JPS6123769B2 - - Google Patents

Info

Publication number
JPS6123769B2
JPS6123769B2 JP4130978A JP4130978A JPS6123769B2 JP S6123769 B2 JPS6123769 B2 JP S6123769B2 JP 4130978 A JP4130978 A JP 4130978A JP 4130978 A JP4130978 A JP 4130978A JP S6123769 B2 JPS6123769 B2 JP S6123769B2
Authority
JP
Japan
Prior art keywords
tba
reactor
isobutene
gaseous
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4130978A
Other languages
Japanese (ja)
Other versions
JPS54135710A (en
Inventor
Masao Imaizumi
Ko Sakata
Noboru Hirano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP4130978A priority Critical patent/JPS54135710A/en
Priority to DE19792913796 priority patent/DE2913796A1/en
Priority to GB7912368A priority patent/GB2022129B/en
Priority to FR7908963A priority patent/FR2422613A1/en
Priority to BE0/194488A priority patent/BE875433A/en
Publication of JPS54135710A publication Critical patent/JPS54135710A/en
Publication of JPS6123769B2 publication Critical patent/JPS6123769B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/03Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by addition of hydroxy groups to unsaturated carbon-to-carbon bonds, e.g. with the aid of H2O2
    • C07C29/04Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by addition of hydroxy groups to unsaturated carbon-to-carbon bonds, e.g. with the aid of H2O2 by hydration of carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/148Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound
    • C07C7/14858Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound with inorganic compounds not provided for before
    • C07C7/14866Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound with inorganic compounds not provided for before water

