JPS6123696A - Method for cold rolling dense hexagonal metal sheet - Google Patents

Method for cold rolling dense hexagonal metal sheet

Info

Publication number
JPS6123696A
JPS6123696A JP14500784A JP14500784A JPS6123696A JP S6123696 A JPS6123696 A JP S6123696A JP 14500784 A JP14500784 A JP 14500784A JP 14500784 A JP14500784 A JP 14500784A JP S6123696 A JPS6123696 A JP S6123696A
Authority
JP
Japan
Prior art keywords
oil
rolling
emulsion
particle size
lubricant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14500784A
Other languages
Japanese (ja)
Other versions
JPH0219877B2 (en
Inventor
Takashi Nishimura
孝 西村
Shigeo Hattori
重夫 服部
Masato Fukuda
正人 福田
Tetsuhiro Muraoka
村岡 哲弘
Yuji Koyama
佑二 児山
Ichiro Kokubo
小久保 一郎
Tokuo Mizuta
水田 篤男
Yoshio Oike
大池 美雄
Junji Sato
準治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14500784A priority Critical patent/JPS6123696A/en
Publication of JPS6123696A publication Critical patent/JPS6123696A/en
Publication of JPH0219877B2 publication Critical patent/JPH0219877B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a metal sheet having a good surface quality with good productivity without forming oil pitch, by cold rolling a dense hexagonal metal sheet by using an emulsion type lubricant contg. an oil disperse phase having a specified median particle size and a specified degree of saponification. CONSTITUTION:A dense hexagonal metal sheet is cold-rolled by using an emulsion type lubricant contg. an oil disperse phase haing a median particle size of 6mu or below and a degree of saponification of 80 or above. The emulsion lubricant having a median particle size of 6mu or below can be prepd. by adding an anionic, cationic or ampholytic hydrophilic group-contg. surfactant to oil to thereby form an emulsion contg. oil particles uniformly dispersed therein. When the lubricant has a degree of saponification of less than 80, rolling pressure is too high and difficulty ariser in carrying out rolling, while when the degree of saponification is 80 or above, an increase in rolling pressure is relatively gradual and the average rolling pressure reaches its peak at a pressure of 170kg/mm.<2> or below and is no longer increased, even when rolling reduction is increased.

Description

【発明の詳細な説明】 本発明は稠密六方晶金属板の冷間圧延方法に関し、特に
オイルピットが殆んどなく表面品質の良好な同金属板を
生産性良く製造することのできる方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for cold rolling a dense hexagonal metal plate, and particularly to a method for manufacturing the same metal plate with almost no oil pits and good surface quality with high productivity. It is.

本発明で冷間圧延の対象となる稠密六方晶の金属板とは
、Ti5Ti合金、Zr、Zr合金の様に結晶構造が稠
密六方晶である金属板を総称する。
The close-packed hexagonal metal plate to be subjected to cold rolling in the present invention is a general term for metal plates having a close-packed hexagonal crystal structure, such as Ti5Ti alloy, Zr, and Zr alloy.

金属板の冷間圧延においては焼付防止の為圧延油の使用
が必須とされるが、反面圧延油を供給しす゛ぎると、圧
延ロールと被圧延材の間が流体潤滑となり、高圧の圧延
油と接する被圧延材の自由表面に凹凸(所謂オイルピッ
ト)を生じることが知られている。殊に前記稠密六方晶
金属の様に結晶方位によって変形抵抗が著しく異なる金
属では、変形抵抗の低い方位の結晶が容易に変形する為
オイルピットが発生し易く、例えばTi冷延板において
は該ピットの深さが十数ミクロンに達することも稀では
ない。このオイルピットは最終製品の表面精度を著しく
阻害するので、圧延工程で発生するオイルピットを如何
に小さくするかということが、iこの種の難加工性金属
板の冷間圧延における重要な課題となっている。そして
このオイルピットの許容限界は製品の用途によって異々
る表面要求精度によっても異なるが、深さにして1〜2
μm以下であることが要求されることも少なくない。
In the cold rolling of metal plates, it is essential to use rolling oil to prevent seizure, but on the other hand, if too much rolling oil is supplied, fluid lubrication will occur between the rolling rolls and the material to be rolled, and the high-pressure rolling oil will It is known that unevenness (so-called oil pits) is produced on the free surface of the rolled material in contact with the rolling material. In particular, in metals such as the dense hexagonal metals, which have significantly different deformation resistance depending on the crystal orientation, oil pits are likely to occur because crystals in orientations with lower deformation resistance are easily deformed. It is not uncommon for the depth to reach more than ten microns. These oil pits significantly impede the surface precision of the final product, so how to reduce the size of the oil pits that occur during the rolling process is an important issue in the cold rolling of this type of difficult-to-work metal sheet. It has become. The allowable limit of this oil pit varies depending on the required surface accuracy depending on the product's use, but the depth is 1 to 2.
It is often required that the thickness be less than μm.

