JPH0219877B2 - - Google Patents

Info

Publication number
JPH0219877B2
JPH0219877B2 JP59145007A JP14500784A JPH0219877B2 JP H0219877 B2 JPH0219877 B2 JP H0219877B2 JP 59145007 A JP59145007 A JP 59145007A JP 14500784 A JP14500784 A JP 14500784A JP H0219877 B2 JPH0219877 B2 JP H0219877B2
Authority
JP
Japan
Prior art keywords
oil
rolling
emulsion
particle size
lubricant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59145007A
Other languages
Japanese (ja)
Other versions
JPS6123696A (en
Inventor
Takashi Nishimura
Shigeo Hatsutori
Masato Fukuda
Tetsuhiro Muraoka
Juji Koyama
Ichiro Kokubo
Tokuo Mizuta
Yoshio Ooike
Junji Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14500784A priority Critical patent/JPS6123696A/en
Publication of JPS6123696A publication Critical patent/JPS6123696A/en
Publication of JPH0219877B2 publication Critical patent/JPH0219877B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)
  • Metal Rolling (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は稠密六方晶金属板の冷間圧延方法に関
し、特にオイルピツトが殆んどなく表面品質の良
好な同金属板を生産性良く製造することのできる
方法に関するものである。 本発明で冷間圧延の対象となる稠密六方晶の金
属板とは、Ti、Ti合金、Zr、Zr合金の様に結晶
構造が稠密六方晶である金属板を総称する。 金属板の冷間圧延においては焼付防止の為圧延
油の使用が必須とされるが、反面圧延油を供給し
すぎると、圧延ロールと被圧延材の間が流体潤滑
となり、高圧の圧延油と接する被圧延材の自由表
面に凹凸(所謂オイルピツト)を生じることが知
られている。殊に前記稠密六方晶金属の様に結晶
方位によつて変形抵抗が著しく異なる金属では、
変形抵抗の低い方位の結晶が容易に変形する為オ
イルピツトが発生し易く、例えばTi冷延板にお
いては該ピツトの深さが十数ミクロンに達するこ
とも稀ではない。このオイルピツトは最終製品の
表面精度を著しく阻害するので、圧延工程で発生
するオイルピツトを如何に小さくするかというこ
とが、この種の難加工性金属板の冷間圧延におけ
る重要な課題となつている。そしてこのオイルピ
ツトの許容限界は製品の用途によつて異なる表面
要求精度によつても異なるが、深さにして1〜
2μm以下であることが要求されることも少なくな
い。 ところでオイルピツトは、前述の如く過剰量の
潤滑油がロールと被圧延材との間に介入する為に
生じるものと考えられており、引込まれる潤滑油
量を極限まで少なくし且つ均一にすることができ
ればオイルピツトを極限状態まで浅くなし得るも
のと考えられる。但しこの場合、圧延中に油膜切
れが起こると焼付きの問題が発生するので、特に
TiやZr或はこれらの合金の様に焼付き易い金属
板の圧延においては、必要最小限の量の油を被加
工板の表面全域に均一に付着させることが極めて
重要な課題となる。しかしながら従来の潤滑剤で
は、焼付きを生じない程度の量の潤滑剤を使用す
るとオイルピツトが発生し、一方オイルピツトが
発生しない程度まで潤滑油供給量を減少すると油
膜切れを起こして焼付きの問題が発生し、上記2
つの問題を同時に解消することはできなかつた。 本発明者等はこうした事情に着目し、稠密六方
晶金属板を対象として、潤滑剤の供給量過多によ
るオイルピツトの発生及び潤滑剤の油膜切れによ
る焼付きの発生という2つの問題を同時に解消す
ることのできる様な冷間圧延法を確立しようとし
て、エマルジヨン潤滑剤の粒子径やけん化価、圧
延速度等を主体にして種々研究を進めてきた。本
発明はかかる研究の結果完成されたものであつ
て、その構成は、中心粒径が6μm以下で且つけん
化価が80以上である油性分散質を含むエマルジヨ
ン型潤滑剤を使用し、稠密六方晶金属板を冷間圧
延するところに要旨を有すものである。 本発明では上記の如く特にエマルジヨン型潤滑
剤を構成する分散質の粒径及びけん化価を厳密に
規定しているが、その理由は以下に詳述する通り
である。即ち本発明者等が種々の予備実験を行な
つたところによると、エマルジヨン型潤滑油の潤
滑性能は、エマルジヨン濃度もさることながら、
「分散質のけん化価及び粒子径によつて著しい影
響を受ける」という知見が得られたので、これら
の点を定量的に明確にすべく研究を進めた。そし
てけん化価の異なる種々の牛脂系油を分散質とす
るエマルジヨン型潤滑剤(濃度1%又は0.5%)
を調製し、各潤滑剤を用いて圧延実験を行ない、
圧下率〔εi=ln(ho/hi)〕と平均圧延圧力(Pm)
の関係を調べた。但し圧延条件は次の通りとしワ
ークロール径254mm、圧延速度12m/minで1パ
スあたりの圧下率を10%とし厚さ1.0mmの純チタ
ン板を厚さ0.5mmまで圧延した。その結果は第1
図に示した通りであり、圧下率の増大に伴なう平
均圧延出力の増加傾向は牛脂系油のけん化価によ
つて著しく異なり、けん化価が零のものでは極く
僅かな圧下率でも圧延圧力は急激に高まり、圧延
操業は実質上困難になると考えられる。そして牛
脂系油のけん化価が高くなるほど圧延圧力の増加
傾向は小さくなるが、圧延圧力はけん化価が80の
潤滑剤を使用したときに観測される圧力が実操業