Abstract

PURPOSE:To obtain isobutene under mild conditions without external heating, in high yield, by the dehydration decomposition of a tertiary buranol (TBA) continuously supplying a gaseous TBA into the reaction vessel containing liquid TBA, water and a catalyst. CONSTITUTION:The starting material TBA is supplied from the tube 5, vaporized with the heater 4, and led into the reaction vessel 1 containing a cationic exchange resin catalyst and a 2-70 wt% aqueous solution of TBA. The temp. in the reaction vessel shold be maintained at 90-180 deg.C, and the pressure under 1.5-15 atm. The temp. and the pressure of the gaseous TBA supplied should be maintained higher than those inside the reaction vessel. The formed gaseous isobutene is led to the distillation tower 3 via the tube 6, and high purity isobutene is taken out from the tube 11. The mixture of the unreacted TBA, water and impurities in the gaseous TBA is led to the distillation tower 2 via the tube 8. TBA and the vapor are taken out from the tower top via the tube 9 and recycled.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はターシヤリーブタノールの脱水分解反
応を行い、イソブテンを製造する方法に関するも
のである。ターシヤリーブタノール(以下TBA
と略す)を脱水分解してイソブテンを得る方法に
ついてはアルミナ等の固体酸を触媒として用いる
方法が公知である。しかしながらこの方法の実施
にあたつては米国特許3665048(特公昭50−
12403)、特公昭48−10121にみられるように通常
250℃以上の高い反応温度を必要とする。このよ
うな状態のもとで反応は気相反応として進行する
が、このTBAの脱水分解反応は吸熱反応であ
り、この反応熱を供給しつつ高温で反応を進行さ
せるための工業装置には多くの投資を必要とする
ほか、高温で進行するイソブテンへの異性化反応
等のためにブテン−2等が混入し生成したイソブ
テンの品質の維持にも困難が伴う。一方比較的低
温で分解反応を行う方法として硫酸を触媒として
用いる方法が工業的にも実施されているが、周知
のように硫酸の著るしい腐食性に対処するために
装置材料としては高価なものを必要とする欠点が
ある。 これらの欠点を回避するものとして陽イオン交
換樹脂を用いる方法がいくつか指示されている。
ジヤーナル オブ キヤタリシス ボリウム3、
ページ25(1964)(Journal of Catalysis Vol3,
P25(1964))、同じくボリウム31、ページ27
(1973)(Vol31,P27(1973))等には強酸型陽イ
オン交換樹脂が液相でTBAの脱水分解反応に有
効な触媒となりうることが開示されている。しか
しそこにしめされている方法は撹拌式の反応器に
外熱式で反応熱を供給するもので、一定規模以上
の工業装置へのスケールアツプに際しては触媒の
耐熱性の範囲内では反応器の壁の温度を150℃以
下に保つ必要があるが、このような状態のもとで
は壁の内外の温度差が小さく、許容される最大温
度差のもとでも伝熱面積が不足して不可能であ
る。米国特許3510538(特公昭46−3042)はベン
ゼンなどの不活性有機液体の使用がTBAの液相
脱水分解反応の速度の維持に有効である旨が記載
されているが、100℃以下に加熱されたベンゼン
中にTBAを滴下し、生成イソブチレンガス、お
よび水とベンゼンの共沸ガスを反応器上部から抜
き出すもので、そこに示された脱水分解反応装置
は、前述の文献にしめされたものに同じであり工
業的に実施する場合に最も重要な課題を含む吸熱
反応熱の供給方法についてはなんの示唆も与えて
おらず、反応温度も100℃以下に限定されている
ので、得られる反応速度には限界がある。米国特
許4012456(特開昭51−59802)には陽イオン交換
樹脂を充填した塔型反応器による脱水分解反応が
記載されている。この方式では反応が気相で進行
するために液相反応に比較して単位触媒あたりの
イソブテン生成速度は小さくまた反応熱の供給も
外熱式に頼つているために反応装置はきわめて大
きなものとなり工業規模での実施には困難な点が
多い。 本発明者らはこれら従来の方法の欠点を解決し
たTBAの連続的脱水分解方法を研究した結果、
これらの欠点のないすぐれた方法を見い出した。 本発明は陽イオン交換樹脂触媒の存在下で
TBAの脱水分解反応によりイソブテンを連続的
に製造する方法において、該触媒が収容され、か
つTBAと水との液状混合物が存在し温度90〜180
℃、圧力1.5〜15気圧に保持されている反応器内
の該液状混合物中に反応器内圧力よりも高圧の加
熱されたガス状のTBAを連続的に供給し、生成
ガス状イソブテンおよび未反応のガス状TBAの
混合ガスを反応器上部より連続的に抜き出し、こ
の混合ガスからイソブテンを回収し、他方該
TBAと水との液状混合物の一部を反応器内の該
液状混合物の液相の部分から連続的に抜き出すこ
とを特徴とするイソブテンの製造方法に関する。 以下に本発明をさらに詳細に説明する。 本発明で言うTBA原料は純粋のTBAのみなら
ず、反応条件下で化学反応をおこさない有機物た
とえば飽和炭化水素、不飽和炭化水素、アルコー
ル、エーテル、カルボン酸等の物質が不純物とし
て少量たとえば10%以下程度混入したものも用い
ることができる。 また、水分を90wt%以下、好ましくは10〜
40wt%含むTBAを用いることができる。水分を
含んだTBAは凝固点が低くなるので取扱いに便
利であり、しかも本発明において有効に反応原料
として用いられる。 本発明は、これらのTBAまたは他物質が混入
したTBAを後に詳記するように加熱して気化
し、加圧状態で反応器に供給される。 他方本発明で言う触媒として用いられる陽イオ
ン交換樹脂は酸基を有し、陽イオン交換性能を有
する樹脂でスチレン系スルホン酸型樹脂あるいは
フエノールスルホン酸型樹脂などの強酸型樹脂が
それらの代表である。 スチレン系スルホン酸型イオン交換樹脂はスチ
レンとジビニルベンゼンなどの多不飽和化合物を
共重合させて得られる樹脂をスルホン化したもの
で、架橋された重合体に−SO3H基が導入された
ものである。 またフエノールスルホン酸型樹脂は通常フエノ
ールスルホン酸とホルムアルデヒドを縮合したも
のである。 本発明においてこれらの陽イオン交換樹脂は通
常平均粒径約0.1mm〜約10mm好ましくは0.3〜2mm
の粒子として使用される。 また、本発明で用いる反応器は少なくとも、原
料TBA供給口、上部に生成物および未反応TBA
混合ガスの抜出口、TBAと水との液状混合物の
排出口を有する耐圧の密閉容器である。 本発明では反応器は後記するように反応条件を
選択することにより、特に熱の供給又は除去のた
めの装備を有しないこともできることが特徴のひ
とつであるが、これらの装備ないし保温装備を有
することを何ら妨げるものではない。 以下に第1図にしたがつて、本発明の方法をさ
らに詳細に説明する。 原料TBA、TBA水溶液又はTBAを含んだ混合
物は管5から連続的に供給され、加熱器4で原料
は加熱気化される(以下TBAと他物質を含む場
合も、ガス状TBAに代表して記載する)。このガ
ス状TBAは好ましくは分散器を経て反応器1内
に供給される。反応器内には陽イオン交換樹脂触
媒が充填されており、かつTBAと水を含む液状
混合物がこの触媒と接して収容されている。この
液状混合物は反応器内の大部分特に触媒が存在す
る区域に液相として存在することが好ましい。こ
の液状混合物は通常TBAを約2〜70wt%、好ま
しくは10〜60wt%含む水溶液である。触媒は固
定床として存在しても良くまたTBAと水との液
状混合物中に懸濁、流動した状態で存在しても良
い。 反応器内に撹拌翼を備えるとか、該液状混合物
の循環をポンプで行ない反応器内の触媒を懸濁、
流動した状態に保持したり、また接触を均密に行
なわせることはTBAの脱水分解反応に好ましい
結果を与える。とくに劣化した触媒を連続的に新
規触媒と入れ替えるには好都合である。 触媒および該液状混合物を収容している反応器
内は温度90〜180℃、好ましくは105〜140℃、圧
力1.5〜15気圧好ましくは3〜10気圧に保持され
る。 原料ガス状TBAは前記したように反応器内に
供給されるが、反応器内圧よりも高圧たとえば、
0.1〜5気圧程度高圧で供給され、また温度は反
応器内温度よりも高温たとえば、1〜50℃程度高
温で供給することが好ましい。しかし反応を制御
するために反応器内温度よりも1〜30℃程度低温
で供給することも場合によつて採用される。この
ガス状TBAは反応器内の該液状混合物中に導入
されるが、通常該液状混合物の液相の高さの上か
ら1/3以下の場所、好ましくは上から1/2〜9/1
0の場所に 導入される。ガス状TBAを反応器のより上部に
導入すると、供給ガス状TBAが充分に反応せず
反応器上部から抜き出される未反応TBAの量が
多くなる。 導入されたガス状TBAはすでに前記所定の温
度、圧力で存在しているTBAと水との液状混合
物に接触し、これに吸収、凝縮され、また同時に
存在する触媒表面上で脱水分解反応が行なわれ
る。 反応器内の温度が低すぎる場合には単位触媒当
りのイソブテンの生成量が低下し、高すぎる場合
は触媒の劣下が促進されるほか、高温の熱源を使
用する不利が伴なう。また圧力が低すぎる場合に
は気体で供給される原料TBAが供給後充分に反
応器内の混合液中に吸収、凝縮されず有効な反応
が行なわれない。また圧力が高すぎる場合は反応
系での生成イソブテンの分圧が高くなり平衡的に
脱水分解反応が行なわれにくくなる。 以上のように、ガス状TBAを反応器内に供給
することにより反応が進行し、イソブテンが発生
しまた水が生成する。この発生したイソブテンは
触媒を流動状態で用いる場合には触媒の流動化を
助けるので有利である。 反応により生じたイソブテンはガス状で反応器
頂部から管6を経て連続的に抜き出される。この
ガス状イソブテンには未反応ガス状TBAが含ま
れ、また分解反応により生じた水が少量水蒸気と
なつて含まれる。さらに反応により副生したイソ
ブテンの低量重合物(主として2量体)が微量含
まれることがある。 本発明においてはTBAの転化率は20〜95%、
好ましくは30〜90%、さらに好ましくは40〜80%
で操作されるが1基の反応器での転化率が大きく
ない場合には2基ないし3基の反応器を直列的に
用いることは転化率を高めるのに有効であるばか
りでなく、触媒の交換時における生産量の低下を
防ぐのに役立つ。 反応器頂部から抜き出される混合ガスには通常
イソブテンに対して1/10〜2重量倍好ましくは1/
5〜 1重量倍のTBAが含まれるが、TBAの量が過多
の場合は、反応温度上昇、原料ガス状TBAの供
給口をより下部にする等の操作により制御するこ
とができる。 反応器頂部から抜き出されるガス状イソブチレ
ンを含む流れから製品イソブチレンを回収する。
この回収法は特に限定されないが、たとえば通常
の蒸留により達成される。すなわち、この流れを
蒸留塔3に導入し、塔頂から純度の高いイソブテ
ンを管11を経て得ることができ、また塔底から
液状TBAその他の不純物を少量含む流れが管1
2を経て得られる。この流れは一部廃棄し大部分
は原料として循環使用することができる。 他方、反応器内の該液相の部分からは管8を通
して、反応器内に存在するTBAと水を含む液状
混合物の一部が連続的に抜き出される。 ここで反応器内から該液状混合物を抜き出す場
合には反応器内の該液状混合物の液相の高さの約
1/2以下の部分の反応器の下部の液相中から抜き出 すことが好ましく、さらに好ましくは、前記原料
ガス状TBAの供給場所とほぼ同じ又はそれ以下
の高さの場所から抜き出すことである。 また、前記したように該液状混合物を循環ポン
プで反応器内を循環させる場合とは、その循環流
の一部分を抜き出すこともできる。 この液状混合物の抜き出しに際しては、触媒粒
子が同伴しないように、スクリーンなどを介して
行なうことができる。 この抜き出しにより反応器内の液相のレベルを
一定に保持すると同時に反応を連続的に有効に達
成することができる。 ここから抜き出される流れは、未反応の
