JPS61237534A - Optical reception circuit - Google Patents

Optical reception circuit

Info

Publication number
JPS61237534A
JPS61237534A JP60077548A JP7754885A JPS61237534A JP S61237534 A JPS61237534 A JP S61237534A JP 60077548 A JP60077548 A JP 60077548A JP 7754885 A JP7754885 A JP 7754885A JP S61237534 A JPS61237534 A JP S61237534A
Authority
JP
Japan
Prior art keywords
resistor
diode
photoelectric conversion
conversion element
optical signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60077548A
Other languages
Japanese (ja)
Inventor
Teruhiko Suzuki
輝彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60077548A priority Critical patent/JPS61237534A/en
Publication of JPS61237534A publication Critical patent/JPS61237534A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Light Receiving Elements (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To make the operating point of an amplifier element amplifying an output signal of a photoelectric converting element constant by connecting a diode in parallel with a resistor connected in series with the photoelectric converting element 11. CONSTITUTION:When a received optical signal level is low, a DC component of a current flowing to the photoelectric conversion element 11 is small and a potential difference between points (a, b) of a resistor 12 is very small. When the received optical signal level is, however, high, the DC component flowing to the element 11 is large, the potential difference between the points (a, b) of the resistor 12 is a forward voltage (0.6V) of the diode 14 or over and a current flows to the diode 14. Thus, the potential difference between the points (a, b) is suppressed to the forward voltage of the diode 14 to make the operating point of a field effect transistor TR 13 constant independently of the received optical signal level.

Description

【発明の詳細な説明】 〔概要〕 ホトダイオード等の光電変換素子の出力信号を増幅男る
増幅素子の動作点を、入力ディジタル光信号レベルの変
化に対してもほぼ一定となるようにして、光受信回路の
動作を安定化させたものである。
[Detailed Description of the Invention] [Summary] By amplifying the output signal of a photoelectric conversion element such as a photodiode, the operating point of the amplifying element is kept almost constant even with changes in the level of the input digital optical signal. This stabilizes the operation of the receiving circuit.

〔産業上の利用分野〕[Industrial application field]

本発明は、光通信システムに於いて、伝送されたディジ
タル光信号を受信して電気信号に変換する光受信回路に
関するものである。
The present invention relates to an optical receiving circuit that receives a transmitted digital optical signal and converts it into an electrical signal in an optical communication system.

光ファイバ等の光伝送路により伝送されたディジタル光
信号は、ホトダイオード等の光電変換素子により電気信
号に変換され、電界効果トランジスタ等の増幅素子によ
って増幅されて、後段のデータ処理回路に転送されるも
のである。
A digital optical signal transmitted through an optical transmission line such as an optical fiber is converted into an electrical signal by a photoelectric conversion element such as a photodiode, amplified by an amplification element such as a field effect transistor, and then transferred to a subsequent data processing circuit. It is something.

〔従来の技術〕[Conventional technology]

ディジタル光信号を受信する従来の光受信回路は、例え
ば、第4図又は第5図に示す構成を有するものであった
。第4図に於いて、31はホトダイオード等の光電変換
素子、32は抵抗、33は電界効果トランジスタ、35
はバイポーラトランジスタ、36は出力端子、C1,C
2は結合用及びバイパス用のコンデンサ、R1−R4は
抵抗、+V、−yは電源電圧である。受信された光信号
は光電変換素子31に加えられ、その光信号に対応した
電流が光電変換素子31に流れるので、光信号を電気信
号に変換することができる。その電気信号は、トランジ
スタ33.35により増幅され、その増幅出力信号が出
力端子36から後段の回路へ転送される。光電変換素子
31と直列に一端が接続された抵抗32の他端は出力端
子36に接続され、帰還回路を構成している。
A conventional optical receiving circuit for receiving a digital optical signal has a configuration shown in FIG. 4 or FIG. 5, for example. In FIG. 4, 31 is a photoelectric conversion element such as a photodiode, 32 is a resistor, 33 is a field effect transistor, and 35 is a photoelectric conversion element such as a photodiode.
is a bipolar transistor, 36 is an output terminal, C1, C
2 is a coupling and bypass capacitor, R1-R4 are resistors, +V and -y are power supply voltages. The received optical signal is applied to the photoelectric conversion element 31, and a current corresponding to the optical signal flows through the photoelectric conversion element 31, so that the optical signal can be converted into an electrical signal. The electrical signal is amplified by transistors 33 and 35, and the amplified output signal is transferred from output terminal 36 to a subsequent circuit. One end of the resistor 32 is connected in series with the photoelectric conversion element 31, and the other end of the resistor 32 is connected to an output terminal 36, forming a feedback circuit.