上の限界であり、80未満のものでは圧延圧力が高
くなりすぎて実操業が困難になる。そして80以上
の牛脂系油を使用したものでは前記増加傾向が比
較的緩慢になると共に、平均圧延圧力は約170
Kg/mm2程度以下で頭打ちの状態となり、圧下率を
高めてもそれ以上に平均圧延圧力が増大すること
はない。これらの結果からも明らかな様に、圧延
時の通板抵抗を抑えて冷間通板を円滑に遂行して
いく為には、エマルジヨン型潤滑剤を構成する油
性分散質としてけん化価が80以上のものを選択す
べきであることが分かる。 次に油性分散質の粒径及び濃度が潤滑性能に与
える影響を明確にする為次の実験を行なつた。但
し本発明に言う油性分散質の中心粒径とは、例え
ば第2図に示す様なエマルジヨン粒径分布におけ
るピーク位置の粒子径を言い、粒径分布はコール
ターカウンター(50μmのアパチヤーチユーブ使
用)によつて測定する。 実験に当つては、油性分散質として牛脂系油
(けん化価は185)を使用し、分散質の中心粒径及
び濃度の異なるエマルジヨン型潤滑剤を調製し、
直径200mmの圧延ロールを用いTi板(結晶粒径:
約5μm)の通板速度を変えて冷間圧延したときの
圧延板とオイルピツト深さを比較した。 結果は第1表に示す通りであり、分散質の中心
粒径が6μm以下であるエマルジヨン型潤滑剤を使
用すると、エマルジヨン濃度や圧延速度に関係な
くオイルピツト深さを1〜2μm以下に抑えること
ができる。これに対し中心粒径が10μmを超える
エマルジヨン型潤滑剤を使用すると、圧延速度を
50m/分まで落とした場合でもオイルピツトを小
さくすることができない。また中心粒径が6〜
10μmのエマルジヨン潤滑剤を使用すると、圧延
速度を低くした場合にはオイルピツトを小レベル
に抑えることができるものの、実際の冷間圧延で
採用される200m/分以上の速度ではオイルピツ
トが極めて深いものとなる。尚中心粒径が6μm以
下であるエマルジヨン型潤滑剤を使用した場合、
オイルピツト深さは200m/分の圧延速度でほぼ
飽和状態に達し、圧延速度をそれ以上に高めても
オイルピツトが深くなることはない。換言すれば
本発明の規定要件を満たすエマルジヨン型潤滑剤
を使用すれば、圧延速度に関係なくオイルピツト
深さを極めて小さくすることができ、圧延速度ア
ツプによる生産性向上という要請にも十分に対応
して行くことができる。 また第3,4図はTi圧延板の表面性状を示す
図面代用顕微鏡写真(何れも400倍)であり、第
3図は牛脂系油を分散質とする中心粒径8〜
10μm、濃度2%のエマルジヨン型潤滑剤を使用
した場合(比較例)、第4図は同じく牛脂系油を
分散質とし中心粒径が2〜3μm、濃度が2%のエ
マルジヨン型潤滑剤を使用した場合(本発明例)
を夫々示している。これらの写真を比較すれば明
らかな様に、中心粒径の大きいエマルジヨン型潤
滑剤を使用した場合の圧延板表面に生じるオイル
ピツトは極めて著しいが(第3図)、本発明の規
定条件を満たす中心粒径の小さいマルジヨン潤滑
剤を用いた場合のオイルピツトは格段に少なく且
つ深さも1〜2μmと浅くなつている(第4図)。
The present invention relates to a method for cold rolling a dense hexagonal metal plate, and more particularly to a method for producing the same metal plate with good productivity and almost no oil pits and a good surface quality. The close-packed hexagonal metal sheet to be subjected to cold rolling in the present invention is a general term for metal sheets having a close-packed hexagonal crystal structure, such as Ti, Ti alloy, Zr, and Zr alloy. In the cold rolling of metal plates, it is essential to use rolling oil to prevent seizure, but on the other hand, if too much rolling oil is supplied, fluid lubrication will occur between the rolling rolls and the material to be rolled, and high-pressure rolling oil will cause It is known that unevenness (so-called oil pits) occurs on the free surface of the rolled material in contact with it. In particular, in metals such as the dense hexagonal metals, which have significantly different deformation resistance depending on the crystal orientation,
Since crystals in orientations with low deformation resistance are easily deformed, oil pits are likely to occur; for example, in cold-rolled Ti plates, it is not uncommon for the pits to reach a depth of more than ten microns. Since these oil pits significantly impede the surface precision of the final product, how to reduce the size of the oil pits generated during the rolling process is an important issue in cold rolling of this type of difficult-to-work metal sheet. . The allowable limit for this oil pit varies depending on the required surface accuracy depending on the product's use, but the depth is 1 to 1.