TBA、水でありまた原料ガス状TBA中に含まれ
た不純物等の大部分である。反応が連続的に定常
で運転されている場合には、反応器内のTBAと
水との混合液の組成と同様なものであり、反応に
より生じた水の大部分および未反応液状TBAが
この流れにより抜き出される。 この流れ8は通常、反応に循環使用することが
できる。すなわち、この流れ8を蒸留塔2に供給
し蒸留操作することにより塔頂から管9を経て
TBAおよび水蒸気を含む流れを得、これを反応
器に循環使用することができる。蒸留塔2の塔底
からは主に水を含む流れが管10を経て排出され
る。 本発明においては以上のような方法により、
TBAからイソブテンが製造されるのであるが、
このような本発明による場合は、特に高温、高圧
を必要とせず、イソブテン2量体等の副生物が少
なく収率良くイソブテンが得られ、さらには反応
に必要な熱を外熱により供給する必要がないか又
は少ないため、大型の反応器を用いて実施するこ
とが可能であり工業的に有利である。また本発明
においては、未反応TBAが2ケ所から排出され
るが、これらはいずれも簡単な操作で回収され循
環使用され得るものであるので不都合を生じな
い。またさらに、本発明におけるイソブチレンの
製造方法においては、原料TBA中にセカンダリ
ーブタノールなどの不純物が含まれている場合に
おいても、このアルコールが分解されてn−ブテ
ン類を生成することがきわめて少なく、より高純
度のイソブテンを製造することができる。 以下に実施例をあげて、本発明をさらに具体的
に説明する。 実施例 1 撹拌器を備えた直径15cm容積5のよく保温し
た円筒型の反応器に強酸型陽イオン交換樹脂とし
て三菱化成(株)製PK228を湿潤状態で630ml充填す
る。反応開始に先立ち反応器のレベルが4附近
になるよう約30wt%のTBA水溶液を張込んでお
く。撹拌を行いつつ、2Kg/HRの供給速度で
TBA濃度88.4wt%の水溶液を125℃に加熱して混
合蒸気として反応器の下部(反応器内の液相の上
から約4/5の場所)から分散器をとおして反応器内 に吹込む。反応器頂部から生成イソブテンおよび
未反応TBAを含む気体部分をとり出す。このと
り出し管には圧力自動調整弁があり系内の圧力が
自動的に5気圧に維持されるように設定されてい
る。また反応器底部からTBAおよび水の混合液
体部分をとり出す。この管には系内の液レベルを
一定に保つための自動調整弁があり触媒を含む液
体容量が自動的に4に維持されるように設定さ
れている。蒸気以外のすべての熱源がない状態で
反応は継続的に進行し、最終的に得られた定常状
態は次のようなものであつた。
The present invention relates to a method for producing isobutene by carrying out a dehydrolysis reaction of tertiary-butanol. Tertiary butanol (TBA)
As for the method of obtaining isobutene by dehydration decomposition of (abbreviated as ), a method using a solid acid such as alumina as a catalyst is known. However, when implementing this method, US Pat.
12403), usually as seen in Tokuko Sho 48-10121
Requires a high reaction temperature of 250°C or higher. Under these conditions, the reaction proceeds as a gas phase reaction, but this dehydration decomposition reaction of TBA is an endothermic reaction, and many industrial devices are used to supply this reaction heat and allow the reaction to proceed at high temperatures. In addition to requiring investment, it is also difficult to maintain the quality of the isobutene produced due to the isomerization reaction to isobutene that progresses at high temperatures, which is contaminated with butene-2 and the like. On the other hand, a method using sulfuric acid as a catalyst has been implemented industrially as a method of carrying out decomposition reactions at relatively low temperatures; It has the disadvantage of needing something. Several methods using cation exchange resins have been suggested to avoid these drawbacks.
Journal of Catalysis Volume 3,
Page 25 (1964) (Journal of Catalysis Vol3,
P25 (1964)), also Volume 31, Page 27
(1973) (Vol. 31, P. 27 (1973)) and others disclose that a strong acid type cation exchange resin can be an effective catalyst for the dehydration and decomposition reaction of TBA in the liquid phase. However, the method described therein supplies reaction heat to a stirred reactor using external heat, and when scaling up to industrial equipment above a certain scale, the reactor's heat resistance must be within the range of the catalyst's heat resistance. It is necessary to keep the wall temperature below 150℃, but under these conditions, the temperature difference between the inside and outside of the wall is small, and even with the maximum allowable temperature difference, it is impossible due to insufficient heat transfer area. It is. U.S. Patent No. 3,510,538 (Japanese Patent Publication No. 46-3042) states that the use of an inert organic liquid such as benzene is effective in maintaining the rate of the liquid phase dehydration reaction of TBA. TBA is dropped into benzene, and the produced isobutylene gas and azeotropic gas of water and benzene are extracted from the top of the reactor. There is no suggestion as to how to supply the endothermic reaction heat, which is the same and is the most important issue when implementing it industrially, and the reaction temperature is limited to 100℃ or less, so the resulting reaction rate is has its limits. US Pat. No. 4,012,456 (Japanese Unexamined Patent Publication No. 51-59802) describes a dehydration and decomposition reaction using a tower reactor filled with a cation exchange resin. In this method, the reaction proceeds in the gas phase, so the isobutene production rate per unit catalyst is lower than in the liquid phase reaction, and the reaction heat is supplied using an external heating method, so the reactor becomes extremely large. There are many difficulties in implementing it on an industrial scale. The present inventors researched a continuous dehydration method for TBA that solved the drawbacks of these conventional methods.
We have found an excellent method that does not have these drawbacks. In the present invention, in the presence of a cation exchange resin catalyst,
In a method for continuously producing isobutene by a dehydrolysis reaction of TBA, the catalyst is contained, a liquid mixture of TBA and water is present, and the temperature is 90 to 180.
Heated gaseous TBA at a pressure higher than the pressure inside the reactor is continuously supplied into the liquid mixture in the reactor, which is maintained at a pressure of 1.5 to 15 atm at a temperature of 1.5 to 15 atm. A mixed gas of gaseous TBA is continuously extracted from the top of the reactor, isobutene is recovered from this mixed gas, and the
The present invention relates to a method for producing isobutene, characterized in that a portion of a liquid mixture of TBA and water is continuously extracted from a liquid phase portion of the liquid mixture in a reactor. The present invention will be explained in more detail below. The TBA raw material referred to in the present invention is not only pure TBA, but also organic substances that do not undergo chemical reactions under the reaction conditions, such as saturated hydrocarbons, unsaturated hydrocarbons, alcohols, ethers, carboxylic acids, etc., as impurities in small amounts, for example, 10%. It is also possible to use a substance mixed with the following amount. In addition, the water content should be 90wt% or less, preferably 10~
