JPS61237811A - Soot reburner - Google Patents

Soot reburner

Info

Publication number
JPS61237811A
JPS61237811A JP60077558A JP7755885A JPS61237811A JP S61237811 A JPS61237811 A JP S61237811A JP 60077558 A JP60077558 A JP 60077558A JP 7755885 A JP7755885 A JP 7755885A JP S61237811 A JPS61237811 A JP S61237811A
Authority
JP
Japan
Prior art keywords
engine
heater
exhaust
soot
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60077558A
Other languages
Japanese (ja)
Inventor
Minoru Arai
実 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP60077558A priority Critical patent/JPS61237811A/en
Publication of JPS61237811A publication Critical patent/JPS61237811A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

PURPOSE:To efficiently perform reburning of soot contents in exhaust gas by mounting both an exhaust heat controller which increases exhaust heat when an engine runs within a low and middle load range and a heater controller which heats the soot contents in exhaust gas if exhaust heat cannot be increased sufficiently. CONSTITUTION:A throttle valve 4 and an EGR valve 5 which are incorporated in the intake system of a Diesel engine 1 are opened and closed under the control of a vacuum control valve 6. Said valve 6 are suitably controlled by a controller 9 on the basis of the signals from an air flow sensor 3, an engine load sensor 7 and an engine revolution sensor 8. A catalyst-containing tap 11 including a supplementarily reburning electric heater 10 in the upper stream side thereof, is incorporated in the exhaust system of said engine 1. Said heater 10 is most suitably controlled by the controller 9 on the basis of the signals from said sensors 7 and 8 and an exhaust temperature sensor 12.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はディーゼルエンジンの排気中に含まれるパティ
キュレート(煤)を再燃焼させる煤再燃焼装置に係り、
特に排気温度を可能な範囲まで高めてから電気ヒータに
よる加熱制御を行なうようにして、電気ヒータに要する
電力消費を低減させたものに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a soot reburning device that reburns particulates (soot) contained in the exhaust of a diesel engine.
In particular, the present invention relates to a device that reduces the power consumption required by the electric heater by controlling the heating by the electric heater after raising the exhaust gas temperature to a possible range.

[従来の技術] 従来、ディーゼルエンジンの煤トラップとして、比較的
低温下で煤を再燃焼することができる触媒付トラップが
採用されている。
[Prior Art] Conventionally, a trap with a catalyst that can re-combust soot at a relatively low temperature has been employed as a soot trap for a diesel engine.

したがって、エンジン排気熱がある程度高ければその排
気熱のみで触媒が煤を再燃焼することができることは勿
論、排気熱が低くても触媒性能が充分ならば煤を自燃さ
せることができる。
Therefore, if the engine exhaust heat is high to a certain extent, the catalyst can re-combust the soot using only that exhaust heat, and even if the exhaust heat is low, if the catalyst performance is sufficient, the soot can self-combust.

[発明が解決しようとする問題点] しかしながら、現状では未だ触媒性能が不充分であるた
め、エンジン排熱がそれ程得られない一般的な路上走行
の場合には、触媒のみによったのでは再燃焼が不足して
トラップの目詰りを起ずという問題があった。
[Problems to be solved by the invention] However, as the catalyst performance is still insufficient at present, in the case of general road driving where engine exhaust heat is not obtained to a large extent, it is difficult to use catalysts alone. There was a problem in that the trap was not clogged due to insufficient combustion.

そこで、一般的な路上走行であっても触媒の活性を助け
て再燃焼可能とするために電気ヒータ加熱を行なうこと
が考えられたが、再燃焼可能とするためには多大の電力
を消費するため、エンジン負荷の増大による燃費の悪化
を伴なうばかりでな(、大容量のバッテリやジェネレー
タの搭載を余儀無くされていた。
Therefore, it has been considered to heat the catalyst with an electric heater to help activate the catalyst and enable re-combustion even during general road driving, but this requires a large amount of electricity to enable re-combustion. This not only resulted in a deterioration in fuel efficiency due to an increase in engine load, but also forced the installation of large-capacity batteries and generators.