It is often required that the thickness be 2 μm or less. By the way, as mentioned above, oil pits are thought to be caused by an excessive amount of lubricating oil intervening between the rolls and the rolled material, and it is necessary to minimize the amount of lubricating oil drawn in and make it uniform. If this is possible, it is believed that the oil pit can be made as shallow as possible. However, in this case, if the oil film runs out during rolling, a seizure problem will occur, so
When rolling metal plates such as Ti, Zr, or their alloys, which are prone to seizure, it is extremely important to uniformly apply the minimum amount of oil to the entire surface of the plate. However, with conventional lubricants, if an amount of lubricant that does not cause seizure occurs, oil pits will occur, whereas if the lubricant supply amount is reduced to the extent that oil pits do not occur, the oil film will run out and the problem of seizure will occur. occurs, and the above 2
It was not possible to solve two problems at the same time. The present inventors focused on these circumstances, and aimed to solve two problems simultaneously: occurrence of oil pits due to excessive supply of lubricant and occurrence of seizure due to lack of oil film of lubricant, targeting dense hexagonal metal plates. In an effort to establish a cold rolling method that would enable this, various studies have been carried out focusing on the particle size, saponification value, rolling speed, etc. of emulsion lubricants. The present invention was completed as a result of such research, and its composition uses an emulsion type lubricant containing an oily dispersoid with a center particle size of 6 μm or less and a saponification value of 80 or more, and has a dense hexagonal crystal structure. The gist is that a metal plate is cold rolled. In the present invention, as mentioned above, the particle size and saponification value of the dispersoid constituting the emulsion type lubricant are strictly specified, and the reason for this is as detailed below. That is, according to the inventors' various preliminary experiments, the lubricating performance of emulsion-type lubricating oil is determined not only by the emulsion concentration but also by
Since we obtained the knowledge that ``dispersoids are significantly affected by the saponification value and particle size,'' we proceeded with research to clarify these points quantitatively. And an emulsion type lubricant (concentration 1% or 0.5%) that uses various tallow oils with different saponification values as dispersants.
