JPS61237863A - Electronic control type internal-combustion engine - Google Patents

Electronic control type internal-combustion engine

Info

Publication number
JPS61237863A
JPS61237863A JP7884785A JP7884785A JPS61237863A JP S61237863 A JPS61237863 A JP S61237863A JP 7884785 A JP7884785 A JP 7884785A JP 7884785 A JP7884785 A JP 7884785A JP S61237863 A JPS61237863 A JP S61237863A
Authority
JP
Japan
Prior art keywords
fuel injection
pressure
combustion
fuel
set value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7884785A
Other languages
Japanese (ja)
Inventor
Chukei Asada
浅田 忠敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7884785A priority Critical patent/JPS61237863A/en
Publication of JPS61237863A publication Critical patent/JPS61237863A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To enable a combustion to be always set to an optimum state, by providing a means, correcting a maximum pressure in a combustion engine and a fuel injection maximum pressure based on their respective set values, and a means, resetting each set value based on an effective heat generating rate, a fuel injection rate, etc. CONSTITUTION:In a CPU 19 which controls various valves including a fuel injection valve based on various operating parameter of an engine, a maximum pressure in a combustion chamber is corrected compared with a set value through control of the injection starting timing of a fuel injection valve on a basis of a pressure in a combustion chamber and a given horse power. Further, based on a fuel injection pressure and a given horse power, a fuel injection maximum pressure is corrected compared with a set value. Each set value is reset based on an effective heat generating rate, a fuel consumption rate, and the coefficient of effective combustion, determined by processing devices 101-103. Flow rate regulating valves 105 and 106 for cooling water and cooling oil, respectively, are controlled based on at least either the coefficient of effective combustion or a fuel consumption rate.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電子制御式内燃機関に関する。[Detailed description of the invention] Industrial applications The present invention relates to an electronically controlled internal combustion engine.

従来の技術 電子制御式内燃機関とは、例えばディーゼル機関の最適
運転制御を電子計算機を用いて実現しようとするもので
、具体的にはディーゼル機関のクランク角度1回転速度
、トルク、機関各部の圧力や温度、排気ガス組成などを
検出してこれらの運転データを所定のプログラムに従っ
て電子計算機で処理し、最適の運転制御の条件を求め、
この求められた条件を制御指令情報として前記ディーゼ
ル機関の起動弁、掃気弁、排気弁、燃料噴射弁などをク
ランク角度に応じて開閉させるものである。
Conventional technology Electronically controlled internal combustion engines, for example, attempt to achieve optimal operation control of a diesel engine using an electronic computer, and specifically control the diesel engine's crank angle per revolution speed, torque, and pressure in each part of the engine. This data is then processed by a computer according to a predetermined program to determine optimal operating control conditions.
The obtained conditions are used as control command information to open and close the starting valve, scavenging valve, exhaust valve, fuel injection valve, etc. of the diesel engine in accordance with the crank angle.

第4図は電子制御式内燃機関の全体構成を示している。FIG. 4 shows the overall configuration of an electronically controlled internal combustion engine.

ディーゼル機関は1通常、91番目〜第N番目の複数の
シリンダ(1)を有しており、各シリンダ(1)には、
それぞれ起動弁(2)、掃気弁(3)、排気弁(4]、
燃料噴射圧力5)が装備されている。(6)〜(11)
はこれらの各部(2)〜(5)を作動させるアクチュエ
ータである。燃料噴射弁(5月ζは、燃料タンクQOか
ら燃料ポンプ(ロ)によって燃料油が供給される。(6
)は燃料蓄圧器、aaは燃料遮断弁、a◆は逆止弁、O
Iは燃料流量計である。
A diesel engine usually has a plurality of cylinders (1) numbered from 91st to Nth, and each cylinder (1) has:
Start valve (2), scavenging valve (3), exhaust valve (4), respectively.
Equipped with fuel injection pressure 5). (6)-(11)
is an actuator that operates these parts (2) to (5). Fuel injection valve (May ζ is supplied with fuel oil from the fuel tank QO by the fuel pump (b). (6
) is the fuel pressure accumulator, aa is the fuel cutoff valve, a◆ is the check valve, O
I is a fuel flow meter.

一方、クランク軸(ト)の回転角度はエンコーダα呻に
よって検出され、入力ポートQηとデータ・バス(至)
を経て中央演算処理装置り以下、CPUと称す〕四に入
力される。なお、エンコーダQlの検出出力はディーゼ
ル機関制御回路(イ)ならびに周波数/電圧変換器(ロ
)にもクランク角度情報として送られる。
On the other hand, the rotation angle of the crankshaft (g) is detected by the encoder α, and the rotation angle is detected by the input port Qη and the data bus (to).
The data is then input to a central processing unit (hereinafter referred to as CPU). Note that the detection output of the encoder Ql is also sent to the diesel engine control circuit (a) and the frequency/voltage converter (b) as crank angle information.

周波数/電圧変換器ゆで回転速度に応じた電圧信号に変
換された信号は、アナログ/デジタル変換器(支)と前
記データ・バスQlを経てCPU (111こ入力され
る。また、ディーゼル機関の各部の圧力、温度。
The signal converted into a voltage signal corresponding to the rotational speed of the frequency/voltage converter is input to the CPU (111) via the analog/digital converter (support) and the data bus Ql. pressure, temperature.

排ガス組成などもセンサ(Sl)〜(Srs)によって
検出され、そのデータがアナログ/デジタル変換器−に
よってデジタル変換された後、CPUQlに入力される
The exhaust gas composition and the like are also detected by sensors (Sl) to (Srs), and after the data is digitally converted by an analog/digital converter, it is input to CPUQl.