又第5図に於いて、41は光電変換素子、42は抵抗、
43は電界効果トランジスタ、45はバイポーラトラン
ジスタ、46は出力端子、R1−R4は抵抗、CI、C
2は結合用及びバイパス用のコンデンサ、+V、−Vは
電源電圧である。この回路は、光電変換素子41と直列
に一端が接続された抵抗42の他端は接地されているも
ので、受信された光信号は光電変換素子41により電気
信号に変換され、トランジスタ43.45により増幅さ
れて出力端子46から後段の回路へ転送される。
Also, in FIG. 5, 41 is a photoelectric conversion element, 42 is a resistor,
43 is a field effect transistor, 45 is a bipolar transistor, 46 is an output terminal, R1-R4 are resistors, CI, C
2 is a coupling and bypass capacitor, +V and -V are power supply voltages. In this circuit, one end of a resistor 42 is connected in series with a photoelectric conversion element 41, and the other end is grounded.A received optical signal is converted into an electric signal by the photoelectric conversion element 41, and transistors 43, 45 The signal is amplified by the output terminal 46 and transferred to the subsequent circuit.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

光伝送路を介して受信する光信号は、送信側の発光素子
や光伝送路の状態等により、レベルが変化する場合があ
る。従って、第4図に示す従来の光受信回路に於いては
、受信した光信号レベルが低いと、光電変換素子31に
流れる電流の直流分も小さくなるから、抵抗32による
電圧降下も僅かであって、a点とb点との間の電位差は
僅かなものとなるが、受信した光信号レベルが高くなる
と、光電変換素子31に流れる電流の直流分が大きくな
り、抵抗32による電圧降下が大きくなって、a、b点
間の電位差が大きくなる。b点は定電圧点となるもので
あるから、a、b点間の電位差が大きくなると、a点の
電位が上昇することになる。即ち、フロントエンドの電
界効果トランジスタ33のゲート電位が上昇し、最適値
からずれるので、信号の波形歪が大きくなる。
The level of an optical signal received via an optical transmission line may change depending on the state of the light emitting element on the transmitting side, the optical transmission line, and the like. Therefore, in the conventional optical receiving circuit shown in FIG. 4, when the level of the received optical signal is low, the DC component of the current flowing through the photoelectric conversion element 31 is also small, so the voltage drop due to the resistor 32 is small. Therefore, the potential difference between point a and point b is small, but as the level of the received optical signal increases, the DC component of the current flowing through the photoelectric conversion element 31 increases, and the voltage drop due to the resistor 32 increases. As a result, the potential difference between points a and b increases. Since point b is a constant voltage point, when the potential difference between points a and b increases, the potential at point a increases. That is, the gate potential of the front-end field effect transistor 33 increases and deviates from the optimum value, resulting in increased waveform distortion of the signal.

又第5図に示す従来の光受信回路に於いても前述と同様
に、受信した光信号レベルに対応して、電界効果トラン
ジスタ43のゲート電位が変化するから、その動作点が
最適点からずれることになり、信号の波形歪が大きくな
る。
Furthermore, in the conventional optical receiving circuit shown in FIG. 5, the gate potential of the field effect transistor 43 changes in response to the level of the received optical signal, as described above, so its operating point deviates from the optimum point. As a result, the waveform distortion of the signal increases.

本発明は、光電変換素子の出力信号を増幅する増幅素子
の動作点を一定化することを目的とするものである。
An object of the present invention is to stabilize the operating point of an amplification element that amplifies an output signal of a photoelectric conversion element.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の光受信回路は、第1図の原理説明図を参照して
説明すると、受信した光信号を電気信号に変換するホト
ダイオード等の光電変換素子1と直列に抵抗2を接続し
、その抵抗2と並列にダイオード4を接続し、光電変換
素子1により変換された電気信号を電界効果トランジス
タ等の増幅素子3により増幅して、後段の回路へ転送す
るものである。
The optical receiving circuit of the present invention will be explained with reference to the principle explanatory diagram of FIG. A diode 4 is connected in parallel with the photoelectric conversion element 1, and the electrical signal converted by the photoelectric conversion element 1 is amplified by an amplification element 3 such as a field effect transistor and transferred to a subsequent circuit.