なお、関連技術として、多量のEGRガス量を還流させ
て排気温度を下げ再燃焼時のトラップの温度上昇を抑止
してトラップの溶損を防止しようとしたちのく特開昭5
9−101519J% 公報) 、E G Rガス量の
減量を行ない再燃焼時の排圧上昇による[GRガス量の
増加を抑止してHC等の増加や燃焼性の悪化を防止する
ようにしたもの(特開昭59−37225号公報)があ
る。
In addition, as a related technology, Japanese Patent Application Laid-Open No. 5 (1973) proposed an attempt to recirculate a large amount of EGR gas to lower the exhaust temperature and suppress the temperature rise of the trap during reburning, thereby preventing the trap from melting.
9-101519J% Publication), by reducing the amount of EGR gas and suppressing the increase in the amount of GR gas due to the increase in exhaust pressure during re-combustion, preventing an increase in HC etc. and deterioration of combustibility. (Japanese Unexamined Patent Publication No. 59-37225).

[発明の目的] 本発明の目的は、上記問題点を解消して、差程排熱が高
くならない中低負荷領域下の運転であっても、燃焼性や
排気の悪化を許容限度内に抑えつつ排気温度の上昇をは
かり、その上で最小電力による電気ヒータ加熱を行なっ
て煤の再燃焼を可能にするディーゼルエンジンの煤再燃
焼装置を得ることである。
[Objective of the Invention] The object of the present invention is to solve the above-mentioned problems and suppress deterioration of combustibility and exhaust gases to within permissible limits even when operating under medium and low load ranges where exhaust heat does not increase significantly. An object of the present invention is to obtain a soot reburning device for a diesel engine which enables soot to be reburned by raising the exhaust gas temperature and heating the electric heater with minimum electric power.

[発明の概要] 上記目的に沿う本発明の構成は、触媒下で煤を再燃焼さ
せるには温度が不足するエンジン負荷の中低負荷領域下
においてスロットル弁及びEGR弁を絞って排気熱を可
及的に高める排熱制御器を設けると共に、この高めた排
熱によっても未だ湿度が不足して再燃焼が不充分のとき
電気ヒータの能力範囲内でヒータに通電して触媒付トラ
ップで捕獲された排気中の煤を加熱するヒータ制御器を
設けたことを特徴とする。
[Summary of the Invention] The configuration of the present invention in accordance with the above-mentioned object is to reduce exhaust heat by throttling the throttle valve and EGR valve in the middle and low engine load range where the temperature is insufficient to re-combust soot under the catalyst. In addition to installing an exhaust heat controller that increases the exhaust heat as much as possible, when the increased exhaust heat still leaves insufficient humidity and re-combustion is insufficient, the heater is energized within the capacity of the electric heater and the heat is captured in a catalytic trap. It is characterized by being equipped with a heater controller that heats the soot in the exhaust gas.

この2段階制御により多大の電力を消費することなく煤
を再燃焼できるようにし、エンジン負荷の増大による燃
費の悪化を招いたり、大容量のバッテリやジェネレータ
の搭載を余儀無くされたりすること6ないようにしたも
のである。
This two-stage control allows soot to be re-combusted without consuming a large amount of electricity, thereby avoiding deterioration of fuel efficiency due to increased engine load or the need to install a large-capacity battery or generator.6 This is how it was done.

[実施例] 本発明の実施例を第1図〜第6図に基づいて詳細に説明
する。
[Example] An example of the present invention will be described in detail based on FIGS. 1 to 6.

第1図は本発明装置の実施例を示す構成図であり、1は
ディーゼルエンジンで、その吸気系にはエンジンに向か
って順次エアクリーナ2、エアフローセンサ3、スロッ
トル弁4、EGR弁5が介設されている。スロットル弁
4及びEGR弁5はバキュームコントロールバルブ6に
よって、図示しない通常制り1系と並列して、開閉制御
されるようになっている。このバキュームコントロール
バルブ6は、エアフローセンFj3、エンジン負荷セン
サ7、エンジン回転センサ8によりそれぞれ検出した吸
入空気量、エンジン負荷(トルク)、エンジン回転数を
受けた制tll器9がその判断に基づいて最適に制御す
る。この制御を行なう部分が排熱制御器を構成する。
FIG. 1 is a configuration diagram showing an embodiment of the device of the present invention, in which 1 is a diesel engine, and its intake system includes an air cleaner 2, an air flow sensor 3, a throttle valve 4, and an EGR valve 5 in order toward the engine. has been done. The throttle valve 4 and the EGR valve 5 are controlled to open and close by a vacuum control valve 6 in parallel with a normal control system (not shown). This vacuum control valve 6 is operated by a TLL device 9 that receives the intake air amount, engine load (torque), and engine rotation speed detected by the air flow sensor Fj 3, engine load sensor 7, and engine rotation sensor 8, respectively. Optimal control. The part that performs this control constitutes an exhaust heat controller.