ところでオイルピットは、前述の如く過剰量の潤滑油が
ロールと被圧延材との間に介入する為に生じるものと考
えられており、引込まれる潤滑油量を極限まで少なくし
且つ均一にすることができればオイルピットを極限状態
まで浅くなし得るものと考えられる。但しこの場合、圧
延中に油膜切れが起こると焼付きの問題が発生するので
、特にTi+Zr或はこれらの合金の様に焼付き易い金
属板の圧延においては、必要最小限の量の油を被加工板
の表面全域に均一に付着させることが極めて重要な課題
となる。しかしながら従来の潤滑剤では、焼付きを生じ
ない程度の量の潤滑剤を使用するとオイルビットが発生
し、一方オイルピットが発生しない程度まで潤滑油供給
量を減少すると油膜切れを起こして焼付きの問題が発生
し、上記2つの問題を同時に解消することはできなかっ
た。
By the way, as mentioned above, oil pits are thought to be caused by an excessive amount of lubricating oil intervening between the rolls and the rolled material, and the amount of lubricating oil drawn in must be minimized and made uniform. If this is possible, it is thought that the oil pit can be made as shallow as possible. However, in this case, if the oil film runs out during rolling, a seizure problem will occur, so when rolling metal sheets that are prone to seizure, such as Ti+Zr or their alloys, it is important to apply only the minimum amount of oil necessary. It is extremely important to ensure uniform adhesion over the entire surface of the processed plate. However, with conventional lubricants, if an amount of lubricant that does not cause seizure occurs, oil bits will occur, whereas if the lubricant supply amount is reduced to the extent that oil pits do not occur, the oil film will run out and cause seizure. A problem arose, and it was not possible to solve the above two problems at the same time.

本発明者等はこうした事情に着目し、稠密六方晶金属板
を対象として、潤滑剤の供給量過多によるオイルビット
の発生及び潤滑剤の油膜切れによる焼付きの発生という
2つの問題を同時に解消することのできる様な冷間圧延
法を確立しようとして、エマルジョン潤滑剤の粒子径や
けん化価、圧延速度等を主体にして種々研究を進めてき
た。本発明社かかる研究の結果完成されたものであって
、その構成は、中心粒径が6μm以下で且つけん化価が
80以上である油性分散質、を含むエマルジョン型潤滑
剤を使用し、稠密六方晶金属板を冷間圧延するところに
要旨を有するものである。
The present inventors focused on these circumstances, and aimed to solve two problems simultaneously: occurrence of oil bits due to excessive supply of lubricant and occurrence of seizure due to lack of oil film of lubricant, targeting dense hexagonal metal plates. In an attempt to establish a cold rolling method that would enable this, various studies have been conducted, focusing on the particle size, saponification value, rolling speed, etc. of emulsion lubricants. This product was completed as a result of the research conducted by the present invention, and its composition uses an emulsion-type lubricant containing an oil-based dispersoid with a center particle size of 6 μm or less and a saponification value of 80 or more, and has a dense hexagonal structure. The gist is that a crystalline metal plate is cold rolled.

