JPH0247669B2 - NETSUHONPUSOCHI - Google Patents

NETSUHONPUSOCHI

Info

Publication number
JPH0247669B2
JPH0247669B2 JP7763985A JP7763985A JPH0247669B2 JP H0247669 B2 JPH0247669 B2 JP H0247669B2 JP 7763985 A JP7763985 A JP 7763985A JP 7763985 A JP7763985 A JP 7763985A JP H0247669 B2 JPH0247669 B2 JP H0247669B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
main circuit
lubricating oil
rectification column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7763985A
Other languages
Japanese (ja)
Other versions
JPS61237971A (en
Inventor
Kazuo Nakatani
Juji Mukai
Shigeo Suzuki
Juji Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7763985A priority Critical patent/JPH0247669B2/en
Priority to KR1019860002009A priority patent/KR890004867B1/en
Priority to EP86104022A priority patent/EP0196051B1/en
Priority to DE8686104022T priority patent/DE3675047D1/en
Priority to US06/844,065 priority patent/US4722195A/en
Publication of JPS61237971A publication Critical patent/JPS61237971A/en
Publication of JPH0247669B2 publication Critical patent/JPH0247669B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Central Heating Systems (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非共沸混合冷媒を用い、冷媒精留塔
により冷凍サイクルの主回路を流れる冷媒組成を
変化させ、常に負荷に対応した能力を発生し得る
熱ポンプ装置に関する。
Detailed Description of the Invention: Industrial Application Field The present invention uses a non-azeotropic mixed refrigerant to change the composition of the refrigerant flowing through the main circuit of the refrigeration cycle using a refrigerant rectification column, thereby constantly generating capacity corresponding to the load. The present invention relates to a possible heat pump device.

従来の技術 従来、非共沸混合冷媒を用い、冷媒精留塔によ
り冷凍サイクルの主回路を流れる冷媒組成を変化
させる構成としては、第2図に示すようなものが
あつた。第2図において、1は圧縮機、2は凝縮
器、3,4,5は絞り装置、6は蒸発器、7は冷
媒精留塔で塔底貯留器8、加熱源9、塔頂貯留器
10、冷却源11を持つように構成されている。
ここで12,13,14は電磁弁である。
BACKGROUND ART Conventionally, there has been a configuration shown in FIG. 2 in which a non-azeotropic mixed refrigerant is used and the refrigerant composition flowing through the main circuit of a refrigeration cycle is changed by a refrigerant rectification column. In Fig. 2, 1 is a compressor, 2 is a condenser, 3, 4, and 5 are throttling devices, 6 is an evaporator, 7 is a refrigerant rectification column, a bottom reservoir 8, a heating source 9, and a top reservoir. 10, and is configured to have a cooling source 11.
Here, 12, 13, and 14 are solenoid valves.

以上のように構成された熱ポンプ装置において
その作用は次のようであつた。
The action of the heat pump device constructed as described above was as follows.

