separate power sources are provided for each electrode body A and BK, as in the previous embodiment, but in this embodiment, the center electrode body C It also has a separate lead wire and power supply similar to the above.

この実施例においては前述のごとく被処理物10は長尺
の帯状体として図中矢印の方向に順次移動しながら連続
処理する場合を示すが、通常の処理条件では帯状体の中
央部と両耳端部とで比較すると、両耳端部に電気的集中
が起きるこ、と、電解槽上部位と上部位では通電量によ
って電圧降下現象(被処理材自身や電極用材料そのもの
のもつ抵抗等によるもの)が生じ、処理効果に変動を及
ぼすような現象に対しても、各電極体A、B、0のブロ
ック状電極への通電条件を選択することによって対処出
来る。
In this embodiment, as described above, the object to be processed 10 is a long strip and is continuously processed while moving sequentially in the direction of the arrow in the figure. Comparing the two ends, we find that electrical concentration occurs at the ends of both ears, and that there is a voltage drop phenomenon (due to the resistance of the treated material itself and the electrode material itself) depending on the amount of current applied between the upper and lower parts of the electrolytic cell. It is possible to cope with the phenomenon that causes a change in the processing effect by selecting the conditions for applying current to the block-shaped electrodes of each electrode assembly A, B, and 0.

第4実施例(第6図参照) 第6図は被処理物10が上面より見て口形の異形のもの
で、その表裏両面に本発明の電極体を使用して均一の被
膜を施す場合の≠滑嗜彊1α平面図である。A、B&−
j:夫々口形被処理物10に対応して配置された本発明
の電極体である。一方の電極体Aでにその本体8aの中
央部は被処理物10の凹部内側表面に対応し、これと適
当間隔を保持]7て嵌入する状態で設けられ、同中央部
両側部は被処理物10の両側端面に対応(〜て設け、全
体形状は凸形に形成されている。前記本体8aの中央凸
出部の被処理物10に対する全表面には、前夫施例同様
多数のブロック状電極1a〜1hのように並べたものが
、多段重ねになった状態に縦横方向に配列して嵌着固定
し7、又両側部位1cidli〜1nの各ブロック状電
極が前記と同様に縦横方向に配列して嵌着固定されてい
る。上記全ブロック電極11〜10〜1f〜1nの本体
内への背面部に個々に固着されたリード線は、前実施例
と同じに本体8上端部から電解液が滲透しないよう導き
出し、夫々個々[1方の電源に連結されていることは第
1実施例と同様であり、当然である。
Fourth Embodiment (See FIG. 6) FIG. 6 shows a case where the object to be treated 10 has an irregular mouth shape when viewed from above, and a uniform coating is applied to both the front and back surfaces of the object using the electrode body of the present invention. ≠It is a plan view of sliding passage 1α. A, B&-
j: electrode bodies of the present invention arranged corresponding to the mouth-shaped objects 10 to be treated, respectively. In one electrode body A, the center part of the main body 8a corresponds to the inner surface of the recess of the object to be processed 10, and is fitted with an appropriate distance therebetween. The entire surface of the central convex portion of the main body 8a relative to the workpiece 10 is provided with a large number of block-shaped blocks corresponding to both end faces of the object 10, as in the previous embodiment. The electrodes 1a to 1h are arranged vertically and horizontally in a stacked state and fitted and fixed 7, and each of the block-shaped electrodes on both sides 1cidli to 1n are arranged vertically and horizontally in the same manner as above. The lead wires, which are individually fixed to the back of the main body of all the block electrodes 11 to 10 to 1f to 1n, are connected to the electrolytic wires from the upper end of the main body 8 in the same way as in the previous embodiment. It is a matter of course that the liquid is guided so that the liquid does not seep through, and that each of them is individually connected to one power source as in the first embodiment.

他方の電極体Bの本体8bの内面は被処理物10の外表
面に対応する形状を有し、口形被処理物10の両側部の
表面に対しては2a〜2d、2γ〜2μの各ブロック状
電極が、また隅角部に対しては2e。
The inner surface of the main body 8b of the other electrode body B has a shape corresponding to the outer surface of the object to be processed 10, and the blocks 2a to 2d and 2γ to 2μ are formed on the surface of both sides of the mouth-shaped object to be processed 10. shaped electrodes, and 2e for the corners.