and conducted rolling experiments using each lubricant.
Reduction rate [εi=ln(ho/hi)] and average rolling pressure (Pm)
We investigated the relationship between However, the rolling conditions were as follows: a work roll diameter of 254 mm, a rolling speed of 12 m/min, a reduction rate of 10% per pass, and a pure titanium plate with a thickness of 1.0 mm was rolled to a thickness of 0.5 mm. The result is the first
As shown in the figure, the tendency for the average rolling power to increase as the rolling reduction rate increases varies markedly depending on the saponification value of tallow-based oil. It is thought that the pressure will increase rapidly and rolling operations will become virtually difficult. The higher the saponification value of tallow-based oil is, the smaller the tendency for the rolling pressure to increase will be. In this case, the rolling pressure becomes too high, making actual operation difficult. For products using tallow-based oil with a rating of 80 or higher, the above-mentioned increasing trend becomes relatively slow, and the average rolling pressure is approximately 170.
The average rolling pressure reaches a plateau below about Kg/ mm2 , and even if the reduction rate is increased, the average rolling pressure will not increase any further. As is clear from these results, in order to suppress the threading resistance during rolling and smoothly perform cold threading, the oil-based dispersoid that makes up the emulsion-type lubricant must have a saponification value of 80 or more. It turns out that you should choose one. Next, the following experiment was conducted to clarify the influence of the particle size and concentration of the oily dispersoid on the lubricating performance. However, the central particle size of the oil-based dispersoid referred to in the present invention refers to the particle size at the peak position in the emulsion particle size distribution as shown in Figure 2, for example, and the particle size distribution is measured using a Coulter counter (using a 50 μm aperture tube). Measured by In the experiment, tallow-based oil (saponification value: 185) was used as the oil-based dispersoid, and emulsion-type lubricants with different central particle diameters and concentrations of the dispersoid were prepared.
Ti plate (crystal grain size:
The oil pit depth was compared with the rolled sheet when cold rolling was performed by changing the sheet passing speed (approximately 5 μm). The results are shown in Table 1, and when using an emulsion-type lubricant in which the center particle size of the dispersoid is 6 μm or less, the oil pit depth can be kept to 1 to 2 μm or less regardless of the emulsion concentration or rolling speed. can. On the other hand, when using an emulsion type lubricant with a center particle size exceeding 10 μm, the rolling speed can be reduced.
Even if the speed is reduced to 50m/min, the oil pit cannot be made smaller. Also, the center particle size is 6~
When using a 10 μm emulsion lubricant, oil pits can be kept to a small level at low rolling speeds, but at speeds of 200 m/min or higher, which are used in actual cold rolling, oil pits become extremely deep. Become. When using an emulsion type lubricant with a center particle size of 6 μm or less,
The oil pit depth reaches a nearly saturated state at a rolling speed of 200 m/min, and the oil pit does not become deeper even if the rolling speed is increased beyond that. In other words, by using an emulsion-type lubricant that satisfies the specified requirements of the present invention, the oil pit depth can be made extremely small regardless of the rolling speed, and the oil pit depth can be made sufficiently small to meet the demand for improved productivity due to increased rolling speed. I can go. Figures 3 and 4 are micrographs (both magnified at 400x) showing the surface properties of Ti rolled plates.