本発明では上記の如く特にエマルジョン截潤滑剤を構成
する分散質の粒径及びけん化価を厳密に規定しているが
、その理由は以下に詳述する通シである。即ち本発明者
等が種々の予備実験を行なったところによると、エマル
ジョン型潤滑油の潤滑a能a、エマルジョン濃度もさる
ことながら、「分散質のけん化価及び粒子径によって著
しい影響を受ける」という知見が得られためで、これら
の点を定量的に明確にすべく研究を進めた。そしてけん
化価の異なる種々の牛脂系油を分散質とするエマルジョ
ン型潤滑剤(濃度1チ又は0.5%)を調製し、各潤滑
剤を用いて圧延実験を行ない、圧下率Ct I =/n
(b、o/h i ) )と平均圧延圧力(Pm)の関
係を調べた。但し圧延条件は次の通シとしワークロール
径254mm+圧延速度12m/mで1パスあたりの圧
下率を10チとし厚さ1.0 I!lff1の純チタン
板を厚さ0.5+++mtで圧延した。その結果は第1
図に示した通シであシ、圧下率の増大に伴なう平均圧延
圧力の増加傾向は牛脂系油のけん化価によって著しく異
な)、けん化価が零のものでは極〈僅かな圧下率でも圧
延圧力は急激に高tカ、圧延操業は実質上困難になると
考えられる。そして牛脂系油のけん化価が高くなるほど
圧延圧力の増加傾向は小さくなぁか、圧延圧力はけん化
価が80の潤滑剤を使用したときに観測される圧力が実
操業上の限界で゛あシ、80未満の4のでは圧延圧力が
高くなシすぎて実操業が困難になる。そして80以上の
牛脂系油を使用したものでは前記増加傾向が比較的緩慢
になると共に、平均圧延圧力社約170ψが程度以下で
頭打ちの状態となシ、圧下率を高めてもそれ以上に平均
圧延圧力が増大することはない。これらの結果からも明
らかな様に、圧延時の通板抵抗を抑えて冷間通板を円滑
に遂行していく為には、エマルジョン型潤滑剤を構成す
る油性分散質としてけん化価が80AL上のものを選択
すべきであることが分かる。
In the present invention, as described above, the particle size and saponification value of the dispersoid constituting the emulsion cutting lubricant are strictly specified, and the reason for this is as detailed below. In other words, according to various preliminary experiments conducted by the present inventors, the lubricating ability a of emulsion-type lubricating oil and the emulsion concentration are ``significantly affected by the saponification value and particle size of the dispersoid.'' This was because of the knowledge gained, and we proceeded with research to quantitatively clarify these points. Then, emulsion-type lubricants (concentration 1 T or 0.5%) containing various tallow-based oils with different saponification values as dispersoids were prepared, rolling experiments were conducted using each lubricant, and rolling reduction Ct I =/ n
(b, o/h i )) and the average rolling pressure (Pm) were investigated. However, the rolling conditions are as follows: work roll diameter 254 mm + rolling speed 12 m/m, rolling reduction per pass of 10 inches, and thickness 1.0 I! A pure titanium plate of lff1 was rolled to a thickness of 0.5+++mt. The result is the first
As shown in the figure, the tendency for the average rolling pressure to increase as the rolling reduction rate increases varies markedly depending on the saponification value of tallow-based oil. It is thought that the rolling pressure will suddenly increase to a high t-force and the rolling operation will become substantially difficult. The higher the saponification value of tallow-based oil, the smaller the tendency for the rolling pressure to increase.The rolling pressure observed when using a lubricant with a saponification value of 80 is the limit for actual operation. If 4 is less than 80, the rolling pressure will be too high, making actual operation difficult. For those using tallow-based oil with a rating of 80 or higher, the above-mentioned increasing trend becomes relatively slow, and the average rolling pressure plateaus at about 170ψ or less, and even if the rolling reduction rate is increased, the average rolling pressure increases even more. Rolling pressure does not increase. As is clear from these results, in order to suppress the threading resistance during rolling and smoothly perform cold threading, it is necessary to have a saponification value of 80 AL or higher as the oil-based dispersoid that makes up the emulsion-type lubricant. It turns out that you should choose one.

次に油性分散質の粒径及び濃度が潤滑性能に与える影響
を明確にする高次の実験を行なった。但し本発明に言う
油性分散質の中心粒径とは、例えば第2図に示す様なエ
マルジョン粒径分布におけるピーク位置の粒子径を言い
、粒径分布はコールタ−カウンター(50μmのアパチ
ャーチューブ使用)によって測定する。
Next, we conducted higher-level experiments to clarify the effects of oily dispersoid particle size and concentration on lubrication performance. However, the central particle size of the oil-based dispersoid referred to in the present invention refers to the particle size at the peak position in the emulsion particle size distribution as shown in Figure 2, for example, and the particle size distribution is measured using a Coulter counter (using a 50 μm aperture tube). Measured by