CPU Qlは、設定入力・表示装置−から入力された
運転指令を読み込み、この運転指令に基づいて、アナロ
グ/デジタル変換器■などから入力されたクランク角度
1回転速度、機関各部の圧力や温度・排ガス組成などの
機関の運転状態を表わすデータを用いることにより、予
め定められたプログラムに従って機関の最適制御のため
の制御量や操作量の算出が実行される。そして、この計
算結果から前記燃料ポンプQlの制御指令を作成してデ
ジタル/アナログ変換器(財)を介して燃料ポンプ(6
)を制御する。更に、CPU(11は、計算結果から起
動弁(2)。
The CPU Ql reads the operating command input from the setting input/display device, and based on this operating command, calculates the crank angle per revolution speed, the pressure and temperature of each part of the engine, etc. input from the analog/digital converter, etc. By using data representing the operating state of the engine, such as the composition of exhaust gas, calculation of the control amount and operation amount for optimal control of the engine is executed according to a predetermined program. Then, from this calculation result, a control command for the fuel pump Ql is created and sent to the fuel pump Ql via a digital/analog converter.
). Furthermore, the CPU (11) calculates the starting valve (2) from the calculation result.

給気弁(3)、排気弁(4)、燃料噴射弁(5)の各部
の制御指令を作成して前記ディーゼル機関制御回路四に
出力する。
Control commands for each part of the air supply valve (3), exhaust valve (4), and fuel injection valve (5) are created and output to the diesel engine control circuit 4.

ディーゼル機関制御回路四は、 CPU(6)からの制
御指令を読み取って、前記エンコーダaQから得られる
クランク角度情報に応じた制御情報を、第11第2の駆
動回路(至)@に送り出す。第1の駆動回路(至)は、
アクチュエータ(9)の作動タイミングを制御する制御
弁勿を制御して、燃料噴射弁(5)を作動させる。1i
2の駆動回路(至)は、アクチュエータ(6) (7)
(8)の作動タイミングをそれぞれ制御する制御弁(至
)@(7)を制御して起動弁(2)、掃気弁(3)、排
気弁(47を作動させるとともに、燃料遮断弁Qの作動
を制御する。なお、この例では、アクチュエータ(6)
〜(9]の駆動用動力源としては、作動油ポンプOIζ
よって発生する油圧力を利用しており、作動油圧ポンプ
(ロ)の出口側には脈動防止用および作動油ポンプ6υ
の所要動力節減用の蓄圧器に)が介装されている。
The diesel engine control circuit 4 reads the control command from the CPU (6) and sends control information corresponding to the crank angle information obtained from the encoder aQ to the 11th second drive circuit (to)@. The first drive circuit (to) is
A control valve that controls the actuation timing of the actuator (9) is controlled to operate the fuel injection valve (5). 1i
The drive circuit (to) No. 2 is the actuator (6) (7)
The control valves (to) @ (7) that control the operation timing of (8) are operated to operate the start valve (2), the scavenging valve (3), and the exhaust valve (47), and also to operate the fuel cutoff valve Q. In this example, the actuator (6)
~ (9) As a driving power source, a hydraulic oil pump OIζ
Therefore, the hydraulic pressure generated is used, and a pulsation prevention and hydraulic oil pump 6υ is installed on the outlet side of the hydraulic pump (b).
) is installed in the pressure accumulator to reduce the power required.

曽は圧力調整弁、(財)は油タンク、Olは流量調整弁
である。
So is the pressure regulating valve, (Incorporated) is the oil tank, and Ol is the flow regulating valve.

第5図は前述の「あらかじめ定められたプログラム」の
うち、燃料噴射弁(5)および燃料ポンプC1ηの制御
ブロック図の従来例を示すものである。前記中央演算処
理装置四内の燃焼室内圧力処理装置111には、アナロ
グ/デジタル変換器働を介して。
FIG. 5 shows a conventional example of a control block diagram of the fuel injection valve (5) and the fuel pump C1η out of the above-mentioned "predetermined program". The combustion chamber pressure processing device 111 in the central processing unit 4 is connected to the combustion chamber pressure processing device 111 through an analog/digital converter.

燃焼室内圧力センサ(Sy)#よび掃気室内圧力センサ
(Sa)からの信号(pz)。h(ps)D が入力さ
れ、回転速度処理装置−にはエンコーダ四からの信号が
入力され、また燃料噴射圧力処理袋[1531には燃料
噴射圧力センサ(S9)からの信号(1)f )Dが入
力される。
Signals (pz) from the combustion chamber pressure sensor (Sy) # and the scavenging chamber pressure sensor (Sa). h(ps)D is input, a signal from encoder 4 is input to the rotation speed processing device, and a signal (1) f from the fuel injection pressure sensor (S9) is input to the fuel injection pressure processing bag [1531]. D is input.

燃焼室内圧力処理装置−では、燃焼室内圧力pzが第6
図(a)に示すように波形処理され、圧縮線りの圧力P
C1燃焼最高圧力Pm、膨張過程での特定クランク角度
における膨張圧力Pexp と、これらに対応したクラ
ンク角i0c、θm、θexp  が読み出される。同
時に図示平均有効圧力Piが算出される。
In the combustion chamber pressure treatment device, the combustion chamber pressure pz is the sixth
As shown in figure (a), the pressure of the compression wire is P
The maximum C1 combustion pressure Pm, the expansion pressure Pexp at a specific crank angle during the expansion process, and the corresponding crank angles i0c, θm, and θexp are read out. At the same time, the indicated mean effective pressure Pi is calculated.