〔作用〕[Effect]

光電変換素子1と直列に接続された抵抗2に並列にダイ
オード4を接続したことにより、光電変換素子1に流れ
る電流の直流分が増大して、抵抗2の両端の電圧が上昇
しようとしても、ダイオード4に分流するから、そのダ
イオード4の順方向電圧に抑制することができ、それに
よって、増幅素子3の動作点を受信光信号レベルの変化
に対してもほぼ一定化することができる。
By connecting the diode 4 in parallel to the resistor 2 connected in series with the photoelectric conversion element 1, even if the DC component of the current flowing through the photoelectric conversion element 1 increases and the voltage across the resistor 2 attempts to rise, Since the current is shunted to the diode 4, the forward voltage of the diode 4 can be suppressed, thereby making it possible to keep the operating point of the amplifying element 3 almost constant even with changes in the level of the received optical signal.

〔実施例〕〔Example〕

以下図面を参照して本発明の実施例について詳細に説明
する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は、本発明の一実施例の回路図であり、11はホ
トダイオード等の光電変換素子、12は抵抗、13は電
界効果トランジスタ、14はダイオード、15はバイポ
ーラトランジスタ、16は出力端子、R1−R4は抵抗
、C1,C2は結合用及びバイパス用のコンデンサ、+
V、−Vは電源電圧であって、光電変換素子11と直列
に接続された抵抗12と並列にダイオード14が接続さ
れている。即ち、抵抗12とダイオード14の一端は、
ホトダイオード等の光電変換素子に適当なバイアス電圧
を与える点(図中のb点)に接続されている。
FIG. 2 is a circuit diagram of an embodiment of the present invention, in which 11 is a photoelectric conversion element such as a photodiode, 12 is a resistor, 13 is a field effect transistor, 14 is a diode, 15 is a bipolar transistor, 16 is an output terminal, R1-R4 are resistors, C1 and C2 are coupling and bypass capacitors, +
V and -V are power supply voltages, and a diode 14 is connected in parallel with a resistor 12 connected in series with the photoelectric conversion element 11. That is, one end of the resistor 12 and the diode 14 is
It is connected to a point (point b in the figure) that applies an appropriate bias voltage to a photoelectric conversion element such as a photodiode.

ダイオード14の順方向電圧は、通常0.6vであり、
光電変換素子11に流れる電流による抵抗12の電圧降
下が0.6V以下の場合は、ダイオード14には電流が
殆ど流れない状態となる。又光電変換素子11に流れる
電流による抵抗12の電圧降下が、0.6V以上となる
と、ダイオード14にも電流が流れて、ダイオード14
の端子電圧はほぼ0.6■を維持することになるから、
光電変換素子11に流れる電流が増加しても、抵抗12
の両端の電圧は増加しないことになる。
The forward voltage of the diode 14 is normally 0.6v,
When the voltage drop across the resistor 12 due to the current flowing through the photoelectric conversion element 11 is 0.6 V or less, almost no current flows through the diode 14 . Furthermore, when the voltage drop across the resistor 12 due to the current flowing through the photoelectric conversion element 11 becomes 0.6V or more, current also flows through the diode 14, causing the diode 14 to
Since the terminal voltage of will maintain approximately 0.6■,
Even if the current flowing through the photoelectric conversion element 11 increases, the resistance 12
The voltage across it will not increase.