2fおよび2p、2qが、また外表面に対しては2g〜
2nが電極体Aと同様に縦横方向配列して夫々嵌着固定
さ扛でいる。これら各ブロック状電極2a〜2 tt列
のものからは各す−1’線が出され、これらが他方の電
源に各別に連結している点、前と同様である。
2f, 2p, 2q, and 2g~ for the outer surface
2n are arranged in the vertical and horizontal directions similarly to the electrode body A, and are fitted and fixed, respectively. Each -1' line is taken out from each of these block-shaped electrodes 2a to 2tt rows, and these are connected to the other power source separately, as in the previous case.

例えば一方の電極体人の中央突出部の上端部付近のブロ
ック状電極10〜1fから被処理物10の内面、隅部面
に対しては高い電圧または電流密度等を、又両側部のブ
ロック状電極11〜Inから被処理物10の両側端部面
に対しては低い電圧電流密度等を通電付加すると共に、
他方の電極体Bの内面隅部のブロック状電極2e、2f
および2p、2qから被処理物表面隅部に対して低い電
り、均一化した被膜を得ることが出来る。
For example, a high voltage or current density is applied to the inner surface and corner surfaces of the object to be processed 10 from the block-shaped electrodes 10 to 1f near the upper end of the central protrusion of one electrode body, and block-shaped electrodes on both sides are applied. A low voltage current density or the like is applied from the electrodes 11 to In to both end surfaces of the object to be processed 10, and
Block-shaped electrodes 2e and 2f at the inner corner of the other electrode body B
Also, from 2p and 2q, it is possible to obtain a uniform coating with low electric charge on the corners of the surface of the object to be treated.

なお、実施例として図示しないが、複数の被処理物に対
して本発明の電極体を1組で対応させたり、逆VCi個
の被処理物に対して複数個の電極体を対応させて電解処
理を施行せしめたり、電解槽中で電極体そのものを他の
補助的材料(電極ザポート等)により支持させる等の実
施態様は従来の場、合と同様に任意に選択出来ることは
当然である。
Although not shown as an example, one set of electrode bodies of the present invention may be made to correspond to a plurality of objects to be treated, or a plurality of electrode bodies may be made to correspond to inverse VCi pieces of objects to be electrolyzed. It goes without saying that embodiments such as carrying out the treatment or supporting the electrode body itself with other auxiliary materials (electrode zaport, etc.) in the electrolytic cell can be arbitrarily selected as in the conventional case.

又本天施例におけるブロック状電極の材質については、
溶M度の少ないものを含めた不溶解性材質のものが実用
化の対象となる。
Regarding the material of the block-shaped electrode in this example,
Insoluble materials, including those with a low degree of dissolved M, are targeted for practical use.

発明の効果 本発明においては (1)従来の一体形電極と異なシミ気絶練性と耐薬品性
等を備えた本体の表面部位Kid被処理物に対する電極
として全面にわたシ縦横方向へ多数に細分割配列したブ
ロック状電極を嵌め込んで電極体を構成し、同各ブロッ
ク状電極に夫々独立して通電し、個別に任意な電圧また
は電流密度等の通電条件を付加できるようになっている
ので、例えば4角な平板の被処理物の周辺部に対しては
本発明電極体の最上段と最下段に並列固定した各ブロッ
ク状電極、および中間段の両端部位に並列固定した各ブ
ロック状電極に夫々低い電圧、電流密度等を付加し、又
中間位の中央部位のブロック状電極に高い電圧、電流密
度等を与えることによシ、被処理物の周辺部と共に中央
部も平均化された被膜処理が得られる。
Effects of the Invention In the present invention, (1) a surface area of the main body that has stain-drying properties and chemical resistance, etc., which are different from conventional integrated electrodes; The electrode body is constructed by fitting the divided and arranged block-shaped electrodes, and each of the block-shaped electrodes is energized independently, so that it is possible to individually apply energizing conditions such as arbitrary voltage or current density. For example, for the periphery of a square flat plate to be processed, block-shaped electrodes are fixed in parallel on the top and bottom stages of the electrode body of the present invention, and block-shaped electrodes are fixed in parallel on both ends of the intermediate stage. By applying low voltages, current densities, etc. to each of the electrodes, and applying high voltages, current densities, etc. to the block-shaped electrodes at the middle central part, the central part as well as the peripheral part of the object to be treated can be averaged. A film treatment is obtained.