これらの波形処理は同一シリンダ(1)で数10〜数1
00サイクルの波形を平均化して行なわれる。回転速度
処理装置6りでは、機関の回転速度を算出するとともに
、クランク角度を分割処理して、その信号を燃料噴射圧
力処理装置匍および燃料噴射圧力処理装置−へ送ってい
る。
These waveform processes are performed in the same cylinder (1) in several tens to several 1
This is done by averaging the waveforms of 00 cycles. The rotational speed processing device 6 calculates the rotational speed of the engine, divides the crank angle, and sends the signals to the fuel injection pressure processing device and the fuel injection pressure processing device.

燃料噴射圧力処理装置■では、第6図(b)に示すよう
に波形処理され、燃料噴射開始圧力pfo s噴射最高
圧力pfm、燃料噴射開始圧力1’foに対応するクラ
ンク角度of。、および燃料噴射路りのクランク角度θ
feが読み出される。
In the fuel injection pressure processing device (2), the waveform is processed as shown in FIG. 6(b), and the crank angle of corresponding to the fuel injection start pressure pfos, the maximum injection pressure pfm, and the fuel injection start pressure 1'fo. , and the crank angle θ of the fuel injection path
fe is read.

次に図示馬力処理装置−では、前記図示平均有効圧力P
iと機関回転数nから。
Next, in the indicated horsepower processing device, the indicated mean effective pressure P
From i and engine speed n.

の演算を行なう。ここで Vs−排気量(シリンダ行程体積〕 1lI−1:2サイクル −1/2 : 4サイクル である。燃焼室内最高圧力の比較、修正処理装置−内に
は、陸上運転あるいは海上試験時に得られた燃焼室内最
高圧力Pmが標準値として記憶されている@この値は比
較的高出力域にて熱効率が最良となる(燃料消費率が最
少となる]ように設定されており1例えば最近の舶用大
型2サイクルデイ一ゼル機関では、第7図に示すような
最高圧力(Pm)mに設定されている。最高圧力Pmは
一般1ζ高い程熱効率は良くなるが1機関の機械的強度
などから当然限界があり、燃焼室内の圧縮終り圧力Pc
の1.6〜1.7倍が限度とされている。前記燃焼室内
圧力処理装置臼から燃焼室内最高圧力の比較・修正処理
袋@−へ入力された最高圧力Pmの信号は、前記設定最
高圧力(Pm)mと比較され、圧縮終りの圧力Pc、図
示馬力Niの条件を加味して、その補正量が決定される
。当該燃焼室内最高圧力の比較・修正処理装置−からは
、第8図に示すような記憶設定最高圧力(Pm)m(A
、B、C・”)に対し補正信号が出力されるようになっ
ており、補正信号は前述のようにPm/PC≦1.6〜
1.7の限界内に入るようにりミツトが定められている
。この補正信号はディーゼル機関制御回路(1)に入力
され、前記エンコーダ■から得られるクランク角度情報
に対応して、燃料噴射開始の時期を修正する信号を前記
第1の駆動回路に)醗こ出力し、前記燃料噴射弁(6)
の制御弁(財)を修正制御するようになっている。なお
第8図に示した設定最高圧力(Pm)m(A、B、C3
は1表示装置−付きの設定入力処理装置−から再設定す
ることも可能となっている。
Perform the calculation. Here, Vs - displacement (cylinder stroke volume) 1lI - 1: 2 cycles - 1/2: 4 cycles. Comparison of maximum pressure in the combustion chamber, correction processing device - The maximum pressure Pm in the combustion chamber is stored as a standard value. This value is set so that the thermal efficiency is the best (the fuel consumption rate is the lowest) in a relatively high output range.1For example, in recent marine In a large two-stroke diesel engine, the maximum pressure (Pm) is set as shown in Figure 7.Generally speaking, the higher the maximum pressure Pm is, the better the thermal efficiency will be, but it is naturally determined by the mechanical strength of the engine, etc. There is a limit to the end-of-compression pressure Pc in the combustion chamber.
The limit is set at 1.6 to 1.7 times. The signal of the maximum pressure Pm inputted from the combustion chamber pressure processing device mortar to the combustion chamber maximum pressure comparison/correction processing bag @- is compared with the set maximum pressure (Pm)m, and the pressure Pc at the end of compression is determined as shown in the figure. The correction amount is determined in consideration of the horsepower Ni condition. From the combustion chamber maximum pressure comparison/correction processing device, the stored maximum pressure (Pm) m (A
, B, C・''), and the correction signal is set to Pm/PC≦1.6~ as mentioned above.
The limit is set to fall within the limits of 1.7. This correction signal is input to the diesel engine control circuit (1), and a signal for correcting the fuel injection start timing is output to the first drive circuit in accordance with the crank angle information obtained from the encoder (1). and the fuel injection valve (6)
The control valve (goods) is designed to perform corrective control. In addition, the maximum set pressure (Pm) m (A, B, C3 shown in Fig. 8)
It is also possible to reset settings from a setting input processing device with a display device.

一方、噴射最高圧力の比較、修正処理装置−でとぎ比較
され、噴射最高圧力と前記燃料ポンプ東の流量−圧力特
性−からあらかじめ定められた11!10図に示す圧力
偏差−補正信号特性によって補正信号が得られる。この
補正信号をデジタル/アナログ変換器(財)を介して燃
料ポンプaηに送り、燃料ポンプ(Illの噴出流量を
制御するようにしている。
On the other hand, the maximum injection pressure is compared and compared by the correction processing device, and corrected by the pressure deviation-correction signal characteristic shown in Figs. I get a signal. This correction signal is sent to the fuel pump aη via a digital/analog converter (Incorporated) to control the ejection flow rate of the fuel pump (Ill).