TBA containing 40 wt% can be used. Water-containing TBA has a low freezing point, making it convenient to handle, and moreover, it can be effectively used as a reaction raw material in the present invention. In the present invention, TBA or TBA mixed with other substances is heated and vaporized as will be described in detail later, and then supplied under pressure to a reactor. On the other hand, the cation exchange resin used as the catalyst in the present invention has acid groups and has cation exchange performance, and strong acid type resins such as styrene sulfonic acid type resins and phenolsulfonic acid type resins are representative examples thereof. be. Styrene-based sulfonic acid type ion exchange resin is a sulfonated resin obtained by copolymerizing styrene and polyunsaturated compounds such as divinylbenzene, and -SO 3 H groups are introduced into the crosslinked polymer. It is. Furthermore, the phenolsulfonic acid type resin is usually a condensation product of phenolsulfonic acid and formaldehyde. In the present invention, these cation exchange resins usually have an average particle size of about 0.1 mm to about 10 mm, preferably 0.3 to 2 mm.
used as particles. In addition, the reactor used in the present invention has at least a raw material TBA supply port and an upper part for producing product and unreacted TBA.
It is a pressure-resistant sealed container that has an outlet for mixed gas and an outlet for the liquid mixture of TBA and water. One of the features of the present invention is that the reactor can be equipped with no equipment for supplying or removing heat by selecting the reaction conditions as described later, but it is possible to have a reactor without any equipment for supplying or removing heat, but it is possible to use a reactor with these equipment or heat-retaining equipment. It does not prevent this in any way. The method of the present invention will be explained in more detail below with reference to FIG. The raw material TBA, TBA aqueous solution, or a mixture containing TBA is continuously supplied from the tube 5, and the raw material is heated and vaporized in the heater 4 (hereinafter, cases containing TBA and other substances are also described as gaseous TBA) do). This gaseous TBA is preferably fed into the reactor 1 via a disperser. The reactor is filled with a cation exchange resin catalyst, and a liquid mixture containing TBA and water is housed in contact with the catalyst. This liquid mixture is preferably present as a liquid phase in most of the reactor, particularly in the area where the catalyst is present. This liquid mixture is usually an aqueous solution containing about 2 to 70 wt% TBA, preferably 10 to 60 wt%. The catalyst may be present as a fixed bed or in a suspended or fluidized state in a liquid mixture of TBA and water. The catalyst in the reactor is suspended by providing a stirring blade in the reactor or by circulating the liquid mixture with a pump.
Maintaining a fluidized state and allowing intimate contact give favorable results to the dehydration and decomposition reaction of TBA. This is particularly convenient for continuously replacing deteriorated catalysts with new catalysts. The interior of the reactor containing the catalyst and the liquid mixture is maintained at a temperature of 90 to 180°C, preferably 105 to 140°C, and a pressure of 1.5 to 15 atmospheres, preferably 3 to 10 atmospheres. The raw material gaseous TBA is supplied into the reactor as described above, but at a pressure higher than the internal pressure of the reactor, for example,
It is preferably supplied at a high pressure of about 0.1 to 5 atm, and at a temperature higher than the internal temperature of the reactor, for example, about 1 to 50°C. However, in order to control the reaction, feeding at a temperature about 1 to 30° C. lower than the internal temperature of the reactor is sometimes adopted. This gaseous TBA is introduced into the liquid mixture in the reactor, and is usually at a location below 1/3 from the top of the liquid phase of the liquid mixture, preferably from 1/2 to 9/1 from the top.
Introduced at location 0. If gaseous TBA is introduced into the upper part of the reactor, the supplied gaseous TBA will not react sufficiently and the amount of unreacted TBA drawn out from the upper part of the reactor will increase. The introduced gaseous TBA comes into contact with the liquid mixture of TBA and water that already exists at the predetermined temperature and pressure, is absorbed and condensed therein, and at the same time, a dehydration decomposition reaction takes place on the surface of the existing catalyst. It can be done. If the temperature in the reactor is too low, the amount of isobutene produced per unit catalyst will decrease, and if it is too high, catalyst deterioration will be accelerated, and there will be disadvantages in using a high-temperature heat source. Furthermore, if the pressure is too low, the raw material TBA supplied in the form of a gas will not be sufficiently absorbed and condensed into the mixed liquid in the reactor after being supplied, and an effective reaction will not take place. Furthermore, if the pressure is too high, the partial pressure of isobutene produced in the reaction system becomes high, making it difficult to carry out the dehydration decomposition reaction in an equilibrium manner. As described above, by supplying gaseous TBA into the reactor, the reaction proceeds, producing isobutene and water. This generated isobutene is advantageous when the catalyst is used in a fluidized state because it helps fluidize the catalyst. The isobutene produced by the reaction is continuously withdrawn in gaseous form from the top of the reactor via tube 6. This gaseous isobutene contains unreacted gaseous TBA and also contains a small amount of water produced by the decomposition reaction in the form of water vapor. Furthermore, a trace amount of a low-amount polymer (mainly a dimer) of isobutene produced as a by-product from the reaction may be contained. In the present invention, the conversion rate of TBA is 20-95%,
