JPS61237971A - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JPS61237971A
JPS61237971A JP60077639A JP7763985A JPS61237971A JP S61237971 A JPS61237971 A JP S61237971A JP 60077639 A JP60077639 A JP 60077639A JP 7763985 A JP7763985 A JP 7763985A JP S61237971 A JPS61237971 A JP S61237971A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
main circuit
heat pump
rectification column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60077639A
Other languages
Japanese (ja)
Other versions
JPH0247669B2 (en
Inventor
和生 中谷
裕二 向井
茂夫 鈴木
雄二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7763985A priority Critical patent/JPH0247669B2/en
Priority to KR1019860002009A priority patent/KR890004867B1/en
Priority to EP86104022A priority patent/EP0196051B1/en
Priority to DE8686104022T priority patent/DE3675047D1/en
Priority to US06/844,065 priority patent/US4722195A/en
Publication of JPS61237971A publication Critical patent/JPS61237971A/en
Publication of JPH0247669B2 publication Critical patent/JPH0247669B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Central Heating Systems (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非共沸混合冷媒を用い、冷媒精留塔により冷
凍サイクルの主回路を流れる冷媒組成を変化させ、常に
負荷に対応した能力を発生し得る熱ポンプ装置に関する
Detailed Description of the Invention: Industrial Application Field The present invention uses a non-azeotropic mixed refrigerant and changes the refrigerant composition flowing through the main circuit of the refrigeration cycle using a refrigerant rectification column, thereby constantly generating capacity corresponding to the load. The present invention relates to a possible heat pump device.

従来の技術 従来、非共沸混合冷媒を用い、冷媒精留塔により冷凍サ
イクルの主回路を流れる冷媒組成を変化させる構成とし
ては、第2図に示すようなものがあった。第2図におい
て、1は圧縮機、2は凝縮器、3,4.5は絞シ装置、
6は蒸発器、7は冷媒精留塔で塔底貯留器8、加熱源9
、塔頂貯留器10、冷却源11を持つように構成されて
いる。
2. Description of the Related Art Conventionally, there has been a configuration shown in FIG. 2 in which a non-azeotropic mixed refrigerant is used and the refrigerant composition flowing through the main circuit of a refrigeration cycle is changed by a refrigerant rectification column. In Fig. 2, 1 is a compressor, 2 is a condenser, 3, 4.5 is a throttling device,
6 is an evaporator, 7 is a refrigerant rectification column, a bottom reservoir 8, and a heating source 9.
, a tower top reservoir 10, and a cooling source 11.

ここで12.13.14は電磁弁である。Here, 12, 13, and 14 are solenoid valves.

以上のように構成された熱ポンプ装置においてその作用
は次のようであ−た。
The action of the heat pump device constructed as described above was as follows.

圧縮機1で吐出した冷媒ガスは、実線矢印の方向へ流れ
、凝縮器2で凝縮し、絞シ装置3に入る。
The refrigerant gas discharged by the compressor 1 flows in the direction of the solid arrow, is condensed in the condenser 2, and enters the throttling device 3.

通常運転時、電磁弁12,13.14は閉にな−ており
、冷媒はそのまま絞り装置4、蒸発器6を通って再び圧
縮機1に吸入される。主回路の冷媒組成を変える時には
、電磁弁12を開となし主回路を流れる冷媒の一部を冷
媒精留塔7内に流入させ、また、加熱源9、冷却源11
の作動によシ、流入した冷媒を低沸点成分と高沸点成分
に精留作用によ−て分離して、それぞれ、塔頂貯留器1
0゜塔底貯留器8に貯留させ、電磁弁13.14の操作
により、所望の組成の冷媒を絞り装置6を通して主回路
に流出させる。こうすることにより、主回路を流れる冷
媒の組成は、低沸点成分に富んだ組成から高沸点成分に
富んだ組成まで自由に可変することができる。一般に低
沸点成分に富んだ冷媒を主回路へ流して運転すると能力
が増加し、逆に高沸点成分に富んだ冷媒を流すと能力の
減少を生む。したがって、電磁弁の開閉という簡単な操
作で、常に負荷に応じた能力を発生させることができる
During normal operation, the solenoid valves 12, 13, and 14 are closed, and the refrigerant is sucked into the compressor 1 again through the throttling device 4 and the evaporator 6 as it is. When changing the refrigerant composition of the main circuit, the solenoid valve 12 is opened to allow a part of the refrigerant flowing through the main circuit to flow into the refrigerant rectification tower 7, and the heating source 9, cooling source 11
During the operation of the refrigerant, the inflowing refrigerant is separated into low-boiling point components and high-boiling point components by rectification action, and the refrigerant is separated into the top reservoir 1.
The refrigerant is stored in the 0° column bottom reservoir 8, and by operating the solenoid valves 13 and 14, the refrigerant having the desired composition is allowed to flow out into the main circuit through the throttling device 6. By doing so, the composition of the refrigerant flowing through the main circuit can be freely varied from a composition rich in low boiling point components to a composition rich in high boiling point components. In general, if a refrigerant rich in low boiling point components is flowed into the main circuit during operation, the capacity will increase, whereas if a refrigerant rich in high boiling point components is flowed, the capacity will decrease. Therefore, by simply opening and closing the solenoid valve, the capacity can always be generated in accordance with the load.