発明が解決しようとする問題点 以上が従来の電子制御式内燃機関の最適制御方法である
が、前記のように設定燃焼最高圧力(Pm)mや燃料噴
射最高圧力(Pfm)m は、陸上運転または就航初期
の海上運転時のデータを基準としており、機関の経年変
化による各部の汚れや特性変化、あるいは燃料油の性状
変化などをすべて考慮はできナイ。したがって1年月が
経過したディーゼル機関や、使用燃料油が変った場合に
おいては、これら(Pm)m 、 (Pfm)mの基準
設定値によって運転するときは1本当に最適制御(機関
の運転費が最少)になっているか否かの判定が、運転中
には判定できない問題点があった。
The above problems to be solved by the invention are the optimal control methods for conventional electronically controlled internal combustion engines, but as mentioned above, the set maximum combustion pressure (Pm) m and the maximum fuel injection pressure (Pfm) m It is also based on data from sea operations in the early stages of service, and cannot take into account all the contamination and changes in characteristics of various parts due to aging of the engine, and changes in the properties of fuel oil. Therefore, for a diesel engine that has been running for a year or when the fuel oil used has changed, when operating with these standard setting values of (Pm)m and (Pfm)m, 1 is truly optimal control (the operating cost of the engine is There was a problem in that it was not possible to determine whether or not the minimum value was reached while driving.

そこで本発明には、これらの欠点を補い、最適Ill 
御(7)ための指標を運転中に得られるようにし。
Therefore, the present invention compensates for these drawbacks and provides an optimal Ill.
(7) Make it possible to obtain indicators for control while driving.

特に燃料油の性状が変化した場合などにその目標とする
燃焼条件を最適に設定しようとするものである。
In particular, it attempts to optimally set target combustion conditions when the properties of fuel oil change.

問題点を解決するための手段 と記問題点を解決するため本発明は内燃機関の運転中に
開閉の必要のある弁の開閉時期を計算し。
Means for Solving the Problems and Description: In order to solve the problems, the present invention calculates the opening/closing timing of valves that need to be opened and closed during operation of an internal combustion engine.

この計算結果とクランク角度の検出値とにもとづいて前
記弁の開閉動作を制御する電子制御式内燃機関に、前記
弁のうち燃料噴射弁の噴射開始時期を燃焼室内圧力と図
示馬力とを基準にして制御することにより、燃焼室内最
高圧力をその設定値に対して補正する手段と、燃料噴射
圧力と図示馬力。
An electronically controlled internal combustion engine that controls the opening and closing operations of the valves based on the calculation result and the detected crank angle is configured to set the injection start timing of the fuel injector among the valves based on the combustion chamber pressure and indicated horsepower. Means for correcting the maximum pressure in the combustion chamber with respect to its set value by controlling the fuel injection pressure and indicated horsepower.

とを基準にして、燃料噴射最高圧力をその設定値に対し
て補正゛する手段と、前記燃焼室内最高圧力の設定値お
よび燃料噴射最高圧力の設定値を、有効熱発生率と燃料
噴射率と有効燃焼係数とを基準にして再設定する手段と
、機関の冷却水流量調整弁および冷却油流量調整弁を、
有効燃焼係数および図示燃料消費率のうち少なくともい
ずれか一方を基準にして制御する手段とを備えたもので
ある。
means for correcting the maximum fuel injection pressure with respect to the set value based on the set value; A means for resetting the engine cooling water flow rate adjustment valve and a cooling oil flow rate adjustment valve based on the effective combustion coefficient,
and means for controlling based on at least one of the effective combustion coefficient and the indicated fuel consumption rate.

作用 このようなものであると、燃料噴射開始時期と燃料噴射
圧力との制御により機関の最適制御運転が可能であるの
みならず、燃焼室内最高圧力の設定値と燃料噴射最高圧
力の設定値との再設定制御により、燃料消費が最少とな
っていることを確認しなから釜種の条件設定をすること
が可能となり、しかも冷却水流量調整弁と冷却油流量調
整弁をも制御することにより1機関の最適制御運転を吟
味できるとともに、さらに厳密に最適制御運転を実現す
ることができる。
Function: Not only is it possible to optimally control the engine by controlling the fuel injection start timing and fuel injection pressure, but also the set value of the maximum pressure in the combustion chamber and the set value of the maximum fuel injection pressure can be adjusted. This resetting control makes it possible to set the conditions for the pot type without confirming that fuel consumption is at its minimum.Moreover, by also controlling the cooling water flow rate adjustment valve and the cooling oil flow rate adjustment valve, Not only can the optimal controlled operation of one engine be carefully examined, but also the optimal controlled operation can be realized more strictly.

実施例 以下1本発明の一実施例を第1図〜第8図にもとづいて
説明する。
Embodiment One embodiment of the present invention will be described below with reference to FIGS. 1 to 8.

第1図は、第6図に示す従来のものに対し1本発明で付
加されたものを並記したものであり、前記第6図で説明
した機能はすべてそのiま保有しティるので、その部分
の説明は省略する。
FIG. 1 is a diagram showing the conventional one shown in FIG. 6, which is added by the present invention, and all the functions explained in FIG. 6 are retained. The explanation of that part will be omitted.

新たに付加されたものは、前記燃料流量計(至)にとり
つけられた燃料油流量センサ(Sso)、燃料油温度セ
ンサ(Su)−燃焼室壁部材温度センサ(Stx)〜(
Sss)、機関冷却水入口、出口温度センサ(Sll)
(517)、機関冷却油入口、出口温度センサ(Ssa
)(St、)、排気ガス温度センサ(Ss)、および各
種温度センサ用低速νD変換器(22a)である。また
CPU (ill内に新たに付加されたものは、燃料流
量処理装置(10G) 。
The newly added items are the fuel oil flow rate sensor (Sso) attached to the fuel flow meter (to), the fuel oil temperature sensor (Su) - the combustion chamber wall member temperature sensor (Stx) ~ (
Sss), engine cooling water inlet and outlet temperature sensor (Sll)
(517), engine cooling oil inlet and outlet temperature sensor (Ssa
) (St, ), an exhaust gas temperature sensor (Ss), and a low-speed νD converter (22a) for various temperature sensors. Additionally, the CPU (newly added to the ill is a fuel flow processing device (10G)).