なお、エンジン負荷センサ7は例えばエンジントルクに
対応する燃料噴射ポンプのレバー開度を電圧検出するポ
テンショメータが、またエンジン回転センサ8は例えば
燃料噴射ポンプの回転数を検出する回転計が適当である
It is appropriate that the engine load sensor 7 be, for example, a potentiometer that detects the voltage of the lever opening of the fuel injection pump corresponding to the engine torque, and that the engine rotation sensor 8 be, for example, a tachometer that detects the rotational speed of the fuel injection pump.

一方、ディーゼルエンジン1の排気系には再燃焼補助用
の比較的小容量の電気ヒータ10を−F流側に取り付け
た触媒付トラップ11が介設される。
On the other hand, in the exhaust system of the diesel engine 1, a trap 11 with a catalyst is installed, in which a relatively small-capacity electric heater 10 for assisting re-combustion is attached on the -F flow side.

電気ヒータ10は、既述のエンジン負荷センサ7゜エン
ジン回転センサ8並びに電気ヒータ近傍に設置した排気
温度センサ12によりそれぞれ検出したエンジン負荷(
トルク)、エンジン回転数、トラップ入口温度を受けた
制御器9がその判断に基づいて最適に制御する。このM
 tllを行なう部分がヒータ制御器を構成する。
The electric heater 10 receives the engine load (detected by the previously described engine load sensor 7, engine rotation sensor 8, and exhaust temperature sensor 12 installed near the electric heater).
The controller 9 receives the information such as torque), engine speed, and trap inlet temperature, and performs optimal control based on the judgment. This M
The part that performs tll constitutes a heater controller.

ここで、バキュームコントロールバルブ6即ちスロット
ル弁4及びEGR弁5を制御する排熱制御器の機能を第
3図に示すフローチャートに沿って説明する。
Here, the function of the exhaust heat controller that controls the vacuum control valve 6, that is, the throttle valve 4 and the EGR valve 5, will be explained along the flowchart shown in FIG.

説明するに当って、このフローチャートの狙いをまず明
らかにする。即ち、第2図に示す曲線群及び3つの領域
A−Cは、エンジン回転数に対するエンジン負荷特性(
以下単に負荷特性という)下におけるトラップ入口温度
分布と電気ヒータ作動領域の関係を示している。
Before explaining this, I will first clarify the purpose of this flowchart. That is, the curve group and three regions A to C shown in FIG. 2 represent the engine load characteristics (
The figure shows the relationship between the trap inlet temperature distribution and the electric heater operating range under load characteristics (hereinafter simply referred to as load characteristics).

A領域は、エンジン排気熱のみで触媒が煤を再燃焼出来
る領域であり、電気ヒータ10をONする必要はない。
Region A is a region where the catalyst can re-burn soot using only engine exhaust heat, and there is no need to turn on the electric heater 10.

B領域は、排気熱が不足して触媒による再燃焼が不充分
な領域であり、トラップ11に取り付けた容Hの電気ヒ
ータ10のヒータコントロールにより、トラップ入口温
度をへ領域の下限設定値、例えば400℃にまで昇温さ
せることができる領域である。C領域は、排気熱不足、
あるいはエンジン排出ガス量が多過ぎて上記電気ヒータ
では再燃焼可能な温度に昇温させることができない領域
であって、電気ヒータの○FF領域である。
Region B is a region where exhaust heat is insufficient and re-combustion by the catalyst is insufficient, and by controlling the electric heater 10 of capacity H attached to the trap 11, the trap inlet temperature is reduced to the lower limit setting value of the region, e.g. This is a region where the temperature can be raised up to 400°C. Region C is a lack of exhaust heat,
Alternatively, the amount of engine exhaust gas is so large that the electric heater cannot raise the temperature to a temperature that allows re-combustion, and this is the FF area of the electric heater.