圧縮機1で吐出した冷媒ガスは、実線矢印の方
向へ流れ、凝縮器2で凝縮し、絞り装置3に入
る。通常運転時、電磁弁12,13,14は閉に
なつており、冷媒はそのまま絞り装置4、蒸発器
6を通つて再び圧縮機1に吸入される。主回路の
冷媒組成を変える時には、電磁弁12を開となし
主回路を流れる冷媒の一部を冷媒精留塔7内に流
入させ、また、加熱源9、冷却源11の作動によ
り、流入した冷媒を低沸点成分と高沸点成分に精
留作用によつて分離して、それぞれ、塔頂貯留器
10、塔底貯留器8に貯留させ、電磁弁13,1
4の操作により、所望の組成の冷媒を絞り装置5
を通して主回路に流出させる。こうすることによ
り、主回路を流れる冷媒の組成は、低沸点成分に
富んだ組成から高沸点成分に富んだ組成まで自由
に可変することができる。一般に低沸点成分に富
んだ冷媒を主回路へ流して運転すると能力が増加
し、逆に高沸点成分に富んだ冷媒を流すと能力の
減少を生む。したがつて、電磁弁の開閉という簡
単な操作で、常に負荷に応じた能力を発生させる
ことができる。
The refrigerant gas discharged by the compressor 1 flows in the direction of the solid arrow, is condensed in the condenser 2, and enters the expansion device 3. During normal operation, the solenoid valves 12, 13, and 14 are closed, and the refrigerant is sucked into the compressor 1 again through the throttle device 4 and the evaporator 6 as it is. When changing the refrigerant composition of the main circuit, the electromagnetic valve 12 is opened to allow a part of the refrigerant flowing through the main circuit to flow into the refrigerant rectification tower 7, and the heating source 9 and the cooling source 11 are activated. The refrigerant is separated into low-boiling point components and high-boiling point components by rectification and stored in the top reservoir 10 and the bottom reservoir 8, respectively, and the solenoid valves 13, 1
By the operation in step 4, the refrigerant having the desired composition is drawn into the squeezing device 5.
It flows out into the main circuit through. By doing so, the composition of the refrigerant flowing through the main circuit can be freely varied from a composition rich in low boiling point components to a composition rich in high boiling point components. In general, running a refrigerant rich in low-boiling components in the main circuit increases the capacity, and conversely, flowing a refrigerant rich in high-boiling components causes a decrease in capacity. Therefore, by simply opening and closing the solenoid valve, the capacity can always be generated in accordance with the load.

発明が解決しようとする問題点 このような従来の熱ポンプ装置の冷媒精留塔の
加熱源には、電気ヒータ、圧縮機吐出ガス塔が用
いられていたが、電気ヒータを用いた場合には、
消費電力の増加(成績係数の低下)をもたらし、
また、ヒータの空だきによる焼損等の問題があつ
た。また、圧縮機吐出ガスを用いた場合には、圧
縮機を出たガスが冷媒精留塔の加熱源を通つてか
ら凝縮器へ入るため圧力損失が大きくなつて成績
係数が低下したり、あるいは、加熱源によつて熱
量を奪われるため凝縮器に入る冷媒ガス温度が下
がり、本来の目的である空気、水等の温度を十分
に上げられない等の問題点があつた。
Problems to be Solved by the Invention Electric heaters and compressor discharge gas towers have been used as heating sources for refrigerant rectification columns in such conventional heat pump devices. ,
This results in increased power consumption (decreased coefficient of performance),
Additionally, there were problems such as burnout due to dry heating of the heater. In addition, when compressor discharge gas is used, the gas leaving the compressor passes through the heating source of the refrigerant rectification column before entering the condenser, which increases pressure loss and lowers the coefficient of performance. However, since heat is removed by the heating source, the temperature of the refrigerant gas entering the condenser drops, making it impossible to sufficiently raise the temperature of air, water, etc., which is the original purpose.

そこで、本発明は成績係数を低下させることな
く、また、負荷である空気、水等の温度を十分に
上げることができ、負荷に応じた能力を発生し得
る熱ポンプ装置を提供することを目的とする。
Therefore, an object of the present invention is to provide a heat pump device that can sufficiently raise the temperature of the load, such as air or water, without reducing the coefficient of performance, and can generate a capacity according to the load. shall be.

問題点を解決するための手段 そして、上記問題点を解決する本発明の技術的
手段は、冷媒精留塔の加熱源に、圧縮機内の潤滑
油を用いるものである。
Means for Solving the Problems The technical means of the present invention for solving the above problems is to use lubricating oil in the compressor as a heating source for the refrigerant rectification column.

作 用 上記構成によれば、冷媒精留塔の加熱源に、圧
縮機内の高温の潤滑油を使用し、再び圧縮機に帰
還する低温の潤滑油を、圧縮機内部の摺動部等の
潤滑あるいは、クリアランスのシールに使用する
ことができ、冷媒精留塔の機能は維持したまま、
圧縮機性能を向上させ、成績係数をさらに向上さ
せることができる。
Effect According to the above configuration, the high-temperature lubricating oil inside the compressor is used as a heating source for the refrigerant rectification column, and the low-temperature lubricating oil returned to the compressor is used to lubricate the sliding parts inside the compressor. Alternatively, it can be used to seal clearances while maintaining the functionality of the refrigerant rectifier.
Compressor performance can be improved and the coefficient of performance can be further improved.