有効熱発生率処理装置(101) 、燃料噴射率処理装
置(1Gり 、有効燃焼係数ηb・図示燃料消費率bi
処理装置(108) 、および冷却水、冷却油温度比較
、修正処理装置(104)である。さらに、機器として
取付けられたものは、機関冷却水流量調整弁(105)
および機関冷却油流量調整弁(106)である。
Effective heat release rate processing device (101), fuel injection rate processing device (1G, effective combustion coefficient ηb/indicated fuel consumption rate bi
A processing device (108), and a cooling water and cooling oil temperature comparison and correction processing device (104). Furthermore, the installed equipment is an engine cooling water flow rate adjustment valve (105).
and an engine cooling oil flow rate adjustment valve (106).

まず、燃料油流量センサ(Ss)からの信号はアナログ
/デジタル変換器@を介してCPU U内の燃料流量処
理装置(1GG)に入力される。また同時に燃料油温度
センサ(Su)からの信号も低速A/D変換器L22a
)を介して燃料流量処理装置(Zoo)に入力され、当
該処理装置(Zoo)にて単位時間あたりの燃料流量が
算出される。
First, a signal from the fuel oil flow rate sensor (Ss) is input to the fuel flow rate processing device (1GG) in CPU U via the analog/digital converter@. At the same time, the signal from the fuel oil temperature sensor (Su) is also sent to the low speed A/D converter L22a.
) is input to the fuel flow rate processing device (Zoo), and the fuel flow rate per unit time is calculated by the processing device (Zoo).

燃焼室壁部材温度センサは、 (Ss)がシリンダカバ
一温度、 (Su)がシリンダカバ一温度、(S14)
がピストン温度、 (516)が排気弁温度をそれぞれ
検出するものである。(Sss)(Sty)は機関冷却
水入口、出口温度を、 (Ssa)(Sss)は機関冷
却油入口、出口温度をツレぞれ検出するセンサである。
The combustion chamber wall member temperature sensor is as follows: (Ss) is the cylinder cover temperature, (Su) is the cylinder cover temperature, (S14)
(516) detects the piston temperature and (516) the exhaust valve temperature. (Sss) (Sty) are sensors that detect the engine cooling water inlet and outlet temperatures, and (Ssa) (Sss) are sensors that detect the engine cooling oil inlet and outlet temperatures, respectively.

(5りは排気ガス温度センサである。これら(Ssz)
〜(Ss−および〔S、〕は、前記低速A/D変換器(
22a)を介して、冷却水、冷却油温度の比較、修正処
理装置(104)へ入力されている。
(No. 5 is the exhaust gas temperature sensor. These (Ssz)
~(Ss- and [S,] are the low-speed A/D converters (
22a), it is input to the cooling water and cooling oil temperature comparison and correction processing device (104).

有効熱発生率処理装置(101)では、前記燃焼室内圧
力処理装置−からの信号(Pz )を受けて1次式によ
り有効熱発生率dQe / dθが演算される。
The effective heat release rate processing device (101) receives the signal (Pz) from the combustion chamber pressure processing device and calculates the effective heat release rate dQe/dθ using a linear equation.

ここで、には燃焼ガスの比熱比、Vはシリンダ体積、A
は仕事の熱当量である。
Here, is the specific heat ratio of the combustion gas, V is the cylinder volume, and A
is the heat equivalent of work.

一方、燃料噴射率処理袋[(102)では、前記燃料噴
射圧力処理装置−からの信号(p[)を受けて。
On the other hand, the fuel injection rate processing bag [(102) receives the signal (p[) from the fuel injection pressure processing device.

次式により燃料噴射率dB/dθが演算される。The fuel injection rate dB/dθ is calculated using the following equation.

ここで、Cは流量係数、Aは燃料噴射弁の噴射面積、T
Bは燃料の比重量、gは動力の加速度である。
Here, C is the flow coefficient, A is the injection area of the fuel injection valve, and T
B is the specific weight of the fuel, and g is the acceleration of the power.

そして、有効燃焼係数η、・図示燃料消費率bi処理装
置(1Gg)では、まず、前記有効熱発生率処理装置(
101)からの出力である。有効熱発生率dQe7dθ
 と、前記燃料噴射率処理装置(102)からの出力で
ある燃料噴射率dB/dθとを入力して1次式により有
効燃焼係数ηbが算出される。
Then, in the effective combustion coefficient η, indicated fuel consumption rate bi processing device (1Gg), first, the effective heat release rate processing device (
101). Effective heat release rate dQe7dθ
and the fuel injection rate dB/dθ which is the output from the fuel injection rate processing device (102), and the effective combustion coefficient ηb is calculated by a linear equation.

ここでHuは燃料の低位発熱量、σcs 、θfsは燃
焼始め、噴射始めのクランク角度である。
Here, Hu is the lower calorific value of the fuel, and σcs and θfs are the crank angles at the start of combustion and the start of injection.

@2図には、このようにして計算された有効熱発生率d
Fe/dθ、燃料噴射率、dB/dθ、有効燃焼係数η
bの一例を示す。これらは、機関の燃焼の状態を評価す
る指標となる。
Figure @2 shows the effective heat release rate d calculated in this way.
Fe/dθ, fuel injection rate, dB/dθ, effective combustion coefficient η
An example of b is shown below. These serve as indicators for evaluating the combustion state of the engine.