従って、受信した光信号レベルが低いことにより、光電
変換素子11に流れる電流の直流分が小さいと、a点と
b点との間の電位差は抵抗12の電圧降下による僅かな
値となる。又受信した光信号レベルが高いことにより、
光電変換素子IIに流れる電流の直流分が大きいと、抵
抗12の電圧降下は0.6V以上となるので、ダイオー
ド14にも電流が流れることになる。それによって、a
点とb点との間の電位差は、ダイオード14の順方向電
圧の値に抑制され、充電変換素子Ifに流れる電流の直
流分、即ち、受信光信号レベルに関係なく、電界効果ト
ランジスタ13の動作点を一定化することができる。な
お、ダイオード14の直列接続数を選定することにより
、a点とb点との間の電位差を0.6V以外の所望の値
に設定することが可能である。即ち、増幅素子としての
電界効果トランジスタ13の動作点は、ダイオード14
の接続数により所望の点に設定することができるもので
ある。
Therefore, if the DC component of the current flowing through the photoelectric conversion element 11 is small due to the low level of the received optical signal, the potential difference between points a and b will be a small value due to the voltage drop across the resistor 12. Also, due to the high level of the received optical signal,
If the direct current component of the current flowing through the photoelectric conversion element II is large, the voltage drop across the resistor 12 will be 0.6 V or more, so that current will also flow through the diode 14. Thereby, a
The potential difference between the point and the point b is suppressed to the value of the forward voltage of the diode 14, and the operation of the field effect transistor 13 is suppressed regardless of the direct current component of the current flowing through the charging conversion element If, that is, the level of the received optical signal. Points can be made constant. Note that by selecting the number of series-connected diodes 14, it is possible to set the potential difference between point a and point b to a desired value other than 0.6V. That is, the operating point of the field effect transistor 13 as an amplifying element is the diode 14.
It can be set at a desired point depending on the number of connections.

第3図は本発明の他の実施例の回路図であり、21は光
電変換素子、22は抵抗、23は電界効果トランジスタ
、24はダイオード、25はバイポーラトランジスタ、
26は出力端子であって、他の第2図と同一符号は同一
部分を示すものである。この実施例は、光電変換素子2
1と接地との間に抵抗22が接続され、その抵抗22と
並列にダイオード24が接続されているものである。従
って、受信した光信号レベルが大きくなった時、流れる
電流の直流分が大きくなるが、抵抗22の電圧降下が0
.6V以上となると、ダイオード24の順方向電圧とな
るように分流されるから、電界効果トランジスタ23の
動作点を一定化することができる。
FIG. 3 is a circuit diagram of another embodiment of the present invention, in which 21 is a photoelectric conversion element, 22 is a resistor, 23 is a field effect transistor, 24 is a diode, 25 is a bipolar transistor,
26 is an output terminal, and the same reference numerals as in other parts of FIG. 2 indicate the same parts. In this example, the photoelectric conversion element 2
A resistor 22 is connected between the resistor 1 and the ground, and a diode 24 is connected in parallel with the resistor 22. Therefore, when the received optical signal level increases, the DC component of the flowing current increases, but the voltage drop across the resistor 22 becomes 0.
.. When the voltage exceeds 6V, the current is shunted to become the forward voltage of the diode 24, so that the operating point of the field effect transistor 23 can be made constant.

この実施例に於いても、抵抗22と並列に接続するダイ
オード24の直列接続数を選定することにより、増幅素
子としての電界効果トランジスタ23の動作点を設定す
ることができる。又増幅素子としては、バイポーラトラ
ンジスタを用いることも勿論可能である。
In this embodiment as well, the operating point of the field effect transistor 23 as an amplifying element can be set by selecting the number of series connections of the diodes 24 connected in parallel with the resistor 22. Furthermore, it is of course possible to use a bipolar transistor as the amplification element.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、ホトダイオード等の光
電変換素子1と直列に接続された抵抗2に対して、並列
にダイオード4を接続したものであり、光電変換素子1
に流れる電流の直流分が光信号レベルに対応して変化し
ても、抵抗2の両端の電圧をダイオード4の順方向電圧
に抑制することができ、それによって電界効果トランジ
スタ等の増幅素子3の動作点を一定化することができる
ものである。従って、信号の波形歪を生じることもな(
、光受信回路の動作を安定化することができる。
As explained above, in the present invention, a diode 4 is connected in parallel to a resistor 2 connected in series with a photoelectric conversion element 1 such as a photodiode.
Even if the DC component of the current flowing through the resistor 2 changes in response to the optical signal level, the voltage across the resistor 2 can be suppressed to the forward voltage of the diode 4. This allows the operating point to be made constant. Therefore, no signal waveform distortion occurs (
, the operation of the optical receiving circuit can be stabilized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理説明図、第2図及び第3図は本発
明のそれぞれ異なる実施例の回路図、第4図及び第5図
は従来例の回路図である。 1.11.21はホトダイオード等の光電変換素子、2
,12.22は抵抗、3は増幅素子、4.14.24は
ダイオード、13.23は電界効果トランジスタ、15
.25はバイポーラトランジスタ、16.26は出力端
子、R1−R4は抵抗、C1,C2は結合用及びバイパ
ス用のコンデンサである。
FIG. 1 is a diagram explaining the principle of the present invention, FIGS. 2 and 3 are circuit diagrams of different embodiments of the present invention, and FIGS. 4 and 5 are circuit diagrams of a conventional example. 1.11.21 is a photoelectric conversion element such as a photodiode, 2
, 12.22 is a resistor, 3 is an amplification element, 4.14.24 is a diode, 13.23 is a field effect transistor, 15
.. 25 is a bipolar transistor, 16 and 26 are output terminals, R1-R4 are resistors, and C1 and C2 are coupling and bypass capacitors.