実施例 第1図は、本発明の熱ポンプ装置の一実施例に
よる冷媒回路の構成図である。同図において、圧
縮機15、凝縮器16、絞り装置17,18、蒸
発器20が接続され冷凍サイクルの主回路を構成
している。また、21は冷媒精留塔、22は塔頂
貯留器、23は冷却源、24は塔底貯留器であ
る。加熱源25は配管26と接続され、圧縮機1
5の底部および側部につながつて一つの循環経路
を形成している。ここで27,28,29は電磁
弁である。図中A部は第3図に示すように、圧縮
機15の底部にオイルポンプ30を具備し、配管
26と接続されている。
Embodiment FIG. 1 is a configuration diagram of a refrigerant circuit according to an embodiment of the heat pump device of the present invention. In the figure, a compressor 15, a condenser 16, throttle devices 17 and 18, and an evaporator 20 are connected to form a main circuit of a refrigeration cycle. Further, 21 is a refrigerant rectification column, 22 is a top reservoir, 23 is a cooling source, and 24 is a bottom reservoir. The heating source 25 is connected to the piping 26 and the compressor 1
5 to form one circulation path. Here, 27, 28, 29 are electromagnetic valves. As shown in FIG. 3, part A in the figure includes an oil pump 30 at the bottom of the compressor 15 and is connected to a pipe 26.

以上のように構成された熱ポンプ装置におい
て、その作用を説明する。圧縮機15から吐出し
た高温高圧の冷媒ガスは、破線矢印の方向へ流
れ、凝縮器16で凝縮液化し、絞り装置17に流
入する。
The operation of the heat pump device configured as described above will be explained. The high-temperature, high-pressure refrigerant gas discharged from the compressor 15 flows in the direction of the broken line arrow, is condensed and liquefied in the condenser 16 , and flows into the expansion device 17 .

通常運転時、電磁弁27,28,29は閉にな
つており、この時冷媒は全て絞り装置18に入
り、蒸発器20で蒸発して再び圧縮機15に吸入
される。
During normal operation, the solenoid valves 27, 28, and 29 are closed, and at this time, all the refrigerant enters the throttling device 18, evaporates in the evaporator 20, and is sucked into the compressor 15 again.

主回路の冷媒組成を変える時は、電磁弁27を
開とし主回路の冷媒の一部を冷媒精留塔21内に
流入させ加熱源25によつて塔底貯留器24内の
液冷媒を加熱しガスを発生させる。一方冷媒精留
塔21内を上昇した冷媒ガスは冷却源23によつ
て冷却されて液化し、塔頂貯留器22に貯留され
ながら再び冷媒精留塔21内を降下し上昇するガ
スと気液接触を起こすことによつて、精留作用を
行なわせて低点成分と高沸点成分に分離し、それ
ぞれ塔頂貯留器22および塔底貯留器24に貯留
する。さらに、電磁弁28,29の開閉操作によ
り、絞り装置19を介して主回路へ流出させる。
こうすることにより、主回路を流れる冷媒組成
は、低沸点成分に富んだ組成から高粉点成分に富
んだ組成まで自由に可変することができる。
When changing the refrigerant composition of the main circuit, the solenoid valve 27 is opened, a part of the refrigerant of the main circuit flows into the refrigerant rectification column 21, and the liquid refrigerant in the tower bottom reservoir 24 is heated by the heating source 25. generates gas. On the other hand, the refrigerant gas that has risen in the refrigerant rectification tower 21 is cooled by the cooling source 23 and liquefied, and while being stored in the tower top reservoir 22, it descends again in the refrigerant rectification tower 21 and rises with gas and liquid. By bringing about the contact, a rectification effect is performed to separate the low-point components and the high-boiling components, which are stored in the top reservoir 22 and the bottom reservoir 24, respectively. Further, by opening and closing the solenoid valves 28 and 29, the water flows out to the main circuit via the throttle device 19.
By doing so, the composition of the refrigerant flowing through the main circuit can be freely varied from a composition rich in low boiling point components to a composition rich in high powder point components.