発明が解決しようとする問題点 このような従来の熱ポンプ装置の冷媒精留塔の加熱源に
は、電気ヒータ、圧縮機吐出ガス等が用いられていたが
、電気ヒータを用いた場合には、消費電力の増加(成績
係数の低下)をもたらし、また、ヒータの空だきによる
焼損等の問題があ−た。また、圧縮機吐出ガスを用いた
場合には、圧縮機を出たガスが冷媒精留塔の加熱源を通
ってから凝縮器へ入るため圧力損失が大きくなって成績
係数が低下したり、あるいは、加熱源によって熱量を奪
われるため凝縮器に入る冷媒ガス温度が下がり、本来の
目的である空気、水等の温度を十分に上げられない等の
問題点があった。
Problems to be Solved by the Invention Electric heaters, compressor discharge gas, etc. have been used as heating sources for refrigerant rectification columns in conventional heat pump devices. This resulted in an increase in power consumption (decreased coefficient of performance), and also caused problems such as burnout due to dry heating of the heater. In addition, when compressor discharge gas is used, the gas leaving the compressor passes through the heating source of the refrigerant rectification column before entering the condenser, which increases pressure loss and lowers the coefficient of performance. However, since heat is taken away by the heating source, the temperature of the refrigerant gas entering the condenser drops, making it impossible to sufficiently raise the temperature of air, water, etc., which is the original purpose.

そこで、本発明は成績係数を低下させることなく、また
、負荷である空気、水等の温度を十分に上げることがで
き、負荷に応じた能力を発生し得る熱ポンプ装置を提供
することを目的とする。
Therefore, an object of the present invention is to provide a heat pump device that can sufficiently raise the temperature of the load, such as air or water, without reducing the coefficient of performance, and can generate a capacity according to the load. shall be.

問題点を解決するための手段 そして、上記問題点を解決する本発明の技術的手段は、
冷媒精留塔の加熱源に、圧縮機内の潤滑油を用いるもの
である。
Means for solving the problems and the technical means of the present invention for solving the above problems are:
The lubricating oil inside the compressor is used as the heating source for the refrigerant rectification column.

作用 上記構成によれば、冷媒精留塔の加熱源に、圧縮機内の
高温の潤滑油を使用し、再び圧縮機に帰還する低温の潤
滑油を、圧縮機内部の摺動部等の潤滑あるいは、クリア
ランスのシールに使用することができ、冷媒精留塔の機
能は維持したまま、圧縮機性能を向上させ、成績係数を
さらに向上させることかできる。
Effect According to the above configuration, the high temperature lubricant oil in the compressor is used as the heating source for the refrigerant rectification column, and the low temperature lubricant oil returned to the compressor is used to lubricate the sliding parts inside the compressor or It can be used to seal clearances, improve compressor performance, and further improve the coefficient of performance while maintaining the functionality of the refrigerant rectification column.

実施例 第1図は、本発明の熱ポンプ装置の一実施例による冷媒
回路の構成図である。同図において、圧縮機15、凝縮
器16、絞り装置17 、18、蒸発器2oが接続され
冷凍サイクルの主回路を構成している。また、21は冷
媒精留塔、22は塔頂貯留器、23は冷却源、24は塔
底貯留器である。
Embodiment FIG. 1 is a configuration diagram of a refrigerant circuit according to an embodiment of the heat pump device of the present invention. In the figure, a compressor 15, a condenser 16, throttle devices 17 and 18, and an evaporator 2o are connected to form a main circuit of a refrigeration cycle. Further, 21 is a refrigerant rectification column, 22 is a top reservoir, 23 is a cooling source, and 24 is a bottom reservoir.