Preferably 30-90%, more preferably 40-80%
When the conversion rate of one reactor is not high, it is not only effective to use two or three reactors in series to increase the conversion rate, but also to increase the conversion rate of the catalyst. This helps prevent a drop in production during replacement. The mixed gas extracted from the top of the reactor usually contains 1/10 to 2 times the weight of isobutene, preferably 1/1
Although 5 to 1 times the weight of TBA is contained, if the amount of TBA is excessive, it can be controlled by raising the reaction temperature, moving the feed port of the raw material gaseous TBA to a lower position, etc. Product isobutylene is recovered from a stream containing gaseous isobutylene withdrawn from the top of the reactor.
This recovery method is not particularly limited, but may be achieved, for example, by conventional distillation. That is, this stream is introduced into the distillation column 3, and highly pure isobutene can be obtained from the top of the column via pipe 11, and a stream containing a small amount of liquid TBA and other impurities can be obtained from the bottom of the column via pipe 1.
Obtained through step 2. A portion of this stream can be discarded and the majority can be recycled and used as a raw material. On the other hand, a portion of the liquid mixture containing TBA and water present in the reactor is continuously withdrawn from the liquid phase portion in the reactor through pipe 8. When extracting the liquid mixture from inside the reactor, it is preferable to extract it from the liquid phase in the lower part of the reactor, which is about 1/2 or less of the height of the liquid phase of the liquid mixture in the reactor. More preferably, the raw material gaseous TBA is extracted from a location at approximately the same height as or lower than the supply location. Furthermore, in the case where the liquid mixture is circulated within the reactor using a circulation pump as described above, a part of the circulating flow can also be extracted. This liquid mixture can be extracted through a screen or the like so that catalyst particles are not entrained. This withdrawal allows the level of the liquid phase in the reactor to be kept constant while the reaction can be effectively carried out continuously. The flow extracted from this is the unreacted
TBA is water and most of the impurities contained in the raw material gaseous TBA. When the reaction is operated continuously and at a steady state, the composition of the mixture of TBA and water in the reactor is similar, and most of the water produced by the reaction and unreacted liquid TBA are in this mixture. It is extracted by the flow. This stream 8 can normally be recycled to the reaction. That is, by supplying this stream 8 to the distillation column 2 and performing a distillation operation, the stream 8 is passed from the top of the column through the pipe 9.
A stream containing TBA and water vapor is obtained which can be recycled to the reactor. A stream containing mainly water is discharged from the bottom of the distillation column 2 via a line 10. In the present invention, by the above method,
Isobutene is produced from TBA,
In the case of the present invention, isobutene can be obtained in high yield without requiring particularly high temperature or high pressure, with few by-products such as isobutene dimer, and furthermore, it is necessary to supply the heat necessary for the reaction with external heat. Since there is no or a small amount of waste, it is possible to carry out the process using a large reactor, which is industrially advantageous. Further, in the present invention, unreacted TBA is discharged from two places, but since both can be recovered and recycled with a simple operation, no inconvenience occurs. Furthermore, in the method for producing isobutylene of the present invention, even if the raw material TBA contains impurities such as secondary butanol, the decomposition of this alcohol to produce n-butenes is extremely rare, and High purity isobutene can be produced. The present invention will be explained in more detail with reference to Examples below. Example 1 A well-insulated cylindrical reactor with a diameter of 15 cm and a volume 5 equipped with a stirrer was filled with 630 ml of PK228 manufactured by Mitsubishi Kasei Corporation as a strong acid type cation exchange resin in a wet state. Prior to the start of the reaction, approximately 30 wt% TBA aqueous solution is charged so that the reactor level is around 4. At a feeding rate of 2Kg/HR while stirring.
An aqueous solution with a TBA concentration of 88.4wt% is heated to 125℃ and is blown into the reactor as a mixed vapor from the bottom of the reactor (approximately 4/5 of the way from above the liquid phase in the reactor) through a disperser. . A gaseous portion containing produced isobutene and unreacted TBA is taken out from the top of the reactor. This outlet pipe is equipped with an automatic pressure regulating valve, and the pressure within the system is automatically maintained at 5 atmospheres. Also, take out the mixed liquid portion of TBA and water from the bottom of the reactor. This pipe is equipped with an automatic adjustment valve to keep the liquid level in the system constant, and is set so that the volume of liquid containing the catalyst is automatically maintained at 4. The reaction proceeded continuously in the absence of any heat source other than steam, and the steady state finally obtained was as follows.