一方、圧縮機15内の高温の潤滑油は、圧縮機
15底部に接続された配管26を実線矢印方向に
流れ、塔底貯留器24の加熱源25で塔底貯留器
24内に貯留している冷媒を加熱し冷媒ガスを発
生させる。また、加熱源25を通過した潤滑油
は、逆に冷媒によつて冷却され、矢印の方向に向
かつて圧縮機15の底部に帰還する。この潤滑油
を循環させるポンプ作用をなすものは、圧縮機1
5軸内のオイルポンプ30であり、通常は、圧縮
機軸内の中空部にねじれた羽根等を有する構成に
なつており、これによつて、冷却された潤滑油が
オイルポンプ30内を上昇し、圧縮機15の摺動
部あるいは、クリアランス等の潤滑作用、シール
作用をなすものである。
On the other hand, the high-temperature lubricating oil in the compressor 15 flows in the direction of the solid line arrow through the pipe 26 connected to the bottom of the compressor 15, and is stored in the bottom reservoir 24 by the heating source 25 of the bottom reservoir 24. This heats the refrigerant in the tank and generates refrigerant gas. Furthermore, the lubricating oil that has passed through the heating source 25 is cooled by the refrigerant and returns to the bottom of the compressor 15 in the direction of the arrow. The compressor 1 performs the pump action of circulating this lubricating oil.
This is a 5-shaft oil pump 30, and usually has a structure with twisted blades etc. in the hollow part of the compressor shaft, which allows cooled lubricating oil to rise inside the oil pump 30. , the sliding parts of the compressor 15 or the clearance, etc., have a lubricating effect and a sealing effect.

一般に圧縮機の性能を左右する因子としては、
冷媒ガスの受熱による損失、圧力損失、摩擦損
失、再膨張損失等が挙げられるが、この中でも冷
媒ガスの受熱による損失が非常に大きく、これ
は、圧縮機の吸入ガスがシリンダ内に入り、吐出
ガス圧力まで圧縮される過程で、シリンダ壁から
の伝熱、あるいはクリアランスからの潤滑油のも
れによつて断熱変化ではなく受熱されながらのポ
リトロープ変化になるためであり、この損失を低
減させるにはシリンダや潤滑油の冷却が最も効果
があることが知られている。本実施例は、冷媒精
留塔21の塔底貯留器24を潤滑油で加熱するこ
とにより精留作用の加熱源に利用し、また、逆に
潤滑油が冷却されることにより、圧縮機の受熱損
失を大幅に下げることができ、圧縮機の特性も大
幅に向上することになる。
In general, the factors that affect compressor performance are:
Loss due to heat reception of the refrigerant gas, pressure loss, friction loss, re-expansion loss, etc. are listed, but among these, loss due to heat reception of the refrigerant gas is extremely large.This is because the suction gas of the compressor enters the cylinder and is discharged This is because during the process of being compressed to gas pressure, heat is transferred from the cylinder wall or lubricating oil leaks from the clearance, resulting in a polytropic change while receiving heat rather than an adiabatic change.In order to reduce this loss, It is known that cooling the cylinder and lubricating oil is most effective. In this embodiment, the bottom reservoir 24 of the refrigerant rectification column 21 is heated with lubricating oil to be used as a heat source for rectification, and conversely, by cooling the lubricating oil, the compressor Heat loss can be significantly reduced, and the characteristics of the compressor will also be significantly improved.