したがって、エンジン負荷が中又は低負荷領域である日
又は0M域にあるときエンジン排気温度を可能な範囲で
上昇させてへ領域に持っていくことができれば、電気ヒ
ータ10による補助を要することなく再燃焼が可能にな
る。このため、第3図又は第4図に示す標準電圧特性直
線■=αN+βを、第2図中の△領域下限設定値の40
0℃を示すトルク曲線に合わせた。
Therefore, if the engine exhaust temperature can be raised as much as possible to bring it to the low range when the engine load is in the medium or low load range or in the 0M range, then the engine exhaust temperature can be raised again without the need for assistance from the electric heater 10. combustion becomes possible. For this reason, the standard voltage characteristic line ■=αN+β shown in FIG. 3 or 4 is
The torque curve was adjusted to indicate 0°C.

第3図において、排熱制御器は、先ず、エンジン回転数
及びエンジントルク、即ちポテンショメータ電圧を各セ
ンサ7.8から読み取り、それらの値から求められる座
標点が第4図の負荷特性図上に表わされている標準電圧
特性直IaV−αN+βの上にあるか下にあるかを判断
する。座標点が直線の上にあれば排気温度は充分高いの
でスロットル弁4及びEGR弁5の絞り制御は行なわず
、これらの制御は通常制御系に任せる。
In Fig. 3, the exhaust heat controller first reads the engine speed and engine torque, that is, the potentiometer voltage from each sensor 7.8, and the coordinate points determined from these values are placed on the load characteristic diagram in Fig. 4. It is determined whether the voltage is above or below the standard voltage characteristic line IaV-αN+β. If the coordinate point is on a straight line, the exhaust gas temperature is sufficiently high, so throttle control of the throttle valve 4 and EGR valve 5 is not performed, and these controls are left to the normal control system.

座標点が直線の下にあれば、排気温度が低いと判断して
次のステップへ進む。即ち、エアフローセンサ3により
吸入空気量を計測すると共に、この計測値が設定値に達
するまでスロットル弁4及びEGR弁5の絞り制御を通
常制御系の制御に重ねて行なう。ここで、吸入空気量の
設定値は、デトネーションの発生限度内及び排気悪化の
許容限度内で燃焼性及び排気性を最適にするように通常
セットされる空燃比よりも設定で得られる空燃比の方が
小さくなるように決定される。
If the coordinate point is below the straight line, it is determined that the exhaust gas temperature is low and the process proceeds to the next step. That is, the intake air amount is measured by the air flow sensor 3, and throttling control of the throttle valve 4 and EGR valve 5 is performed in addition to the control of the normal control system until this measured value reaches a set value. Here, the set value of the intake air amount is set to an air-fuel ratio that is higher than the air-fuel ratio that is normally set to optimize combustibility and exhaust performance within the limit of detonation occurrence and the allowable limit of exhaust deterioration. is determined to be smaller.

スロットル弁4の絞り制御が行なわれると吸入空気量が
減少して相対的に燃料噴射量が増大するため、エンジン
温度が上がり排気温度が上背する。
When the throttle valve 4 is throttled, the amount of intake air decreases and the amount of fuel injection increases relatively, causing the engine temperature to rise and the exhaust temperature to rise.

また、EGR弁5の絞り制御が行なわれると還流排ガス
量が減少して排気ガスの悪化が防げる。したがって、ス
ロットル弁4とEGR弁5とが同時に絞りIQ御される
と排ガスの悪化を回避しつつ排気温度を上界させること
ができる。
Furthermore, when the EGR valve 5 is throttled, the amount of recirculated exhaust gas is reduced, and deterioration of the exhaust gas can be prevented. Therefore, when the throttle valve 4 and the EGR valve 5 are simultaneously subjected to throttle IQ control, the exhaust gas temperature can be raised to an upper limit while avoiding deterioration of the exhaust gas.

次に、電気ヒータ10を制御するヒータ制御器の機能を
第5図に示すフローチャートに沿って説明する。なお、
ヒータ制御器の記憶部には前述した第2図に示すヒータ
作動領域特性が記憶されている。
Next, the functions of the heater controller that controls the electric heater 10 will be explained with reference to the flowchart shown in FIG. In addition,
The heater operating region characteristics shown in FIG. 2 mentioned above are stored in the storage section of the heater controller.