また、有効熱発生率dQe/dθ が0となる有効燃焼
終りにおける有効燃焼係数ηbeは ηbe腸QE/B−Hu・・・(V) ただしθceは有効燃焼終りのクランク角度で与えられ
る。ここでBは θfcは燃料噴射路りのクランク角度 第8図に有効燃焼終りにおける有効燃焼係数ηbeの例
を示す。(l−ηbe)によって燃焼期間中の熱損失、
有効燃焼終りの未燃焼燃料分などを評価することができ
るが、大型ディーゼル機関の場合は、はぼ完全燃焼に近
く、未燃焼燃料分はほとんど無く、シたがって(l−η
be’を燃焼期間中の熱損失の評価指標として用いてよ
い。第8図は、機関回転数nをパラメータにして図示平
均有効圧力Piに対するηbeを示しているが1回転数
n(例えばn、)一定にてPiが大きくなると供給燃料
量が増して有効熱量が増すため、相対的に熱損失が減っ
てηbeは大きくなることを示している。またPi一定
にて、nが上昇すると、燃焼期間が短かくなって熱損失
が減るためηbeは大きくなることを示している。
Further, the effective combustion coefficient ηbe at the end of effective combustion where the effective heat release rate dQe/dθ becomes 0 is ηbeQE/B-Hu...(V) where θce is given by the crank angle at the end of effective combustion. Here, B is θfc is the crank angle of the fuel injection path. FIG. 8 shows an example of the effective combustion coefficient ηbe at the end of effective combustion. Heat loss during the combustion period by (l-ηbe),
It is possible to evaluate the amount of unburned fuel at the end of effective combustion, but in the case of large diesel engines, combustion is close to complete and there is almost no unburned fuel, so (l-η
be' may be used as an evaluation index of heat loss during the combustion period. Figure 8 shows ηbe with respect to the indicated mean effective pressure Pi using the engine speed n as a parameter. As Pi increases at a constant engine speed n (for example, n), the amount of fuel supplied increases and the effective heat amount increases. This indicates that the heat loss is relatively reduced and ηbe becomes larger. Furthermore, it is shown that when Pi is constant and n increases, ηbe increases because the combustion period becomes shorter and heat loss decreases.

つぎに、有効燃焼係数ηb・図示燃料消費率bi処理装
置(10g)のもう一つの機能として前記図示馬力処理
装置−で得られた図示馬力Niと、前記燃料流量処理装
置(Zoo)で得られた単位時間あたりの燃料流量Qf
とを用い1図示燃料消費゛率biを次式により求めるこ
とがある。
Next, as another function of the effective combustion coefficient ηb/indicated fuel consumption rate bi processing device (10 g), the indicated horsepower Ni obtained by the indicated horsepower processing device - and the indicated horsepower Ni obtained by the fuel flow rate processing device (Zoo) are calculated. Fuel flow rate per unit time Qf
The indicated fuel consumption rate bi may be determined using the following equation.

ただしrBは燃料の比重量 Huyは使用燃料の低位発熱量 ここで、燃料流量処理装置(100)で得られた単位時
間あたりの燃料流量Qf(’/h)と、 (Vll)式
で与えられた噴射燃料量B(g/C,cle)との間に
はon の関係があり、Qfは前記(vH)式の計算に必要な(
110式の右辺の流量係数Cの吟味、修正用にも用いら
れる。
However, rB is the specific weight of the fuel, Huy is the lower calorific value of the fuel used, and is given by the fuel flow rate per unit time Qf ('/h) obtained by the fuel flow rate processing device (100), and the formula (Vll). There is an on relationship with the injected fuel amount B (g/C, cle), and Qf is
It is also used for examining and correcting the flow coefficient C on the right side of Equation 110.

これらの演算処理に並行して、前述のように燃焼室内最
高圧力の比較、修正処理装置−による燃焼室内最高圧力
Pmの調整、および前記噴射最高圧力の比較・修正処理
装置−による噴射最高圧力Pfmの調整が行なわれる。
In parallel with these calculation processes, as described above, the maximum pressure in the combustion chamber is compared, the maximum pressure Pm in the combustion chamber is adjusted by the correction processing device, and the maximum injection pressure Pfm is adjusted by the comparison and correction processing device for the maximum injection pressure. adjustments will be made.

しかし、燃料の性状や低位発熱量が基準設定値(Pm)
m (Pfm)請定めた時のそれらの値と異なる場合な
どにおいては、Pm、Pfmを調整するだけでは最低の
燃料消費で機関を運転しているか否かの判定ができない
However, the fuel properties and lower calorific value are set at the standard setting value (Pm).
m (Pfm) In cases where these values are different from those at the time of request, it cannot be determined whether or not the engine is being operated with the minimum fuel consumption just by adjusting Pm and Pfm.

そこで、前記の指標(イ)有効熱発生率dQ/dθ、(
0)燃料噴射率dB/dθ、?1有効燃焼係数ηb、に
)有効燃焼終りの有効燃焼係数ηbe、(ホ)図示燃料
消費率btを用いて、基準設定値(Pm)m、 (Pf
m)mを再設定し、最低の燃料消費で運転することが可
能となる。
Therefore, the above index (a) effective heat release rate dQ/dθ, (
0) Fuel injection rate dB/dθ, ? 1) using the effective combustion coefficient ηb, and (e) the effective combustion coefficient ηbe at the end of effective combustion, and (e) the indicated fuel consumption rate bt, the reference setting value (Pm)m, (Pf
m) It becomes possible to reset m and drive with the lowest fuel consumption.

まず、(イ)dQ/alj %(COdB/dθ、 (
/jrtbli gi 2 図1c 示すように処理さ
れて表示装置−に表示されるので。
First, (a) dQ/alj %(COdB/dθ, (
/jrtbli gi 2 It is processed and displayed on the display device as shown in Figure 1c.