したがつて、先に述べた主回路の冷媒組成の可
変手段と潤滑油の冷却作用とが合いまつて、非常
に成績係数が高く、負荷の変化に常に対応した能
力の出る熱ポンプ装置が得られることになる。
Therefore, by combining the above-mentioned means of varying the refrigerant composition in the main circuit with the cooling effect of the lubricating oil, a heat pump device with an extremely high coefficient of performance and the ability to constantly respond to changes in load can be obtained. It will be done.

また、潤滑油の循環に従来から使用されている
圧縮機内オイルポンプを用いることにより、簡単
な構成で、かつ、確実に潤滑油を循環できる。
Further, by using a conventionally used in-compressor oil pump for circulating lubricating oil, the lubricating oil can be reliably circulated with a simple configuration.

なお、本実施例の圧縮機内オイルポンプについ
ては詳しく説明していないが、圧縮機軸を利用し
たその他のポンプ、別のピストン・シリンダ等を
用いたオイルポンプでもよい。
Although the in-compressor oil pump of this embodiment has not been described in detail, other pumps that utilize the compressor shaft, oil pumps that use other pistons/cylinders, etc. may be used.

また、本実施例は、冷媒精留塔が凝縮器内圧力
と蒸発器内圧力との中間圧力で動作する一例を示
したが、凝縮器内圧力等で動作してもよい。ま
た、配管26の途中に電磁弁当を設け、起動時等
にはオイルの循環を停止する構成とすれば立ち上
り時の特性を良くすることができる。
Further, although this embodiment has shown an example in which the refrigerant rectification column operates at an intermediate pressure between the condenser internal pressure and the evaporator internal pressure, it may operate at the condenser internal pressure or the like. Further, if an electromagnetic lunch box is provided in the middle of the piping 26 and the oil circulation is stopped at startup, etc., characteristics at startup can be improved.

発明の効果 以上述べたように、本発明の熱ポンプ装置は、
主回路を流れる冷媒の一部を冷媒精留塔に導入
し、精留作用を行なわせて主回路内の冷媒組成を
低沸点成分に富んだ組成から高沸点成分に富んだ
組成まで所望の組成にすることができ、常に負荷
に応じた能力を発生できると共に、加熱源として
圧縮機内潤滑油を用いたため、圧縮機の特性を大
幅に向上することができる。
Effects of the Invention As described above, the heat pump device of the present invention has the following features:
A part of the refrigerant flowing through the main circuit is introduced into the refrigerant rectification column, where it undergoes rectification to change the refrigerant composition in the main circuit from a composition rich in low boiling point components to a composition rich in high boiling point components. In addition to being able to always generate capacity according to the load, since the lubricating oil inside the compressor is used as a heating source, the characteristics of the compressor can be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における熱ポンプ装
置の冷媒回路を示す構成図、第2図は従来の冷媒
精留塔を用いた熱ポンプ装置の冷媒回路を示す構
成図、第3図は第1図のA部の詳細を示す拡大断
面図である。 15……圧縮機、21……冷媒精留塔、25…
…加熱源、30……圧縮機内オイルポンプ、24
……塔底貯留器。
FIG. 1 is a block diagram showing a refrigerant circuit of a heat pump device according to an embodiment of the present invention, FIG. 2 is a block diagram showing a refrigerant circuit of a heat pump device using a conventional refrigerant rectification column, and FIG. FIG. 2 is an enlarged sectional view showing details of section A in FIG. 1; 15... Compressor, 21... Refrigerant rectification column, 25...
...Heating source, 30... Oil pump in the compressor, 24
... Tower bottom reservoir.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機、凝縮器、絞り装置、蒸発器を接続し
て冷凍サイクルの主回路を構成するとともに冷媒
として非共沸混合冷媒を用い、前記主回路と冷媒
精留塔とを開閉弁を介して接続し、冷却器を有し
前記冷媒精留塔の上部に位置して接続された塔頂
貯留器を、開閉弁を介して前記主回路と接続し、
前記冷媒精留塔の下部に位置して接続された塔底
貯留器を開閉弁を介して前記主回路と接続し、前
記塔底貯留器内を加熱する加熱器を備え、前記加
熱器の加熱源として前記圧縮機内の潤滑油を用い
る構成とした熱ポンプ装置。
1 A compressor, a condenser, a throttle device, and an evaporator are connected to form the main circuit of the refrigeration cycle, and a non-azeotropic mixed refrigerant is used as the refrigerant, and the main circuit and the refrigerant rectification tower are connected via an on-off valve. connecting an overhead reservoir having a cooler and connected to the top of the refrigerant rectification column to the main circuit via an on-off valve;
A bottom reservoir located at and connected to the bottom of the refrigerant rectification column is connected to the main circuit via an on-off valve, and includes a heater that heats the inside of the bottom reservoir; A heat pump device configured to use lubricating oil in the compressor as a source.
JP7763985A 1985-03-25 1985-04-12 NETSUHONPUSOCHI Expired - Lifetime JPH0247669B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP7763985A JPH0247669B2 (en) 1985-04-12 1985-04-12 NETSUHONPUSOCHI
KR1019860002009A KR890004867B1 (en) 1985-03-25 1986-03-19 Haet pump with a reservoir storing higher pressure refrigerante of non-azeotropic mixture
EP86104022A EP0196051B1 (en) 1985-03-25 1986-03-24 Heat pump with a reservoir storing higher pressure refrigerant of non-azeotropic mixture
DE8686104022T DE3675047D1 (en) 1985-03-25 1986-03-24 HEAT PUMP WITH A CONTAINER FOR THE STORAGE OF THE REFRIGERANT WITH A HIGHER PARTIAL PRESSURE OF A NON-AZEOTROPIC MIXTURE.
US06/844,065 US4722195A (en) 1985-03-25 1986-03-25 Heat pump with a reservoir storing higher pressure refrigerant of non-azeotropic mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7763985A JPH0247669B2 (en) 1985-04-12 1985-04-12 NETSUHONPUSOCHI