(11)また被処理物が凹凸を有する等の異形曲面を有
する場合、電気的集中現象は被処理物の凸形部に発生し
易いが、この場合同被処理物の曲面に対応して同様に曲
げられた本体に嵌め込んだ多数細分割配列したブロック
状電極中、夫々の位置にあたるブロック状電極に各個に
任意の電圧、電流密度を付加することにより、被膜全体
の均一化が得られる。
(11) In addition, when the object to be processed has an irregular curved surface such as an uneven surface, the electrical concentration phenomenon is likely to occur on the convex portion of the object, but in this case, the same By applying arbitrary voltage and current density to each of the block-shaped electrodes arranged in multiple subdivisions fitted into the bent main body, uniformity of the entire coating can be obtained.

GiD  まだ長尺の帯状体の被処理物を連続処理する
場合にあっても、通常の処理条件では帯状体の中央部に
比して両耳端部に電気的集中が起き、又電解槽の上部位
と上部位では通電量によって電圧降下現象が生じ、処理
効果に変動を及ぼす等のことがあるが、これに対しても
本発明による電極体のブロック状電極への通電条件を部
位別に加減して電圧電流密度等を選択することによって
対処防止できる。
GiD Even when processing a long strip to be processed continuously, under normal processing conditions, electrical concentration occurs at both ends of the strip compared to the center, and the electrolytic cell A voltage drop phenomenon may occur depending on the amount of current applied between the upper and upper parts, which may affect the processing effect, but the present invention can adjust the current application conditions to the block-shaped electrodes of the electrode body for each part. This can be prevented by selecting the voltage and current density, etc.

4V)  又処理条件として場所(電解部位)や時間に
よって、電解電圧、電流密度等を変化することによシ高
速電解処理法に通ずる技術手段もあるが、本発明の電極
体の採用によれば上記の条件操作に    □きめ細か
く対応する機能が容易に得られるので、被処理物の品質
向上と均一化に加えて生産性向上の効果は大きい。
4V) There are also technical means that lead to high-speed electrolytic treatment by changing the electrolytic voltage, current density, etc. depending on the location (electrolysis site) and time as treatment conditions, but by adopting the electrode body of the present invention, Since it is easy to obtain a function that precisely corresponds to the above-mentioned conditional operations, the effect of improving productivity in addition to improving and uniformizing the quality of the processed material is significant.

(V)  又本発明においては本体とこれに多数細分割
配列したブロック状電極を含めて構成した電極体として
の形状は、例えば口形や凸形等の被処理物に対しても任
意に得られるので、従来の一体形電極を使用する電解処
理装置において同電極と補助電極やマスキングの併用で
得られる程度の均一化とは、比較にならない効果が生じ
る。
(V) In addition, in the present invention, the shape of the electrode body including the main body and the block-shaped electrodes arranged in many subdivisions can be arbitrarily obtained for the object to be processed, such as a mouth shape or a convex shape. Therefore, the effect is incomparable to the degree of uniformity obtained by using the integrated electrode in combination with an auxiliary electrode or masking in an electrolytic processing apparatus using a conventional integrated electrode.