【表】 以上の結果よりTBAの転化率は63.5%、イソ
ブテンへの選択率は99.7%であつた。 反応は長時間安定して継続して行なわれ、触媒
の劣化は少なかつた。 気体抜き出し管から抜き出された混合気体を蒸
留し純度99.98%のイソブテンを得た。 実施例 2 直径35cm、容積100のステンレス製のよく保
温した円筒型の反応器に強酸型陽イオン交換樹脂
として米国Rohm & Haas社のアンバーライト
120B(有効径0.45〜0.6mm)の45Kgを固定床とし
て充填する。反応開始に先立ち反応器内のレベル
が80附近になるよう約30wt%のTBA水溶液を
張込んでおく。しかるのちTBA濃度80wt%の水
溶液を150℃に加熱して蒸発させ混合蒸気とし分
散器をとおして200Kg/hrの速度で反応器の下部
から吹込む。反応器頂部から生成イソブテンおよ
び未反応TBAを含む混合気体部分をとり出す。
このとり出し管には圧力自動調整弁があり系内の
圧力が自動的に7気圧に維持されるように設定さ
れている。また反応器底部からTBAと水との混
合液体部分をとり出す。この管には系内の液レベ
ルを一定に保つための自動調整弁があり触媒を含
む液体容量が自動的に80に維持されるように設
定されている。 原料を気化させる蒸発器以外すべての熱源がな
い状態で反応は継続的に進行し、最終的に得られ
た定常状態は次のようなものであつた。
[Table] From the above results, the conversion rate of TBA was 63.5% and the selectivity to isobutene was 99.7%. The reaction continued stably for a long time, with little deterioration of the catalyst. The mixed gas extracted from the gas extraction tube was distilled to obtain isobutene with a purity of 99.98%. Example 2 Amberlite (Rohm & Haas, Inc., USA) was used as a strong acid type cation exchange resin in a well-insulated cylindrical stainless steel reactor with a diameter of 35 cm and a volume of 100 cm.
Pack 45Kg of 120B (effective diameter 0.45-0.6mm) as a fixed bed. Prior to the start of the reaction, approximately 30 wt% TBA aqueous solution is charged so that the level inside the reactor is around 80. Thereafter, an aqueous solution with a TBA concentration of 80 wt% is heated to 150°C and evaporated to form a mixed vapor, which is blown into the reactor from the bottom at a rate of 200 kg/hr through a disperser. A mixed gas portion containing produced isobutene and unreacted TBA is taken out from the top of the reactor.
This outlet pipe is equipped with an automatic pressure regulating valve, and the pressure within the system is automatically maintained at 7 atmospheres. Also, a mixed liquid portion of TBA and water is taken out from the bottom of the reactor. This pipe has an automatic adjustment valve to keep the liquid level in the system constant, and the volume of the liquid containing the catalyst is automatically maintained at 80. The reaction proceeded continuously without any heat source other than the evaporator for vaporizing the raw materials, and the steady state finally obtained was as follows.