加熱源26は配管26と接続され、圧縮機15の底部お
よび側部につながって一つの循環経路を形成している。
The heat source 26 is connected to the piping 26 and connected to the bottom and sides of the compressor 15 to form one circulation path.

ここで27.28.29は電磁弁である。図中入部は第
3図に示すように、圧縮機16の底部にオイルポンプ3
0を具備し、配管26と接続されている。
Here, 27, 28, and 29 are solenoid valves. The inside of the figure shows an oil pump 3 at the bottom of the compressor 16, as shown in
0 and is connected to piping 26.

以上のように構成された熱ポンプ装置において、その作
用を説明する。圧縮機16から吐出した高温高圧の冷媒
ガスは、破線矢印の方向へ流れ、凝縮器16で凝縮液化
し、絞り装置17に流入する。
The operation of the heat pump device configured as described above will be explained. The high-temperature, high-pressure refrigerant gas discharged from the compressor 16 flows in the direction of the broken line arrow, is condensed and liquefied in the condenser 16, and flows into the expansion device 17.

通常運転時、電磁弁27.28.29は閉になっており
、この時冷媒は全て絞り装置18に入り、蒸発器20で
蒸発して再び圧縮機16に吸入される0 主回路の冷媒組成を変える時は、電磁弁27を開とし主
回路の冷媒の一部を冷媒精留塔21内に流入させ、精留
作用を行なわせて低沸点成分と高沸点成分に分離し、そ
れぞれ塔頂貯留器22および塔底貯留器24に貯留する
。さらに、電磁弁28.29の開閉操作により、絞り装
置19を介して主回路へ流出させる。こうすることによ
り、主回路を流れる冷媒組成は、低沸点成分に富んだ組
成から高沸点成分に富んだ組成まで自由に可変すること
ができる。
During normal operation, the solenoid valves 27, 28, and 29 are closed, and at this time, all the refrigerant enters the throttling device 18, evaporates in the evaporator 20, and is sucked into the compressor 16 again.Refrigerant composition of the main circuit When changing the temperature, the solenoid valve 27 is opened to allow a part of the refrigerant in the main circuit to flow into the refrigerant rectification column 21, where it undergoes rectification and is separated into low-boiling point components and high-boiling point components. It is stored in the reservoir 22 and the bottom reservoir 24. Further, by opening and closing the solenoid valves 28 and 29, the water flows out through the throttle device 19 into the main circuit. By doing so, the composition of the refrigerant flowing through the main circuit can be freely varied from a composition rich in low boiling point components to a composition rich in high boiling point components.

一方、圧縮機15内の高温の潤滑油は、圧縮機16底部
に接続された配管26を実線矢印方向に流れ、塔底貯留
器24の加熱源25で塔底貯留器24内に貯留している
冷媒を加熱し冷媒ガスを発生させる。また、加熱源26
を通過した潤滑油は、逆に冷媒によって冷却され、矢印
の方向に向かって圧縮機15の底部に帰還する。この潤
滑油を循環させるポンプ作用をなすものは、圧縮機16
軸内のオイルポンプ3oであシ、通常は、圧縮機軸内の
中空部にねじれた羽根等を有する構成になっておシ、こ
れによって、冷却された潤滑油がオイルポンプ30内を
上昇し、圧縮機15の摺動部あるいは、クリアランス等
の潤滑作用、シール作用をなすものである。
On the other hand, the high-temperature lubricating oil in the compressor 15 flows in the direction of the solid line arrow through a pipe 26 connected to the bottom of the compressor 16, and is stored in the bottom reservoir 24 by the heating source 25 of the bottom reservoir 24. This heats the refrigerant in the tank and generates refrigerant gas. In addition, the heating source 26
The lubricating oil that has passed is cooled by the refrigerant and returns to the bottom of the compressor 15 in the direction of the arrow. The compressor 16 acts as a pump to circulate this lubricating oil.
The oil pump 3o in the shaft is usually configured to have twisted vanes or the like in a hollow part within the compressor shaft, whereby the cooled lubricating oil rises inside the oil pump 30. This serves to lubricate and seal the sliding parts or clearances of the compressor 15.

一般に圧縮機の性能を左右する因子としては、冷媒ガス
の受熱による損失、圧力損失、摩擦損失。
In general, the factors that affect compressor performance are loss due to heat reception of refrigerant gas, pressure loss, and friction loss.