■ 又被処理物の広さは多種類にわたるが、本発明によ
る電極体の全ブロック状電極の占める広さよシ狭いもの
を表面処理する場合は、被処理物の広さに応じ電極体中
の1部のブロック状電極には通電しないですむので、余
分の給電による無駄を省略することが出来る。っまシ、
本発明による電極体の全ブロック状電極の全面大きさを
1巾長さ−および表面形状の異なる等の多種類にわたる
被処理物に対応できるよう多少大きく作成しておけば、
表面処理の作業上便利であり、省エネルギー等の経済性
を含めて笑用的勤果を大きくする。
■Although there are many types of objects to be treated, when surface treating an object that is narrower than the area occupied by the entire block-shaped electrode of the electrode body according to the present invention, the size of the object to be treated may vary depending on the width of the electrode body. Since it is not necessary to supply electricity to some of the block-shaped electrodes, it is possible to omit unnecessary power supply. Oh my,
If the overall size of the entire block-shaped electrode of the electrode body according to the present invention is made somewhat larger so as to be able to handle a wide variety of objects to be processed, such as one width, length, and surface shape,
It is convenient for surface treatment work, and increases practical benefits including economical efficiency such as energy saving.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明の第1実施例を示し、第1
図は第2図をV矢視方向に見た正面図、第2図は第1図
の1部をI−1線に沿って切断し”W矢視方向に見た側
断面図、第3図は第1図、第2図の本発明による電極体
を電解槽中に配置した電解状態の説明図。 第4図は第2の実施例で、異形被処理物に対応して本発
明の電極体を異形形状に形成し、片面処理を施す場合の
1部縦断側面図。 第5図は第3の実施例で被処理物が帯状体で、これに対
応させて本発明による電極体を配設した電解槽部分の側
断面図。 第6図は第4の実施例で、被処理物が上方から見て口形
である場合の本発明による電極体を説明するだめの平面
図。 第7図は上記第1図ないし第3図に示した実施例(対応
する従来の一体形電極を使用しての電解槽および電解装
置の構成説明図である。“10・・・被処理物。11・
・・電解槽。12・・・電解液。 A、B、O・・・本発明の電極体。 1  a〜1  d、  2 a〜2 d、  3  
a〜3  d’、  4  a〜4d、  5a〜5d
、  1. 2. 3. 4. 5. 1  i。 〜in、2a〜2μ・・・ブロック状電極。 7・・・リード線。R,、R2・・・電源。 E・・・電源制御装置。 F3,8a、8b・・・電極体の本体。 6・・・補助部材。
1 to 3 show a first embodiment of the present invention.
Figure 2 is a front view of Figure 2 viewed in the direction of arrow V, Figure 2 is a side sectional view of a portion of Figure 1 taken along line I-1 and viewed in the direction of arrow W; The figure is an explanatory diagram of an electrolytic state in which the electrode body according to the present invention shown in Figures 1 and 2 is arranged in an electrolytic cell. A partial longitudinal sectional side view of an electrode body formed into an irregular shape and subjected to single-sided processing. Figure 5 shows a third embodiment in which the object to be treated is a strip-shaped body, and the electrode body according to the present invention is A side sectional view of the arranged electrolytic cell portion. Fig. 6 is a plan view for explaining the electrode body according to the present invention in a fourth embodiment, in which the object to be treated has a mouth shape when viewed from above. The figure is an explanatory diagram of the configuration of an electrolytic cell and an electrolytic device using conventional integrated electrodes (corresponding to the embodiments shown in FIGS. 1 to 3 above).・
...Electrolytic cell. 12... Electrolyte. A, B, O...electrode body of the present invention. 1 a to 1 d, 2 a to 2 d, 3
a~3d', 4a~4d, 5a~5d
, 1. 2. 3. 4. 5. 1 i. ~in, 2a~2μ...Block-shaped electrode. 7... Lead wire. R,, R2...Power supply. E...Power control device. F3, 8a, 8b... Main body of the electrode body. 6... Auxiliary member.