同図に示す如く、ヒータ制御器は排熱制御器と同様に、
先ず、エンジン回転数及びポテンショメータ電圧を読み
取る。そして、第2図を簡略化して古き直した第6図の
関係特性図上に表わされている三つの領域A、B、Cの
いずれかに、読み取って得た座標点があるかを判断する
。座標点がB領域、即ちヒータ制御が可能な領域にある
場合のみ次のステップへ進む。すなわち、エンジン回転
数・エンジントルク特性におけるトラップ入口温度が設
定値(へ領域の下限設定値)に達するまで電気ヒータ1
0に通電する。このヒータの通電制、a’aは図示例の
ように電流値一定の0N10FF制御によるのが最も簡
単であるが、座標点の場所に応じて電流値を変える電流
制御によることもできる。
As shown in the figure, the heater controller, like the exhaust heat controller,
First, read the engine speed and potentiometer voltage. Then, it is determined whether the coordinate point obtained by reading is located in any of the three areas A, B, and C shown on the relationship characteristic diagram in Figure 6, which is a simplified and updated version of Figure 2. do. Proceed to the next step only when the coordinate point is in area B, that is, in an area where heater control is possible. In other words, the electric heater 1 is turned on until the trap inlet temperature in the engine speed/engine torque characteristics reaches the set value (lower limit set value in the range).
0 is energized. The energization control a'a of the heater is most easily controlled by 0N10FF control in which the current value is constant as shown in the illustrated example, but it is also possible to use current control in which the current value is changed depending on the location of the coordinate point.

なお、じ−夕制御器は吸入空気量をも読み取って、後述
するヒータ加熱の停止条件としている。
Note that the controller also reads the amount of intake air and uses this as a condition for stopping heater heating, which will be described later.

さて、上記のような構成において、排気温度の不足する
部分負荷運転がなされると、まず第3図に示す排気温度
制御が行なわれてエンジン排気温度制御が行なわれてエ
ンジン排気温度が上昇する即ち、排熱制御器は排気熱の
不足を判断すると、スロットル弁4を絞って吸入空気量
を減少させると共にEGR弁5をb絞っ゛で排気ガスの
吸気系への還流量を減少させる。この制御はエアフロー
センサ3で検出される吸入空気量が設定値になるまでフ
ィードバック制御によって精度良くなされる。
Now, in the above configuration, when partial load operation is performed where the exhaust gas temperature is insufficient, the exhaust temperature control shown in FIG. When the exhaust heat controller determines that exhaust heat is insufficient, it throttles the throttle valve 4 to reduce the amount of intake air, and throttles the EGR valve 5 to reduce the amount of exhaust gas returned to the intake system. This control is performed accurately by feedback control until the amount of intake air detected by the air flow sensor 3 reaches a set value.

吸入空気量が設定値になるまで吸入空気量が減少するの
で、最適な空燃比で運転していたときよりもはるかに排
気温度が上昇することになる。また、このときE、G 
R弁5も絞られるため排気エミッシヨンの悪化が最小に
抑えられる。したがって、低負荷又は中負荷領域下にあ
っても、排気エミッションの悪化を最小にしつつ排気温
度が可及的に上昇する。このようにして触媒活性を助け
るための排気温度の上昇が、エンジン回転、エンジント
ルク及び吸入空気量を検出しつつ最適に行なわれる。
Since the amount of intake air decreases until it reaches the set value, the exhaust temperature will rise much more than when the engine was operating at the optimum air-fuel ratio. Also, at this time, E, G
Since the R valve 5 is also throttled, deterioration of exhaust emissions can be minimized. Therefore, even under a low load or medium load region, the exhaust gas temperature is increased as much as possible while minimizing deterioration of exhaust emissions. In this way, the exhaust temperature is optimally increased to support catalyst activity while detecting engine rotation, engine torque, and intake air amount.

スロットル弁4及びEGR弁5の絞り制御により排気温
度を充分に高めた上で、続けて第5図に示すヒータ制御
を行なって排気温度を煤の再燃焼温度に高める。即ち、
ヒータ制御器はトラップ入口温度がB領域にあることを
判断すると、電気ヒータ10に通電を行ない、トラップ
入口温度をA領域の下限埴に達するまでその通電を継続
する。
After the exhaust gas temperature is sufficiently raised by throttling control of the throttle valve 4 and the EGR valve 5, the heater control shown in FIG. 5 is subsequently performed to raise the exhaust temperature to the soot reburning temperature. That is,
When the heater controller determines that the trap inlet temperature is in region B, it energizes the electric heater 10 and continues to energize it until the trap inlet temperature reaches the lower limit of region A.