Publications (2)

Publication Number Publication Date
JPS61237971A JPS61237971A (en) 1986-10-23
JPH0247669B2 true JPH0247669B2 (en) 1990-10-22

Family

ID=13639463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7763985A Expired - Lifetime JPH0247669B2 (en) 1985-03-25 1985-04-12 NETSUHONPUSOCHI

Country Status (1)

Country Link
JP (1) JPH0247669B2 (en)

Also Published As

Publication number Publication date
JPS61237971A (en) 1986-10-23

Similar Documents

Publication Publication Date Title
US3795117A (en) Injection cooling of screw compressors
US4006602A (en) Refrigeration apparatus and method
Lazzarin et al. Ammonia-water absorption machines for refrigeration: theoretical and real performances
US4049410A (en) Gas compressors
USRE30499E (en) Injection cooling of screw compressors
CN106196372A (en) A kind of power heat pipe all-in-one air conditioning system
CN208793221U (en) Scroll compressor and air conditioning system comprising same
US4261180A (en) Refrigerator
KR930004384B1 (en) Heat-pump apparatus
CN209341639U (en) Coolant circulating system and refrigeration equipment
CN107477912A (en) Heated type cooling cycle system
CN208269446U (en) A kind of Auto-cascade cycle dual temperature refrigeration system of adjustable compressor delivery temperature
JPH0247669B2 (en) NETSUHONPUSOCHI
RU2076285C1 (en) Reverse cycle at two boiling points and refrigerating machine
JPS6113545B2 (en)
JPH05340368A (en) Cooler for rotary compressor
JPH0224960Y2 (en)
JPS61276664A (en) Heat pump device
RU2485419C2 (en) Heat and cold supply method
JPH06103128B2 (en) Heat pump device
Popa et al. Study concerning the influence of refrigerant injection on the efficiency of a heat pump
JPH02146467A (en) Aggregate of driving motor and compressur for cooling or heating pump circulating process
JPS5922313Y2 (en) Refrigeration cycle equipped with injection cooling device
CN116659108A (en) Refrigerator refrigerating system and refrigerator using same
JPH0311661Y2 (en)