実験に当たっては、油性分散質として牛脂系油(けん化
価は185)を使用し、分散質の中心粒径及び濃度の異
なるエマルジョン型潤滑剤をv4製し、直径200mm
の圧延ロールを用いTi板(結晶粒径:約5μm)の通
板速度を変えて冷間圧延したときの圧延板とオイルビッ
ト深さを比較した。
In the experiment, tallow-based oil (saponification value: 185) was used as the oil-based dispersoid, and emulsion-type lubricants with different center particle diameters and concentrations of the dispersoid were prepared.
The oil bit depth was compared with that of a Ti plate (crystal grain size: about 5 μm) cold rolled using a rolling roll at various rolling speeds.

結果は第1表に示す通シであシ、分散質の中心粒径が6
μm以下であるエマルジョン型潤滑剤を使用スると、エ
マルジョン濃度や圧延速度に関係なくオイルビット深さ
を1〜2μm以下に抑えることができる。これに対し中
心粒径が10μmを超えるエマルジョン型潤滑剤を使用
すると、圧延速度を50m/分まで落とした場合でもオ
イルビットを小さくすることができない。また中心粒径
が6〜10μmのエマルジョン潤滑剤を使用すると、圧
延速度を低くした場合にはオイルビットを小レベルに抑
えることができるものの、実際の冷間圧延で採用される
200m/分以上の速度ではオイルビットが極めて深い
ものとなる。尚中心粒径が6μm以下であるエマルジョ
ン型潤滑剤を使用した場合、オイルビット深さは200
 m/分の圧延速度で#lぼ飽和状態に達し、圧延速度
をそれ以上に高めてもオイルビットが深くなることはな
い。換言すれば本発明の規定要件を満たすエマルジョン
型潤滑剤を使用すれば、圧延速度に関係なくオイルビッ
ト深さを極めて小さくすることができ、圧延速度アップ
による生産性向上という要請にも十分に対応して行くこ
とができる。
The results are as shown in Table 1, and the central particle size of the dispersoid is 6.
By using an emulsion type lubricant having a diameter of 1 to 2 .mu.m or less, the oil bit depth can be kept to 1 to 2 .mu.m or less regardless of the emulsion concentration or rolling speed. On the other hand, if an emulsion type lubricant with a center particle diameter exceeding 10 μm is used, the oil bits cannot be made smaller even when the rolling speed is lowered to 50 m/min. Furthermore, if an emulsion lubricant with a center particle size of 6 to 10 μm is used, oil bits can be kept to a small level when the rolling speed is lowered, but when the rolling speed is lower than 200 m/min or more, which is used in actual cold rolling. At speed the oil bit becomes extremely deep. When using an emulsion type lubricant with a center particle size of 6 μm or less, the oil bit depth should be 200 mm.
A saturation state of #l is reached at a rolling speed of m/min, and even if the rolling speed is increased further, the oil bits do not become deeper. In other words, if an emulsion-type lubricant that meets the specified requirements of the present invention is used, the depth of the oil bit can be made extremely small regardless of the rolling speed, and this will fully meet the demand for improved productivity by increasing the rolling speed. You can go there.

また第3,4図はT(圧延板の表面性状を示す図面代用
顕微鏡写真(何れも400倍)でsb、第3図は牛脂系
油を分散質とする中心粒径8〜10μm、濃度2チのエ
マルジョン型潤滑剤を使用した場合(比較例)、第4図
は同じく牛脂系油を分散質とし中心粒径が2〜3μm、
濃度が2−〇エマルジョン型潤滑剤を使用した場合(本
発明例)を夫々示している。これらの写真を比較すれば
明らか々様に、中心粒径の大きいエマルジョン型潤滑剤
を使用した場合の圧延板表面に生じるオイルビットは極
めて著しいが(第3図)、本発明の規定要件を満たす中
心粒径の小さいエマルジョン潤滑剤を用いた場合のオイ
ルビットは格段に少なく且つ深さも1〜2μmと浅くな
っている(g、4図)。
In addition, Figures 3 and 4 are micrographs (all magnified at 400x) showing the surface properties of T (rolled plates). When using the emulsion type lubricant of H (comparative example), Figure 4 shows that the dispersoid is also made of tallow oil and the central particle size is 2 to 3 μm.
The cases in which an emulsion type lubricant having a concentration of 2-0 (invention example) is used are shown. Comparing these photographs, it is clear that when an emulsion type lubricant with a large center particle size is used, the oil bits generated on the surface of the rolled plate are extremely significant (Fig. 3), but this satisfies the specified requirements of the present invention. When an emulsion lubricant with a small center particle size is used, the number of oil bits is significantly smaller and the depth is shallower, at 1 to 2 μm (g, Figure 4).