Claims (2)

【特許請求の範囲】[Claims] (1)、ディジタル光信号を受信する光受信回路に於い
て、 受信したディジタル光信号を電気信号に変換する光電変
換素子(1)と、 該光電変換素子(1)と直列に一端が接続された抵抗(
2)と、 該抵抗(2)と前記光電変換素子(1)との接続点を入
力端子に接続した増幅素子(3)と、前記抵抗(2)に
並列に接続したダイオード(4)とを備えた ことを特徴とする光受信回路。
(1) In an optical receiving circuit that receives a digital optical signal, a photoelectric conversion element (1) that converts the received digital optical signal into an electrical signal, and one end connected in series with the photoelectric conversion element (1). resistance (
2), an amplifying element (3) whose input terminal is connected to a connection point between the resistor (2) and the photoelectric conversion element (1), and a diode (4) connected in parallel to the resistor (2). An optical receiving circuit characterized by comprising:
(2)、前記抵抗(2)と前記ダイオード(4)の他端
を所定のバイアス電位に接続したことを特徴とする特許
請求の範囲第1項記載の光受信回路。
(2) The optical receiving circuit according to claim 1, characterized in that the other ends of the resistor (2) and the diode (4) are connected to a predetermined bias potential.
JP60077548A 1985-04-13 1985-04-13 Optical reception circuit Pending JPS61237534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60077548A JPS61237534A (en) 1985-04-13 1985-04-13 Optical reception circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60077548A JPS61237534A (en) 1985-04-13 1985-04-13 Optical reception circuit

Publications (1)

Publication Number Publication Date
JPS61237534A true JPS61237534A (en) 1986-10-22

Family

ID=13637063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60077548A Pending JPS61237534A (en) 1985-04-13 1985-04-13 Optical reception circuit

Country Status (1)

Country Link
JP (1) JPS61237534A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436087A (en) * 1987-07-31 1989-02-07 Hamamatsu Photonics Kk Ic photodetector for photocoupler

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168343A (en) * 1982-03-29 1983-10-04 Fujitsu Ltd Optical agc circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168343A (en) * 1982-03-29 1983-10-04 Fujitsu Ltd Optical agc circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436087A (en) * 1987-07-31 1989-02-07 Hamamatsu Photonics Kk Ic photodetector for photocoupler

Similar Documents

Publication Publication Date Title
EP1011194B1 (en) High speed differential optoelectronic receiver
GB2096852A (en) Optical receiver
EP1625656B1 (en) Circuit for improved differential amplifier and other applications
JPH084167B2 (en) Laser drive device
US4817208A (en) Fiber optic receiver
US20080159755A1 (en) Optical signal receiving apparatus
JP3404209B2 (en) Transimpedance amplifier circuit
US4975566A (en) First stage circuit for an optical receiver
JPS61237534A (en) Optical reception circuit
US20100028023A1 (en) Optical receiver
JPH0315859B2 (en)
EP0680144B1 (en) Receiver arrangement
JP2003198279A (en) Monitor circuit and optical receiver
JP2002290168A (en) Optical receiver
JPH03273704A (en) Amplifier
JPH0348522A (en) Optical receiver circuit
JPH04225611A (en) Wide dynamic range light receiving circuit
JPH066308A (en) Light reception agc circuit
JP3039875B2 (en) Optical receiver
JPH03106133A (en) Optical transmission circuit
SU587599A1 (en) Push-pull power amplifoer
JP3654737B2 (en) Photoelectric conversion IC
JPS63228809A (en) Apd bias voltage control system
JPS60111540A (en) Temperature compensating circuit of apd
JPS63250230A (en) Light receiving circuit