したがって、電気ヒータ加熱によって、煤再燃焼可能な
最低温度が確保されることになる。このようにして、再
燃焼補助のためのヒータによる排気温度の上昇が、トラ
ップ入口温度を検出しつつ最適に行なわれる。
Therefore, heating with the electric heater ensures the minimum temperature at which soot can be re-burned. In this way, the exhaust temperature is optimally increased by the heater for reburning assistance while detecting the trap inlet temperature.

その結果、一般的な路上走行に起因する排気温度不足が
生じて触媒付トラップ11では再燃焼しきれない煤が発
生しなくなり確実に煤を再燃焼させることができる。こ
の場合において、予め排気温度を高めた上で始めて電気
ヒータによる昇温を行なうので、直接ヒータ加熱を行な
う場合に比してヒーク容母が小さくて済み、また電力消
費も大幅に抑えることができる。
As a result, soot that cannot be reburned in the catalyst trap 11 due to insufficient exhaust gas temperature due to general road running is not generated, and the soot can be reburned reliably. In this case, since the exhaust temperature is raised in advance and then the electric heater is used to raise the temperature, the heat capacity is smaller than when heating is performed directly with the heater, and power consumption can also be significantly reduced. .

一方、す1気温度の不足する部分負荷であってEGR及
び吸気絞りによる排気温度制御を行なってもなお、1〜
ラップ入口温度が8領域に達するまでに至らず依然とし
てC領域にあり、しかも吸入空気量が所定値以上ある場
合には、トラップ11に取り付けた電気ヒータ1oの能
力では加熱しきれなくなるため、第5図のフローに示す
ようにヒータ加熱はなされない。このように、ヒータ能
力の範囲内で達成可能な運転条件のときのみヒータ通電
を行なうので、電力の無駄をなくすことができ電力消費
を最小とすることができる。
On the other hand, even if the exhaust temperature is controlled by EGR and intake throttling in a partial load where the air temperature is insufficient,
If the wrap inlet temperature does not reach the 8th region and is still in the C region, and the intake air amount is above the predetermined value, the electric heater 1o attached to the trap 11 will not be able to heat it completely. As shown in the flowchart of the figure, no heater heating is performed. In this way, the heater is energized only when the operating conditions are achievable within the range of the heater capacity, thereby eliminating wasted power and minimizing power consumption.

[発明の効果〕 以上型するに本発明によれば次のような優れた効果を発
揮する。
[Effects of the Invention] In summary, the present invention exhibits the following excellent effects.

(1)  差程排熱が高くならない中低負荷領域下の運
転であって排熱不足により触媒付トラップでは再燃焼し
きれない煤が生じても、吸入空気■制御による排気温度
の上昇とヒータ加熱制御による1−ラップ入口温度の上
昇とを組み合わせて再燃焼可能な温度にまで排熱を高め
るので、最小電力によって煤の再燃焼を行なうことがで
きる。
(1) Even if there is soot that cannot be re-burned in the catalyst trap due to insufficient exhaust heat due to operation under a medium-low load range where the exhaust heat is not significantly high, the exhaust temperature can be raised by the intake air control and the heater Since the exhaust heat is raised to a temperature at which re-combustion is possible in combination with the increase in the 1-lap inlet temperature through heating control, soot can be re-combusted with minimum electric power.

その結果、大容量のバッテリやジェネレータの搭載を必
要とせず装置の小型化がはかれる。
As a result, the device can be made more compact without requiring a large-capacity battery or generator.