その波形パターンを遂次観察することができる。The waveform pattern can be observed successively.

例えば、第2図の破線のパターンが得られた時には、基
準設定値を定めた時の実線で示すパターンと比較し、こ
の実線のパターンに近づくように前記Pm Pfmを再
設定する。
For example, when the pattern shown by the broken line in FIG. 2 is obtained, it is compared with the pattern shown by the solid line when the reference setting values are determined, and the Pm and Pfm are reset so as to approach the pattern shown by the solid line.

しかし、 (Pm)mは前記のように設定限界があり。However, (Pm)m has a setting limit as mentioned above.

実線のパターンに近づけることができない場合もありう
る。そこで、次に、に)有効燃焼終りの有効燃焼係数η
bcによって燃焼期間中の熱損失を評価し1機関燃焼室
部材の冷却水およ〆冷却油の温度を調整して、燃焼期間
中の熱損失を減少させ、燃料消費の改善をはかる。この
ために、前記冷却水。
There may be cases where it is not possible to approximate the solid line pattern. Therefore, next, in) the effective combustion coefficient η at the end of effective combustion
The heat loss during the combustion period is evaluated by bc, and the temperature of the cooling water and cooling oil of the combustion chamber members of the engine 1 is adjusted to reduce the heat loss during the combustion period and improve fuel consumption. For this purpose, the cooling water.

冷却油温度の比較・修正処理装置(104)では、冷却
水、冷却油の温度センサ(S’s)〜(S+*)からの
信号と有効燃焼終りの有効燃焼係数’7beとを比較し
The cooling oil temperature comparison/correction processing device (104) compares the signals from the cooling water and cooling oil temperature sensors (S's) to (S+*) with the effective combustion coefficient '7be at the end of effective combustion.

このηbeが第゛8図のηbeに近づ(ように、冷却水
流量調整弁(105) 、冷却油流量調整弁(106)
へデジタル/アナログ変換器■を介して補正信号を送る
ように構成している。ただ′し、この場合も温度には上
限があり、この上限は、燃焼室壁部材の温度すなわち、
シリンダライナ、シリンダカバー。
As this ηbe approaches ηbe in Fig.
The configuration is such that a correction signal is sent to the digital/analog converter (2). However, in this case too, there is an upper limit to the temperature, and this upper limit is the temperature of the combustion chamber wall member, that is,
Cylinder liner, cylinder cover.

ピストン、排気弁の各温度センサ(Sz*)〜(Ss)
によって得られる温度によって定められる。なお、これ
らの燃焼室壁部材の温度が検出されない場合は、排気ガ
ス温度センサ(S、)によって得られる排気ガス温度に
よって、温度限界の上限を定める目安を得ることができ
る。
Piston and exhaust valve temperature sensors (Sz*) to (Ss)
determined by the temperature obtained by Note that if the temperature of these combustion chamber wall members is not detected, a guideline for determining the upper limit of the temperature limit can be obtained from the exhaust gas temperature obtained by the exhaust gas temperature sensor (S,).

発明の効果 以上述べたように本発明によれば、従来の方式による機
関の最適制御運転を吟味することができるとともに、さ
らに厳密に最適制御運転を実現することができ、燃料消
費が最少となっていることを確認しながら各種の条件設
定をすることが可能となる。
Effects of the Invention As described above, according to the present invention, it is possible to carefully examine the optimum control operation of the engine using the conventional method, and also to realize the optimum control operation more strictly, thereby minimizing fuel consumption. This makes it possible to set various conditions while confirming that the conditions are correct.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の要部のブロック図。 Wiz図および第8図は本発明の一実施例における゛処
理波形を説明する図、第4図は本発明構成を付加した電
子制御式内燃機関の全体構成図、第6図は従来例のブロ
ック図、第6図は従来例における処理波形の説明図、第
7図は燃焼室内最高圧力と燃焼室内圧縮路り圧力との説
明図、第8図は燃焼室内最高圧力の比較、修正処理装置
からの出力信号の説明図、第9図は燃焼噴射最高圧力の
説明図fH10図は噴射最高圧力の比較、修正処理装置
の出力信号の説明図である。 (5)−燃料噴射弁、(財)・・・クランク軸、QI−
・エンコーダ、翰・・・中央演算処理装置、(1)−・
ディーゼル機関、四・・・設定入力・表示装置、−・・
・燃焼室内最高圧力の比較、修正処理装置、rn−・噴
射最高圧力の比較、修正処理装置、m−・設定入力処理
装置、@−・表示装置、  (101) ・・・有効熱
発生率処理装置、(IH)−・・燃料噴射率処理装置、
 (10g)・・・有効燃焼係数ηb・図示燃料消費率
bf処理装置、 (104) −・・冷却水、冷却油温
度比較、修正処理装置、 (106) −・・機関冷却
水流量調整弁% (1Gg) ・・・機関冷却油量調整
FIG. 1 is a block diagram of essential parts of an embodiment of the present invention. Figure Wiz and Figure 8 are diagrams explaining the processed waveforms in one embodiment of the present invention, Figure 4 is an overall configuration diagram of an electronically controlled internal combustion engine to which the configuration of the present invention is added, and Figure 6 is a block diagram of a conventional example. Fig. 6 is an explanatory diagram of the processing waveform in the conventional example, Fig. 7 is an explanatory diagram of the maximum pressure in the combustion chamber and compression path pressure in the combustion chamber, and Fig. 8 is a comparison of the maximum pressure in the combustion chamber, from the modified processing device. FIG. 9 is an explanatory diagram of the combustion injection maximum pressure. FIG. fH10 is an explanatory diagram of the output signal of the correction processing device for comparison of the maximum injection pressure. (5)-Fuel injection valve, (Foundation)...Crankshaft, QI-
・Encoder, wire...Central processing unit, (1)-・
Diesel engine, 4...Setting input/display device, -...
・Comparison of maximum pressure in combustion chamber, correction processing device, rn-・Comparison of maximum injection pressure, correction processing device, m-・Setting input processing device, @-・Display device, (101) ... Effective heat release rate processing device, (IH)--fuel injection rate processing device,
(10g)... Effective combustion coefficient ηb/indicated fuel consumption rate bf processing device, (104) --- Cooling water, cooling oil temperature comparison, correction processing device, (106) --- Engine cooling water flow rate adjustment valve % (1Gg) ・・・Engine cooling oil amount adjustment valve