Claims (1)

【特許請求の範囲】[Claims] 電解槽中において被処理物に対応した位置に電極を配設
し、その両者に電解用電源から給電し、電解液を介して
通電することにより、被処理物の表面に電着または電解
処理等を施す電解装置において、前記電極として被処理
物表面に対応して多数細分割して設けられた不溶解材質
のブロック状電極と、同各ブロック状電極の背面部に夫
々個別に一端を連結し各他端部を電解槽外迄延長して夫
々各別に電解用電源に連結されるリード線と、電気絶縁
性耐薬品性等を有する材質を使用し、その表面部位に被
処理物に対応して前記ブロック状電極を夫々嵌入嵌着固
定するため細分割配列された多数の電極嵌入穴を具有す
る本体と、前記各電極嵌入穴に夫々各ブロック状電極の
前面部を外面側に露出せしめて嵌入し、同電極嵌入穴と
電極の側面外周部との間に介在し両者の密着接合等を強
化して電解液の本体内部への滲入等を防除する補助部材
とにより一体の合成構造の電極体を構成し、同電極体の
細分割配列の多数ブロック状電極に夫々独立して通電し
夫々個別の電圧または電流密度等の通電条件を付加でき
るようにしたことを特徴とする電解装置における電極体
Electrodeposition or electrolytic treatment can be performed on the surface of the object by placing electrodes in the electrolytic bath at positions corresponding to the object to be treated, supplying power to both from an electrolytic power source, and applying electricity through the electrolyte. In an electrolytic apparatus for carrying out the above-mentioned electrolysis, the electrodes include a block-shaped electrode made of an insoluble material that is divided into multiple pieces corresponding to the surface of the object to be treated, and one end of which is individually connected to the back surface of each of the block-shaped electrodes. The other end of each lead wire is extended to the outside of the electrolytic cell and is connected to a separate power source for electrolysis, and a material with electrical insulation and chemical resistance is used. a main body having a large number of electrode fitting holes arranged in subdivisions for fitting and fixing the block-shaped electrodes, and a front surface of each block-shaped electrode is exposed to the outside in each of the electrode fitting holes The electrode has an integrated composite structure with an auxiliary member that is inserted into the electrode insertion hole and the outer periphery of the side surface of the electrode to strengthen the close bond between the two and prevent the electrolyte from seeping into the main body. An electrode in an electrolytic device, characterized in that a large number of block-shaped electrodes in a subdivided arrangement of the same electrode body are individually energized, and energization conditions such as individual voltages or current densities can be applied to each of them. body.
JP14284184A 1984-07-09 1984-07-09 Electrode body in electrolytic apparatus Pending JPS6123797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14284184A JPS6123797A (en) 1984-07-09 1984-07-09 Electrode body in electrolytic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14284184A JPS6123797A (en) 1984-07-09 1984-07-09 Electrode body in electrolytic apparatus

Publications (1)

Publication Number Publication Date
JPS6123797A true JPS6123797A (en) 1986-02-01

Family

ID=15324855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14284184A Pending JPS6123797A (en) 1984-07-09 1984-07-09 Electrode body in electrolytic apparatus

Country Status (1)

Country Link
JP (1) JPS6123797A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293200A (en) * 1987-05-27 1988-11-30 Nkk Corp Electroplating method
JPH07150395A (en) * 1993-11-29 1995-06-13 Nec Corp Divided electrode plating device and method for determining current value
WO2003080899A1 (en) * 2002-03-26 2003-10-02 Sony Corporation Electropolishing apparatus, electropolishing method, and method for manaufacturing semiconductor device
JP2007129536A (en) * 2005-11-04 2007-05-24 Kenwood Corp Diaphragm for electroacoustic transducer, method of manufacturing same, and electroacoustic transducer
KR20160122826A (en) * 2014-02-19 2016-10-24 인두스트리에 데 노라 에스.피.에이. Anode structure for metal electrowinning cells
JP2017014540A (en) * 2015-06-26 2017-01-19 住友金属鉱山株式会社 Insoluble anode, plating device, electroplating method and method for producing copper-clad laminated plate
CN106868574A (en) * 2015-12-14 2017-06-20 台湾先进系统股份有限公司 Adjustable insoluble anode plate and method for applying adjustable insoluble anode plate to copper column electroplating
WO2020060874A1 (en) * 2018-09-19 2020-03-26 Alfred E. Mann Institute For Biomedical Engineering At The University Of Southern California Methods and apparatuses for forming metal oxide nanostructures

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419295U (en) * 1977-07-08 1979-02-07
JPS5432427A (en) * 1977-08-18 1979-03-09 Mitsui Toatsu Chem Inc Novel diphenyl ether compounds and herbicides
JPS587871B2 (en) * 1978-09-12 1983-02-12 ピドウ・ベ−・ブイ gasket