(2)  排気温度上昇のために行なう吸入空気量制御
に加えてEGR弁の絞り制御も行なうようにしたので、
燃焼性や排気の悪化を許容限度内に抑えつつ排気温度を
上昇さけることができ、エンジン出力の低下や排気エミ
ッションの悪化を最小に抑えることができる。
(2) In addition to the intake air amount control that is performed to raise the exhaust temperature, the EGR valve throttle control is also performed.
It is possible to avoid a rise in exhaust temperature while suppressing deterioration in combustibility and exhaust gases to within permissible limits, and it is possible to minimize a decrease in engine output and deterioration in exhaust emissions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による煤再燃焼装置の一実施例を示す構
成図、第2図はエンジントルク特性下におけるトラップ
入口温度分布と電気ヒータ作動領域の関係を示す説明図
、第3図は第1図に示す煤再燃焼装置の制御器を構成す
る排熱制御器の機能を説明するフローチャート、第4因
は第3図に示すフローチャートの理解を容易にするため
のトルク特性図、第5図は第1図に示す煤再燃焼装置の
制御器を構成するヒータ制御器の機能を説明するフロー
チャート、第6図は第5図に示すフローチャートの理解
を容易にするために第2図を簡略化した説明図である。 図中、1はディーゼルエンジン、4はスロットル弁、5
はEGR弁、7はエンジン負荷センサ、8はエンジン回
転センサ、9は排熱制御器とヒータ制御器とから成る制
御器、10は電気ヒータ、11は触媒付トラップである
。 特許出願人  いすq自動車株式会社 代理人弁理士 絹  谷  信  雄 工−ンルm樗ケN 第5図
Fig. 1 is a configuration diagram showing an embodiment of the soot reburning device according to the present invention, Fig. 2 is an explanatory diagram showing the relationship between trap inlet temperature distribution and electric heater operating area under engine torque characteristics, and Fig. 3 is a diagram showing the relationship between trap inlet temperature distribution and electric heater operating range under engine torque characteristics. A flowchart explaining the function of the exhaust heat controller that constitutes the controller of the soot reburning device shown in Fig. 1, the fourth factor is a torque characteristic diagram to facilitate understanding of the flowchart shown in Fig. 3, and Fig. 5 is a flowchart explaining the function of the heater controller that constitutes the controller of the soot reburning device shown in Fig. 1, and Fig. 6 is a simplified version of Fig. 2 to facilitate understanding of the flowchart shown in Fig. 5. FIG. In the figure, 1 is a diesel engine, 4 is a throttle valve, and 5 is a diesel engine.
1 is an EGR valve, 7 is an engine load sensor, 8 is an engine rotation sensor, 9 is a controller consisting of an exhaust heat controller and a heater controller, 10 is an electric heater, and 11 is a trap with catalyst. Patent Applicant: Isuq Motor Co., Ltd. Representative Patent Attorney Nobuo Kinutani Figure 5

Claims (4)

【特許請求の範囲】[Claims] (1)触媒付トラップで捕獲した排気中の煤を加熱する
電気ヒータと、エンジン負荷が中低負荷領域のときスロ
ットル弁及びEGR弁を絞って排熱を高める排熱制御器
と、高めた排熱では触媒による再燃焼が不充分のときヒ
ータに通電するヒータ制御器とから成る煤再燃焼装置。
(1) An electric heater that heats soot in the exhaust captured by a trap with a catalyst, an exhaust heat controller that increases exhaust heat by throttling the throttle valve and EGR valve when the engine load is in the medium to low load range, and A soot reburning device comprising a heater controller that energizes a heater when heat is insufficient for reburning by a catalyst.
(2)上記排熱制御器がエンジン負荷センサ、エンジン
回転センサ及びエアフローセンサを備え、エンジントル
クとエンジン回転数とからエンジン負荷が中低負荷域に
あることを判断し、かつエアフローセンサで検出した吸
入空気量が所定値になるようにスロットル弁及びEGR
弁を絞る構成となっていることを特徴とする特許請求の
範囲第1項記載の煤再燃焼装置。
(2) The exhaust heat controller is equipped with an engine load sensor, an engine rotation sensor, and an air flow sensor, and determines that the engine load is in a medium-low load range from the engine torque and engine rotation speed, and detects it with the air flow sensor. The throttle valve and EGR are adjusted so that the amount of intake air reaches the predetermined value.
The soot reburning device according to claim 1, characterized in that the soot reburning device is configured to throttle the valve.
(3)上記ヒータ制御器が、触媒による再燃焼が不充分
ではあるが電気ヒータの通電加熱によって触媒による再
燃焼が可能となるヒータ作動領域を負荷領域に対応する
排気温度分布から求めて記憶する記憶部と、エンジン負
荷センサ、エンジン回転センサ及び排気温度センサとを
備え、エンジントルクとエンジン回転数とから負荷領域
が上記ヒータ作動領域にあることを判断し、かつ排気温
度センサで検出した排熱温度が所定値になるように電気
ヒータに通電する構成となつていることを特徴とする特
許請求の範囲第1項又は第2項記憶の煤再燃焼装置。
(3) The heater controller determines and stores a heater operating region in which re-combustion by the catalyst is insufficient but re-combustion by the catalyst is possible by energization heating of the electric heater from the exhaust temperature distribution corresponding to the load region. It is equipped with a storage unit, an engine load sensor, an engine rotation sensor, and an exhaust temperature sensor, and determines from the engine torque and engine rotation speed that the load region is in the heater operation region, and detects the exhaust heat detected by the exhaust temperature sensor. 2. A soot reburning device according to claim 1 or 2, characterized in that the electric heater is energized so that the temperature reaches a predetermined value.
(4)上記ヒータ制御器がヒータ能力を超えた加熱量を
求められたとき電気ヒータの通電を停止する機能を備え
ていることを特徴とする特許請求の範囲第1項乃至第3
項いずれかに記載の煤再燃焼装置。
(4) Claims 1 to 3, characterized in that the heater controller has a function of stopping energization of the electric heater when a heating amount exceeding the heater capacity is required.
The soot reburning device according to any one of paragraphs.
JP60077558A 1985-04-13 1985-04-13 Soot reburner Pending JPS61237811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60077558A JPS61237811A (en) 1985-04-13 1985-04-13 Soot reburner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60077558A JPS61237811A (en) 1985-04-13 1985-04-13 Soot reburner