When using an emulsion type lubricant with a diameter of 10 μm and a concentration of 2% (comparative example), Fig. 4 shows an emulsion type lubricant with a center particle size of 2 to 3 μm and a concentration of 2% using tallow-based oil as the dispersoid. When (example of the present invention)
are shown respectively. As is clear from a comparison of these photographs, oil pits formed on the surface of a rolled plate when using an emulsion type lubricant with a large center particle size are extremely noticeable (Figure 3), but oil pits that meet the specified conditions of the present invention are When a marsion lubricant with a small particle size is used, the number of oil pits is much smaller and the depth is as shallow as 1 to 2 μm (Figure 4).

【表】【table】

【表】 尚エマルジヨンの粒度構成を判断する為の他の
基準として、特定粒径のものを境界とし該粒径を
超えるものと該粒径以下の含有量のものに分けそ
れらの含有率比(体積比:E.D.P.I:Emu1−sion
Distribution Profile Index)で比較する方法が
考えられる。そこで本発明者等はこうした判断要
素に基づく好適粒度構成を明確にする為、次の実
験を行なつた。即ちオイルピツトの発生量及び深
さが急変する6μmを基準にして、〔(6μm超のもの
の含有率)/(6μm以下のものの含有率)〕の比
率の異なるエマルジヨン型潤滑剤を色々準備し、
各潤滑剤を使用してTi板の冷間圧延を行ない
(圧延速度:200m/分、エマルジヨン濃度:1
%、圧延ロール:#320エメリー研磨ロール、200
mmφ)、圧延板表面に形成されるオイルピツトの
深さと前記比率の関係を調べた。結果は第5図
〔図中( )書で示した数値は中心粒径を示す〕
に示した通りであり、前記比率が1を超えるとオ
イルピツトは急激に深くなる傾向が見られるが、
1以下のものではオイルピツト深さを1〜2μm以
下に抑えることができる。この様にエマルジヨン
型潤滑剤の判定要素として前記比率を採用するこ
とも有意義である。 以上の様に本発明では、その目的を達成する為
油性分散質のけん化価及び中心粒径が厳密に規定
されるが、その他の要件は格別特殊なものではな
い。例えばエマルジヨン型潤滑剤の濃度は従来か
ら知られたエマルジヨン型潤滑剤の好適濃度と殆
んど同じであり、0.5〜10%、より好ましくは0.5
〜5%の範囲である。また前述の説明では油性分
散質として最も一般的な牛脂系油を用いた例を示
したが、油性分散質は前記好適けん化価を有すも
のである限り牛脂系油に限られるものではなく、
他の油脂や脂肪酸等(具体的にはパーム油、ラー
ド油等の天然油脂或はダイマー酸の様な合成脂肪
酸等)を使用することも勿論可能である。 また上記の様な中心粒径のエマルジヨン潤滑剤
を製造する方法も特に限定されず、例えばアニオ
ン系、カチオン系或は両系の親水基を有する界面
活性剤または非イオン系の界面活性剤(乳化剤)
を油に加えることにより、油粒子のまわりが水に
囲まれて、油粒子が水に均一に分散されたエマル
ジヨンとすることができる。そして乳化剤の種類
や量を変えることにより、またエマルジヨンにし
た後の撹拌条件を適切に選ぶことにより所期のエ
マルジヨン粒子径を得ることができる。 本発明は以上の様に構成されており、その効果
を要約すれば次の通りである。 油性潤滑剤はけん化価が高く金属との親和性
が良好であるので、被加工板の表面に薄い油膜
を形成し易い。従つて微細な中心粒径とも相ま
つて圧延ロールのバイト部で均質な極薄油膜を
確実に形成することができ、潤滑剤過多による
オイルピツトの発生を可及的に抑制することが
できる。しかも油膜切れを起こし難いので焼付
き現象を生じることも少なく、稠密六方晶金属
板の冷間圧延を支障なく遂行することができ
る。 前記第1表でも示した様に、圧延速度を高め
てもオイルピツトは浅いものであり、また高速
圧延のものとで焼付きも一層生じ難くなるの
で、表面精度の良好な冷間圧延板を生産性良く
製造することができる。 Ti板等の冷間圧延においては、これまでは
えば特開昭56−165502号公報にも開示されてい
る様に、オイルピツトを防止する為には圧延ロ
ールを極力小径にしてバイト部を狭くする等の
工夫が必要であり、太径のロールを用いること
は実用上困難であると考えられていたが、本発
明の規定条件を満たすエマルジヨン潤滑剤を使
用すれば、かなり太径の圧延ロールを採用して
も支障なく冷間圧延を行なうことができ、生産
性の向上に寄与することができる。
[Table] Another criterion for determining the particle size structure of emulsion is to divide particles with a specific particle size as a boundary and divide them into particles with a content exceeding that particle size and particles with a content below that particle size, and calculate their content ratio ( Volume ratio: EDPI:Emu1−sion
One possible method is to compare using the distribution profile index (Distribution Profile Index). Therefore, the present inventors conducted the following experiment in order to clarify a suitable particle size configuration based on such judgment factors. That is, based on 6 μm, where the amount and depth of oil pits that occur suddenly change, we prepared various emulsion-type lubricants with different ratios of [(content rate of oil pits exceeding 6 μm)/(content rate of oil pits below 6 μm)].