単位二μm 尚エマルジョンの粒度構成を判断する為の他の基準とし
て、特定粒径のものを境界とし該粒径を超えるものと該
粒径以下の含有量のものに分けそれらの含有率比(体積
比: E、D、P、I:Emul−eion Dist
ribution Profile  Index)で
比較する方法が考えられる。そこで本発明者等はこうし
た判断要素に基づく好適粒度構成を明確にする為、次の
実験を行々った。即ちオイルビットの発生量及び深さが
急変する6μmを基準にして、〔(6μm超のものの含
有率)/(6μm以下あものの含有率)〕の比率の異な
るエマルジョン型潤滑剤を色々準備し、各潤滑剤を使用
してTi板の冷間圧延を行ない(圧延速度:200m/
分、エマルジョン濃度:x%、圧延ロール:#32゜エ
メリー研磨ロール、200mmφ)、圧延板表面に形成
されるオイルビットの深さと前記比率の関係を調べた。
Unit: 2 μm Another criterion for determining the particle size structure of an emulsion is to divide particles with a specific particle size as a boundary and divide them into particles with a content exceeding that particle size and particles with a content below that particle size, and calculate their content ratio ( Volume ratio: E, D, P, I: Emul-eion Dist
One possible method is to compare the results using the distribution profile index). Therefore, the present inventors conducted the following experiments in order to clarify the preferred particle size configuration based on these judgment factors. That is, based on 6 μm, where the amount and depth of oil bits suddenly change, we prepared various emulsion-type lubricants with different ratios of [(content of oil bits exceeding 6 μm)/(content of oil bits of 6 μm or less)]. A Ti plate was cold rolled using each lubricant (rolling speed: 200m/
The relationship between the depth of oil bits formed on the surface of the rolled plate and the ratio was investigated.

結果祉第5図〔図中0書で示した数値は中心粒径を示す
〕に示した通ルであ勺、前記比率が1を超えるとオイル
ビットは急激に深くする傾向が見られるが、1以下のも
のではオイルビット深さを1〜2μm以下に抑えること
ができる。
As a result, in the through hole shown in Figure 5 [the numbers indicated by 0 in the figure indicate the center particle diameter], when the ratio exceeds 1, there is a tendency for the oil bit to deepen rapidly; If it is less than 1, the oil bit depth can be suppressed to 1 to 2 μm or less.

この様にエマルジョン型潤滑剤の判定要素として前記比
率を採用することも有意義である。
In this way, it is also meaningful to employ the above ratio as a determining factor for emulsion type lubricants.

以上の様に本発明では、その目的を達成する為油性分散
質のけん化価及び中心粒径が厳密に規定されるが、その
他の要件は格別特殊なものではない。例えばエマルジョ
ン型潤滑剤の濃度は梶来がら知られたエマルジョン型潤
滑剤の好適濃度と殆んど同じであシ、0.5〜10%、
よシ好ましくは0.5〜5%の範囲である。また前述の
説明では油性分散質として最も一般的な牛脂系油を用い
た例を示したが、油性分散質は前記好適けん化価を有す
るものである限シ牛脂系油に限られるものではなく、他
の油脂や脂肪酸等(具体的にはパーム油、ラード油等の
天然油脂或はダイマー駿の様な合成脂肪酸部片使用する
ことも勿論可能である。
As described above, in the present invention, the saponification value and central particle size of the oil-based dispersoid are strictly defined in order to achieve the object, but other requirements are not particularly special. For example, the concentration of the emulsion type lubricant is almost the same as the preferred concentration of the emulsion type lubricant known since Kaji, 0.5 to 10%,
It is preferably in the range of 0.5 to 5%. In addition, in the above explanation, an example was given in which the most common tallow-based oil is used as the oil-based dispersoid, but the oil-based dispersoid is not limited to tallow-based oil that has the above-mentioned preferred saponification value, Of course, it is also possible to use other fats and oils, fatty acids, etc. (specifically, natural fats and oils such as palm oil and lard oil, or synthetic fatty acid fragments such as Dimer Shun).