Publications (1)

Publication Number Publication Date
JPS61237811A true JPS61237811A (en) 1986-10-23

Family

ID=13637342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60077558A Pending JPS61237811A (en) 1985-04-13 1985-04-13 Soot reburner

Country Status (1)

Country Link
JP (1) JPS61237811A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106518A (en) * 1991-10-16 1993-04-27 Nissan Motor Co Ltd Exhaust gas reflux device of diesel engine
EP1411228A1 (en) * 2002-10-18 2004-04-21 Renault s.a.s. Method for regenerating a particulate filter and device for same
JP2010144514A (en) * 2008-12-16 2010-07-01 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2010528220A (en) * 2007-05-31 2010-08-19 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Method of operating an automobile having an exhaust gas heating device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106518A (en) * 1991-10-16 1993-04-27 Nissan Motor Co Ltd Exhaust gas reflux device of diesel engine
EP1411228A1 (en) * 2002-10-18 2004-04-21 Renault s.a.s. Method for regenerating a particulate filter and device for same
JP2010528220A (en) * 2007-05-31 2010-08-19 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Method of operating an automobile having an exhaust gas heating device
JP2010144514A (en) * 2008-12-16 2010-07-01 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine

Similar Documents

Publication Publication Date Title
US6568173B1 (en) Control method for turbocharged diesel engine aftertreatment system
EP2165059B1 (en) Internal combustion engine exhaust gas control system and control method of internal combustion engine exhaust gas control system
US6851256B2 (en) Exhaust emission control device
KR100504422B1 (en) Exhaust emission control device for engine
CN107762591B (en) Device and method for regenerating a particle filter
JP4042399B2 (en) Exhaust purification device
JP2586218B2 (en) Control device for internal combustion engine
US20090043437A1 (en) Control method and device for hybrid motor
EP1298301B1 (en) Method for controlling the starting of an internal combustion engine
JP4929781B2 (en) DPF regeneration control device and DPF regeneration control method
US20070197157A1 (en) Engine intake air temperature management system
US20130304357A1 (en) Diesel Engine Operation for Fast Transient Response and Low Emissions
EP1517012A2 (en) Filter regeneration control
CN108952896B (en) Regeneration of a particle filter or a quaternary catalyst in an exhaust system of an internal combustion engine
KR20030022043A (en) Exhaust emission control device for engine
JPS61237811A (en) Soot reburner
JPH10288063A (en) Idling control device for hybrid engine
JP4178912B2 (en) Control device for internal combustion engine provided with turbocharger with electric motor
JP4211466B2 (en) Exhaust gas purification system for compression ignition internal combustion engine
JP2007278252A (en) Turbocharger control unit
CN113574257B (en) Method and device for regenerating a coated particle filter in the exhaust gas system of a motor vehicle operating on gasoline
JP6763488B2 (en) Control method and control device for internal combustion engine for vehicles
JP6958155B2 (en) Exhaust treatment device for internal combustion engine
JP3741030B2 (en) Internal combustion engine
JP3912314B2 (en) Hybrid vehicle combustion control system