【表】 以上の結果よりTBAの転化率は67.2%、イソ
ブテンへの選択率は99.6%であつた。 反応は長時間継続して行なわれ、触媒の劣化は
少なかつた。気体抜出し管から抜き出された混合
気体を蒸留し、純度99.99%のイソブテンを得
た。
[Table] From the above results, the conversion rate of TBA was 67.2% and the selectivity to isobutene was 99.6%. The reaction continued for a long time, with little deterioration of the catalyst. The mixed gas extracted from the gas extraction tube was distilled to obtain isobutene with a purity of 99.99%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のイソブテン製造方法を例示
するフローチヤートである。 1:反応器、2:TBA蒸留塔、3:イソブテ
ン蒸留塔、4:加熱器、5:原料供給管、6:生
成イソブテン抜出管、8:液状混合物抜出管。
FIG. 1 is a flowchart illustrating the method for producing isobutene of the present invention. 1: Reactor, 2: TBA distillation column, 3: Isobutene distillation column, 4: Heater, 5: Raw material supply pipe, 6: Produced isobutene extraction pipe, 8: Liquid mixture extraction pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 陽イオン交換樹脂触媒の存在下でターシヤリ
ーブタノールの脱水分解反応によりイソブテンを
連続的に製造する方法において、該触媒が収容さ
れ、かつターシヤリーブタノールと水との液状混
合物が存在し温度90〜180℃、圧力1.5〜15気圧に
保持されている反応器内の該液状混合物中に反応
器内圧力よりも高圧の加熱されたガス状のターシ
ヤリーブタノールを連続的に供給し、生成したガ
ス状イソブテンおよび未反応のガス状ターシヤリ
ーブタノールの混合ガスを反応器上部より連続的
に抜き出し、この混合ガスからイソブテンを回収
し、他方反応器内のターシヤリーブタノールと水
との液状混合物の一部を反応器内の該液状混合物
の液相の部分から連続的に抜き出すことを特徴と
するイソブテンの製造方法。
1. A method for continuously producing isobutene by dehydration decomposition reaction of tertiary-butanol in the presence of a cation exchange resin catalyst, in which the catalyst is accommodated, a liquid mixture of tertiary-butanol and water is present, and the temperature is 90-90°C. Heated gaseous tertiary butanol at a pressure higher than the pressure inside the reactor is continuously supplied into the liquid mixture in the reactor maintained at 180°C and a pressure of 1.5 to 15 atm. A mixed gas of isobutene and unreacted gaseous tertiary-butanol is continuously extracted from the top of the reactor, isobutene is recovered from this mixed gas, and a part of the liquid mixture of tertiary-butanol and water in the reactor is extracted. A method for producing isobutene, characterized in that isobutene is continuously extracted from a liquid phase portion of the liquid mixture in a reactor.
JP4130978A 1978-04-10 1978-04-10 Preparation of isobutene by decomposition of tertiary butanol Granted JPS54135710A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4130978A JPS54135710A (en) 1978-04-10 1978-04-10 Preparation of isobutene by decomposition of tertiary butanol
DE19792913796 DE2913796A1 (en) 1978-04-10 1979-04-05 PROCESS FOR CONTINUOUS SEPARATION AND RECOVERY OF ISOBUTEN
GB7912368A GB2022129B (en) 1978-04-10 1979-04-09 Process for the separation and recovery of isobutene
FR7908963A FR2422613A1 (en) 1978-04-10 1979-04-09 PROCESS FOR THE SEPARATION AND RECOVERY OF ISOBUTENE
BE0/194488A BE875433A (en) 1978-04-10 1979-04-09 PROCESS FOR SEPARATION AND RECOVERY OF ISOBUTENE AND PRODUCT THUS OBTAINED