また上記の様な中心粒径のエマルジョン潤滑剤を製造す
る方法も特に限定されず、例えばアニオン系、カチオン
系或は両系の親水基を有する界面活性剤または非イオン
系の界面活性剤(乳化剤)を油に加えることによシ、油
粒子のまわルが水に囲まれて、油粒子が水に均一に分散
されたエマルジョンとすることができる。そして乳化剤
の種類や量を変えることによ)、またエマルジョンにし
た後の攪拌条件を適切に選ぶことにより所期のエマルジ
ョン粒子径を得ることができる。
Furthermore, the method for producing an emulsion lubricant having the above-mentioned center particle size is not particularly limited. ) can be added to oil to form an emulsion in which the oil particles are surrounded by water and the oil particles are uniformly dispersed in water. The desired emulsion particle size can be obtained by changing the type and amount of the emulsifier) or by appropriately selecting the stirring conditions after forming the emulsion.

本発明は以上の様に構成されておシ、その効果を要約す
れば次の通シである。
The present invention is constructed as described above, and its effects can be summarized as follows.

■油性潤滑剤はけん化価が高く金属との親和性が良好で
あるので、被加工板の表面に薄い油膜を形成し易い。従
って微細な中心粒径とも相まって圧鷲ロールのバイト部
で均質な極薄油膜を確実に形成することができ、潤滑剤
過多によるオイルピットの発生を可及的に抑制すること
ができる。しかも油膜切れを起こし難いので焼付き現象
を生じることも少なく、稠密六方晶金属板の冷間圧延を
支障なく遂行することができる。
■Oil-based lubricants have a high saponification value and good affinity with metals, so they easily form a thin oil film on the surface of the workpiece. Therefore, in combination with the fine central grain size, it is possible to reliably form a homogeneous, ultra-thin oil film at the bite portion of the pressure roll, and to suppress the occurrence of oil pits due to excessive lubricant as much as possible. Moreover, since the oil film is less likely to run out, seizure phenomena are less likely to occur, and the cold rolling of dense hexagonal metal plates can be carried out without any problems.

■前記第1表でも示した様に、圧延速度を高めてもオイ
ルピットは浅いものであシ、また高速圧延のもとで焼付
きも一層生じ難くなるので、表面精度の良好な冷間圧延
板を生産性良く製造することができる。
■As shown in Table 1 above, even if the rolling speed is increased, the oil pit remains shallow, and seizing is less likely to occur under high-speed rolling, so cold rolling with good surface accuracy can be achieved. Boards can be manufactured with high productivity.

■Ti板等の冷間圧矩においては、これまではえば特開
昭56−165502号公報にも開示されている様に、
オイルピットを防止する為には圧延ロールを極力小径に
してバイト部を狭くする等の工夫が必要であシ、大径の
ロールを用いることは実用上困難であると考えられてい
たが、本発明の規定要件を満たすエマルジョン潤滑剤を
使用すれば、かなル太径の圧延日−ルを採用しても支障
なく冷間圧延を行なうことができ、生産性の向上に寄与
することができる。
■For cold pressing of Ti plates, etc., as disclosed in Japanese Patent Application Laid-open No. 165502/1983,
In order to prevent oil pits, it is necessary to make the diameter of the rolling rolls as small as possible to narrow the bite area, and it was thought that it would be difficult in practice to use rolls with large diameters, but this If an emulsion lubricant that satisfies the specified requirements of the invention is used, cold rolling can be carried out without any problem even if a rolling wheel with a large diameter is used, contributing to improved productivity.