再膨張損失等が挙げられるが、この中でも冷媒ガスの受
熱による損失が非常に大きく、これは、圧縮機の吸入ガ
スがシリンダ内に入り、吐出ガス圧力まで圧縮される過
程で、シリンダ壁からの伝熱、あるいはクリアランスか
らの潤滑油のもれによって断熱変化ではなく受熱されな
がらのポリトロープ変化になるためであり、この損失を
低減させるにはシリンダや潤滑油の冷却が最も効果があ
ることが知られている。本実施例は、冷媒精留塔21に
下げることができ、圧縮機の特性も大幅に向上すること
になる。
Re-expansion losses can be cited, but among these losses, the loss due to heat reception of the refrigerant gas is extremely large. This is because heat transfer or leakage of lubricating oil from the clearance causes a polytropic change while receiving heat rather than an adiabatic change, and it is known that cooling the cylinder and lubricant is the most effective way to reduce this loss. It is being In this embodiment, the refrigerant can be lowered to the refrigerant rectification column 21, and the characteristics of the compressor are also significantly improved.

したがって、先に述べた主回路の冷媒組成の可変手段と
潤滑油の冷却作用とが合いまって、非常に成績係数が高
く、負荷の変化に常に対応した能力の出る熱ポンプ装置
が得られることになる。
Therefore, by combining the above-mentioned means for varying the refrigerant composition of the main circuit and the cooling effect of the lubricating oil, it is possible to obtain a heat pump device with an extremely high coefficient of performance and the ability to constantly respond to changes in load. become.

また、潤滑油の循環に従来から使用されている圧縮機内
オイルポンプを用いることによシ、簡単な構成で、かつ
、確実に潤滑油を循環できる。
Further, by using a conventionally used in-compressor oil pump for circulating lubricating oil, the lubricating oil can be reliably circulated with a simple configuration.

なお、本実施例の圧縮機内オイルポンプについては詳し
く説明していないが、圧縮機軸を利用したその他のポン
プ、別のピストン・シリンダ等を用いたオイルポンプで
もよい。
Although the in-compressor oil pump of this embodiment has not been described in detail, other pumps that utilize the compressor shaft, oil pumps that use other pistons/cylinders, etc. may be used.

また、本実施例は、冷媒精留塔が凝縮器内圧力と蒸発器
内圧力との中間圧力で動作する一例を示した゛力;、凝
縮器内圧力等で動作してもよい。また、配管26の途中
に電磁弁等を設け、起動時等にはオイルの循環を停止す
る構成とすれば立ち上シ時の特性を良くすることができ
る。
Furthermore, this embodiment shows an example in which the refrigerant rectification column operates at an intermediate pressure between the condenser internal pressure and the evaporator internal pressure; however, it may also operate at the condenser internal pressure. Further, if a solenoid valve or the like is provided in the middle of the piping 26 to stop oil circulation during startup, characteristics at startup can be improved.