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419295U (en) * 1977-07-08 1979-02-07
JPS5432427A (en) * 1977-08-18 1979-03-09 Mitsui Toatsu Chem Inc Novel diphenyl ether compounds and herbicides
JPS587871B2 (en) * 1978-09-12 1983-02-12 ピドウ・ベ−・ブイ gasket

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293200A (en) * 1987-05-27 1988-11-30 Nkk Corp Electroplating method
JPH07150395A (en) * 1993-11-29 1995-06-13 Nec Corp Divided electrode plating device and method for determining current value
WO2003080899A1 (en) * 2002-03-26 2003-10-02 Sony Corporation Electropolishing apparatus, electropolishing method, and method for manaufacturing semiconductor device
JP2007129536A (en) * 2005-11-04 2007-05-24 Kenwood Corp Diaphragm for electroacoustic transducer, method of manufacturing same, and electroacoustic transducer
KR20160122826A (en) * 2014-02-19 2016-10-24 인두스트리에 데 노라 에스.피.에이. Anode structure for metal electrowinning cells
JP2017511428A (en) * 2014-02-19 2017-04-20 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Anode structure for metal electrowinning cell
JP2017014540A (en) * 2015-06-26 2017-01-19 住友金属鉱山株式会社 Insoluble anode, plating device, electroplating method and method for producing copper-clad laminated plate
CN106868574A (en) * 2015-12-14 2017-06-20 台湾先进系统股份有限公司 Adjustable insoluble anode plate and method for applying adjustable insoluble anode plate to copper column electroplating
WO2020060874A1 (en) * 2018-09-19 2020-03-26 Alfred E. Mann Institute For Biomedical Engineering At The University Of Southern California Methods and apparatuses for forming metal oxide nanostructures
CN112703275A (en) * 2018-09-19 2021-04-23 南加利福尼亚大学阿尔弗雷德·E·曼恩生物医学工程研究所 Method and apparatus for forming metal oxide nanostructures

Similar Documents

Publication Publication Date Title
US10774437B2 (en) Method and apparatus for electrolytically depositing a deposition metal on a workpiece
AU6898187A (en) Electroplating metal foil
JPS6123797A (en) Electrode body in electrolytic apparatus
US20160083856A1 (en) Electrolytic treatment method and electrolytic treatment apparatus
CN108796585B (en) A kind of electrophoresis method and device improving body of a motor car electrodeposited paint film film thickness
US6979391B1 (en) Method and device for the electrolytic treatment of electrically conducting structures which are insulated from each other and positioned on the surface of electrically insulating film materials and use of the method
JP7005558B2 (en) Metal leaf manufacturing equipment
US6939455B1 (en) Method and device for the electrolytic treatment of electrically conducting surfaces separated plates and film material pieces in addition to uses of said method
TW201508095A (en) Electroplating apparatus for manufacturing flexible printed circuit board
JPS6230275B2 (en)
JPS6123796A (en) Electrolytic treatment using finely divided electrodes
US4288298A (en) Method and apparatus for electroplating or electroforming metal objects
US6217787B1 (en) Method of removing and/or applying conductive material
US3445371A (en) Anode structure for continuous strip electroplating
US4643816A (en) Plating using a non-conductive shroud and a false bottom
SE9800287D0 (en) Method of processing a metal product
DE10043816C1 (en) Device for electrochemically metallizing, etching, oxidizing and reducing material in electrolytic apparatus comprises rigid base body, electrical contacts arranged on base body, contact isolator, counter electrode and electrical connection
CN220149698U (en) Curtain board
KR20010073546A (en) Cathode plate for electrolytic refining
JPS6235029Y2 (en)
CN217922411U (en) Anode plate structure and coating machine
TW574436B (en) Method for controlling field flow decouple plating and a device thereof
JPH0730690Y2 (en) Split type insoluble electrode for electroplating
JPS5938397A (en) Electroplating device
CN118704072A (en) Linear electrode for electrodeposition processing and preparation method thereof