【図面の簡単な説明】 第1図は、濃度及びけん化価の異なる牛脂系エマルジョ
ン泊滑剤を使用した場合における圧下率(ti−1ln
(ho/hi):lと平均圧延圧力(Pm)の関係を示
すグラフ、第2図は中心粒径の意味を説明する為の図、
第3,4図は冷間圧延実験で得たTi板の表面性状を示
す図面代用顕微鏡写真、第5図杜6μmを基準とするそ
の前後の大きさを有する油粒子の含有比がオイルピット
深さに与える影響を示すグラフである。
[Brief explanation of the drawings] Figure 1 shows the reduction ratio (ti-1ln) when beef tallow-based emulsion lubricants with different concentrations and saponification values are used.
(ho/hi): A graph showing the relationship between l and average rolling pressure (Pm), Figure 2 is a diagram to explain the meaning of central grain size,
Figures 3 and 4 are micrographs used as drawings showing the surface properties of Ti plates obtained in cold rolling experiments. This is a graph showing the influence on

Claims (1)

【特許請求の範囲】[Claims] 中心粒径が6μm以下でけん化価が80以上の油性分散
質を含むエマルジョン型潤滑剤を使用することを特徴と
する稠密六方晶金属板の冷間圧延方法。
A method for cold rolling a dense hexagonal metal plate, characterized in that an emulsion type lubricant containing an oily dispersoid having a center particle size of 6 μm or less and a saponification value of 80 or more is used.
JP14500784A 1984-07-11 1984-07-11 Method for cold rolling dense hexagonal metal sheet Granted JPS6123696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14500784A JPS6123696A (en) 1984-07-11 1984-07-11 Method for cold rolling dense hexagonal metal sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14500784A JPS6123696A (en) 1984-07-11 1984-07-11 Method for cold rolling dense hexagonal metal sheet

Publications (2)

Publication Number Publication Date
JPS6123696A true JPS6123696A (en) 1986-02-01
JPH0219877B2 JPH0219877B2 (en) 1990-05-07

Family

ID=15375291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14500784A Granted JPS6123696A (en) 1984-07-11 1984-07-11 Method for cold rolling dense hexagonal metal sheet

Country Status (1)

Country Link
JP (1) JPS6123696A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478423A (en) * 1993-09-28 1995-12-26 W. L. Gore & Associates, Inc. Method for making a printer release agent supply wick

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219878A (en) * 1988-05-20 1990-01-23 Xerox Corp Developing apparatus for electrostatic latent image

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219878A (en) * 1988-05-20 1990-01-23 Xerox Corp Developing apparatus for electrostatic latent image

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478423A (en) * 1993-09-28 1995-12-26 W. L. Gore & Associates, Inc. Method for making a printer release agent supply wick
US5690739A (en) * 1993-09-28 1997-11-25 W. L. Gore & Associates, Inc. Release agent supply wick for printer apparatus and method for making and using same

Also Published As

Publication number Publication date
JPH0219877B2 (en) 1990-05-07

Similar Documents

Publication Publication Date Title
JP5294072B2 (en) Etching material manufacturing method and etching material
EP0694620A1 (en) Method of producing a stainless steel sheet having excellent brightness
US4087898A (en) Metallic rod product, and method for producing same
JPS6123696A (en) Method for cold rolling dense hexagonal metal sheet
JPH0219878B2 (en)
US4159633A (en) Metallic rod product, and method for producing same
US4398406A (en) Method for producing cold rolled titanium strips
DE102011113228A9 (en) Improvement of the corrosion resistance of surfaces of a magnesium alloy article
JP3987814B2 (en) Aluminum alloy plate for bottle cans
JP3256108B2 (en) Aluminum alloy rolled plate for DI can body used after ironing
JPH03268808A (en) Tool for plastic working of metal
KR100237536B1 (en) The manufacturing method for fe-cr-ni alloy and the same goods
JPS5864332A (en) Aluminum alloy bearing
JPS5910403A (en) Cold tandem rolling device
JPS62254902A (en) Cold rolling method for steel sheet
JP3475351B2 (en) Cold rolling method of aluminum and aluminum alloy plate and foil
JP3447361B2 (en) Work roll for cold rolling
JP3415924B2 (en) Manufacturing method of high gloss stainless steel sheet
JP4863537B2 (en) Setting method of lower limit of aliphatic alcohol addition concentration of rolling oil in cold rolling of aluminum sheet
JPS60161488A (en) Cold rolling oil for steel plate
JPH0245922B2 (en)
Haga et al. Micro-forming of Al-Si foil
Otomar et al. Comparision of the Micro Structure and Texture Evolution in AA1050 Aluminum Alloy Sheets Produced by the DC and CC Methods
JPH0234203A (en) Method for cold rolling steel sheet
JPH0852501A (en) Manufacture of cold rolled steel sheet excellent in press formability