Claims (1)

【特許請求の範囲】[Claims] 1.内燃機関の運転中に開閉の必要のある弁の開閉時期
を計算し、この計算結果とクランク角度の検出値とにも
とづいて前記弁の開閉動作を制御する電子制御式内燃機
関であつて、前記弁のうち燃料噴射弁の噴射開始時期を
燃焼室内圧力と図示馬力とを基準にして制御することに
より、燃焼室内最高圧力をその設定値に対して補正する
手段と、燃料噴射圧力と図示馬力とを基準にして、燃料
噴射最高圧力をその設定値に対して補正する手段と、前
記燃焼室内最高圧力の設定値および燃料噴射最高圧力の
設定値を、有効熱発生率と燃料噴射率と有効燃焼係数と
を基準にして再設定する手段と、機関の冷却水流量調整
弁および冷却油流量調整弁を、有効燃焼係数および図示
燃料消費率のうち少なくともいずれか一方を基準にして
制御する手段とを備えたことを特徴とする電子制御式内
燃機関。
1. An electronically controlled internal combustion engine that calculates the opening and closing timing of a valve that needs to be opened and closed during operation of the internal combustion engine, and controls the opening and closing operation of the valve based on the calculation result and the detected value of the crank angle, Means for correcting the maximum pressure in the combustion chamber with respect to a set value by controlling the injection start timing of the fuel injection valve among the valves based on the pressure in the combustion chamber and the indicated horsepower; means for correcting the maximum fuel injection pressure with respect to the set value based on the set value of the maximum pressure in the combustion chamber, and the set value of the maximum pressure in the combustion chamber and the set value of the maximum fuel injection pressure based on the effective heat release rate, fuel injection rate, and effective combustion. and means for controlling the cooling water flow rate adjustment valve and the cooling oil flow rate adjustment valve of the engine based on at least one of the effective combustion coefficient and the indicated fuel consumption rate. An electronically controlled internal combustion engine.
JP7884785A 1985-04-12 1985-04-12 Electronic control type internal-combustion engine Pending JPS61237863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7884785A JPS61237863A (en) 1985-04-12 1985-04-12 Electronic control type internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7884785A JPS61237863A (en) 1985-04-12 1985-04-12 Electronic control type internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS61237863A true JPS61237863A (en) 1986-10-23

Family

ID=13673215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7884785A Pending JPS61237863A (en) 1985-04-12 1985-04-12 Electronic control type internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS61237863A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172677A (en) * 2011-02-24 2012-09-10 Sgg Kenkyusho:Kk Premixed flame ignition engine
JP2014214606A (en) * 2013-04-22 2014-11-17 新電元工業株式会社 Control device and control method of control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172677A (en) * 2011-02-24 2012-09-10 Sgg Kenkyusho:Kk Premixed flame ignition engine
JP2014214606A (en) * 2013-04-22 2014-11-17 新電元工業株式会社 Control device and control method of control device

Similar Documents

Publication Publication Date Title
JP5420013B2 (en) Control device and control method for internal combustion engine
CA2020057C (en) Method and means for determining exhaust backpressure in a crankcase scavenged two-stroke engine
US7489998B2 (en) Method and device for controlling an internal combustion engine
JP2809535B2 (en) Engine control device
EP0130382B1 (en) Method of fuel injection into engine
KR920006542B1 (en) Control of internal combustion engine turbo-charger waste gate valves
US9482147B2 (en) Method and apparatus to operate internal combustion engine employing an intake air compressor
KR101935698B1 (en) Method and device for improving the combustion processes taking place in the cylinders of an internal combustion engine
CN107002573B (en) Controller for internal combustion engine
KR930005958B1 (en) Control device for an internal combustion engine
US7357127B2 (en) Method for determining the air mass in a cylinder
CN104813012A (en) Device for detecting inter-cylinder air-fuel ratio imbalance in multi-cylinder internal combustion engine
EP2199577A1 (en) Estimation of the gas flow through the exhaust gas recirculation loop
JPS638296B2 (en)
US20170096959A1 (en) Fuel injection control device for internal combustion engine
CN111788378B (en) Internal combustion engine and control method thereof
GB2321317A (en) Controlling opening area of exhaust gas recirculation valve
JP6241412B2 (en) Control device for internal combustion engine
JPH0481557A (en) Exhaust reflex controller for internal combustion engine
US4727719A (en) Apparatus for controlling inlet air flow in a turbocharged internal combustion engine
US6986330B2 (en) Internal combustion engine having variable valve actuation device and method of calculating intake amount in the same internal combustion engine
JPS61237863A (en) Electronic control type internal-combustion engine
US6508227B2 (en) Method of operating an internal combustion engine
US4901699A (en) System for controlling a fuel injection quantity and method therefor
JP2021080920A (en) Crosshead type large low-speed turbocharged two-stroke uniflow scavenge internal combustion engine, and method for operating the same