発明の効果 以上述べたように、本発明の熱ポンプ装置は、主回路を
流れる冷媒の一部を冷媒精留塔に導入し、精留作用を行
なわせて主回路内の冷媒組成を低沸点成分に富んだ組成
から高沸点成分に富んだ組成まで所望の組成にすること
ができ、常に負荷に応じた能力を発生できると共に、加
熱源として圧縮機内潤滑油を用いたため、圧縮機の特性
を大幅に向上することができる。
Effects of the Invention As described above, the heat pump device of the present invention introduces a part of the refrigerant flowing through the main circuit into the refrigerant rectification column, performs a rectification action, and changes the refrigerant composition in the main circuit to a low boiling point. It is possible to create the desired composition from a composition rich in components to a composition rich in high boiling point components, and the capacity can always be generated according to the load.In addition, since the lubricating oil inside the compressor is used as a heating source, the characteristics of the compressor can be improved. can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における熱ポンプ装置の冷媒
回路を示す構成図、第2図は従来の冷媒精留塔を用いた
熱ポンプ装置の冷媒回路を示す構成図、第3図は第1図
のA部の詳細を示す拡大断面図である。 15・・・・・・圧縮機、21・・・・・・冷媒精留塔
、25・・・・・・加熱源、3o・・・・・・圧縮機内
オイルポンプ、24・・・・・・塔底貯留器。
FIG. 1 is a block diagram showing a refrigerant circuit of a heat pump device according to an embodiment of the present invention, FIG. 2 is a block diagram showing a refrigerant circuit of a heat pump device using a conventional refrigerant rectification column, and FIG. FIG. 2 is an enlarged sectional view showing details of section A in FIG. 1; 15... Compressor, 21... Refrigerant rectification column, 25... Heat source, 3o... Oil pump in compressor, 24...・Bottom reservoir.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、凝縮器、絞り装置、蒸発器を接続して冷凍サイ
クルの主回路を構成するとともに冷媒として非共沸混合
冷媒を用い、前記主回路から冷媒を流入する配管を有す
る冷媒精留塔と、この冷媒精留塔の上部に配設され前記
主回路に冷媒を流出する配管を有する塔頂貯留器と、前
記冷媒精留塔の下部に配設され前記主回路に冷媒を流出
する配管を有する塔底貯留器と、この塔底貯留器内を加
熱する加熱源とを備え、前記加熱源として前記圧縮機内
の潤滑油を用いる構成とした熱ポンプ装置。
A refrigerant rectification column that connects a compressor, a condenser, a throttle device, and an evaporator to form a main circuit of a refrigeration cycle, uses a non-azeotropic mixed refrigerant as a refrigerant, and has piping for inflowing the refrigerant from the main circuit. , a top reservoir having a pipe disposed at the upper part of the refrigerant rectification column and discharging the refrigerant into the main circuit; and a pipe disposed at the bottom of the refrigerant rectification column discharging the refrigerant into the main circuit. A heat pump device comprising: a tower bottom reservoir; and a heat source that heats the inside of the tower bottom reservoir; the heat pump device is configured to use lubricating oil in the compressor as the heat source.
JP7763985A 1985-03-25 1985-04-12 NETSUHONPUSOCHI Expired - Lifetime JPH0247669B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP7763985A JPH0247669B2 (en) 1985-04-12 1985-04-12 NETSUHONPUSOCHI
KR1019860002009A KR890004867B1 (en) 1985-03-25 1986-03-19 Haet pump with a reservoir storing higher pressure refrigerante of non-azeotropic mixture
EP86104022A EP0196051B1 (en) 1985-03-25 1986-03-24 Heat pump with a reservoir storing higher pressure refrigerant of non-azeotropic mixture
DE8686104022T DE3675047D1 (en) 1985-03-25 1986-03-24 HEAT PUMP WITH A CONTAINER FOR THE STORAGE OF THE REFRIGERANT WITH A HIGHER PARTIAL PRESSURE OF A NON-AZEOTROPIC MIXTURE.
US06/844,065 US4722195A (en) 1985-03-25 1986-03-25 Heat pump with a reservoir storing higher pressure refrigerant of non-azeotropic mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7763985A JPH0247669B2 (en) 1985-04-12 1985-04-12 NETSUHONPUSOCHI

Publications (2)

Publication Number Publication Date
JPS61237971A true JPS61237971A (en) 1986-10-23
JPH0247669B2 JPH0247669B2 (en) 1990-10-22

Family

ID=13639463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7763985A Expired - Lifetime JPH0247669B2 (en) 1985-03-25 1985-04-12 NETSUHONPUSOCHI

Country Status (1)

Country Link
JP (1) JPH0247669B2 (en)

Also Published As

Publication number Publication date
JPH0247669B2 (en) 1990-10-22

Similar Documents

Publication Publication Date Title
US3795117A (en) Injection cooling of screw compressors
US4006602A (en) Refrigeration apparatus and method
US4332144A (en) Bottoming cycle refrigerant scavenging for positive displacement compressor, refrigeration and heat pump systems
JPS6146743B2 (en)
USRE30499E (en) Injection cooling of screw compressors
KR930004384B1 (en) Heat-pump apparatus
CN205066233U (en) Heat pump heating and heat pump water heater
JPS61237971A (en) Heat pump device
US2912833A (en) Heating and cooling apparatus
JPH0726775B2 (en) Dual refrigerator
Senshu et al. Annual energy-saving effect of capacity-modulated air conditioner equipped with inverter-driven scroll compressor
JPH0730962B2 (en) Two-stage compression refrigeration cycle
KR20110046750A (en) heat save heat pomp system
JPS61276664A (en) Heat pump device
JPS5922313Y2 (en) Refrigeration cycle equipped with injection cooling device
JPH0224960Y2 (en)
JPH0571857B2 (en)
JPH0474628B2 (en)
KR820001851B1 (en) Refrigerating cycle
Grassi et al. Types of Compression Heat Pumps and Their Main Components
JPH0311661Y2 (en)
JPH06103128B2 (en) Heat pump device
JPH06337177A (en) Refrigerating device
JPS6140899B2 (en)
Edison et al. Effect of heat exchanger influencing coefficient of performance of a hermetic compressor