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4130978A JPS54135710A (en) 1978-04-10 1978-04-10 Preparation of isobutene by decomposition of tertiary butanol

Publications (2)

Publication Number Publication Date
JPS54135710A JPS54135710A (en) 1979-10-22
JPS6123769B2 true JPS6123769B2 (en) 1986-06-07

Family

ID=12604887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4130978A Granted JPS54135710A (en) 1978-04-10 1978-04-10 Preparation of isobutene by decomposition of tertiary butanol

Country Status (2)

Country Link
JP (1) JPS54135710A (en)
BE (1) BE875433A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058893B2 (en) 1979-04-27 1985-12-23 東亜燃料工業株式会社 Method for producing tertiary alcohol
JPS6058894B2 (en) 1979-06-26 1985-12-23 東亜燃料工業株式会社 Manufacturing method of tertiary alcohol
JPH0788318B2 (en) * 1986-08-06 1995-09-27 三菱レイヨン株式会社 Method for producing isobutylene
CN101155771B (en) 2005-02-07 2010-12-22 三菱丽阳株式会社 Method for synthesizing t-butyl (meth)acrylate
WO2007052505A1 (en) 2005-11-01 2007-05-10 Asahi Kasei Chemicals Corporation Processes for production of isobutene and tertiary butanol
EP2070894A1 (en) 2007-12-12 2009-06-17 BP p.l.c. A process for the conversion of n-butanol of n-butanol to di-isobutene and pentene
EP2105428A1 (en) 2007-12-12 2009-09-30 BP p.l.c. A process for the conversion of n-butanol to di-isobutene
EP2070896A1 (en) 2007-12-12 2009-06-17 BP p.l.c. A process for the conversion of n-butanol to di-isobutene and propene
KR101161845B1 (en) 2010-04-26 2012-07-03 송원산업 주식회사 Method of preparing alkene compound
CN111530379A (en) * 2020-04-29 2020-08-14 凯瑞环保科技股份有限公司 Process method and process device for preparing isobutene

Also Published As

Publication number Publication date
BE875433A (en) 1979-07-31
JPS54135710A (en) 1979-10-22

Similar Documents

Publication Publication Date Title
US4634784A (en) Process for production of epichlorohydrin
KR100325022B1 (en) Process for Ethyl Acetate Production
KR880002271B1 (en) Process for producing high purity isobutene by dehydrating tertiary butanol
US3970713A (en) Process for the production of allyl alcohol
JPS6123769B2 (en)
MXPA06010637A (en) Utilization of acetic acid reaction heat in other process plants.
EP0713857B1 (en) Improved process for preparing unsaturated carboxylic acid esters and novel apparatus for preparing the same
JP3092385B2 (en) Silicon-aluminum catalyst and method for producing tertiary olefin using the catalyst
JPS6123770B2 (en)
US4747914A (en) Process for the purification of 1,2-dichloroethane
US4554392A (en) Method of preparing 1,2-dichloroethane from ethylene and chlorine gas
US2392303A (en) Production of acrylic nitrile
US4408082A (en) Oxidation of isobutane in the dense phase and at low oxygen concentration
JPH0235729B2 (en)
EP0717022B1 (en) Process for producing isopropyl alcohol by hydrating propylene
GB1578292A (en) Bromine production
US3663613A (en) Separation of organic acid products and water from catalysts after synthesis by reduced pressure distillation
JP2594592B2 (en) Continuous production method of anhydrous potassium-t-butoxide
JP3213392B2 (en) Acetic acid production method
US4131741A (en) Cobalt-catalyzed oxidation of C3 to C7 saturated aliphatic hydrocarbons to oxygenated products
US4086267A (en) Cobalt-catalyzed oxidation of C3 to C7 saturated aliphatic hydrocarbons to oxygenated products including acetic acid
JPS58192851A (en) Preparation of higher alcoholic ester from acrylic or methacrylic acid
EP0054576B2 (en) Process for producing esters from olefins
US2945891A (en) Process for the recovery of secondary alcohols
JPH0131496B2 (en)