A Ti plate was cold rolled using each lubricant (rolling speed: 200 m/min, emulsion concentration: 1
%, rolling roll: #320 emery polishing roll, 200
mmφ), the relationship between the depth of oil pits formed on the surface of the rolled plate and the above ratio was investigated. The results are shown in Figure 5 [The numbers in parentheses in the figure indicate the central grain size]
As shown in Figure 2, when the ratio exceeds 1, the oil pit tends to become deeper rapidly.
If it is less than 1, the oil pit depth can be kept to 1 to 2 μm or less. In this way, it is also meaningful to employ the above ratio as a determining factor for emulsion type lubricants. As described above, in the present invention, the saponification value and central particle size of the oil-based dispersoid are strictly defined in order to achieve the object, but other requirements are not particularly special. For example, the concentration of emulsion type lubricants is almost the same as the preferred concentration of conventionally known emulsion type lubricants, 0.5 to 10%, more preferably 0.5%.
~5% range. Furthermore, in the above explanation, an example was given in which the most common tallow-based oil is used as the oil-based dispersoid, but the oil-based dispersoid is not limited to tallow-based oil as long as it has the above-mentioned preferred saponification value.
Of course, it is also possible to use other fats and oils, fatty acids, etc. (specifically natural fats and oils such as palm oil and lard oil, synthetic fatty acids such as dimer acid, etc.). Furthermore, the method for producing an emulsion lubricant having the above-mentioned center particle size is not particularly limited. )
By adding this to oil, the oil particles are surrounded by water, creating an emulsion in which the oil particles are uniformly dispersed in water. The desired emulsion particle size can be obtained by changing the type and amount of the emulsifier and by appropriately selecting the stirring conditions after forming the emulsion. The present invention is constructed as described above, and its effects can be summarized as follows. Since oil-based lubricants have a high saponification value and good affinity with metals, they tend to form a thin oil film on the surface of the workpiece. Therefore, together with the fine central grain size, it is possible to reliably form a homogeneous, ultra-thin oil film at the bit part of the rolling roll, and the occurrence of oil pits due to excess lubricant can be suppressed as much as possible. Moreover, since the oil film is less likely to run out, seizure phenomena are less likely to occur, and the cold rolling of dense hexagonal metal plates can be carried out without any problems. As shown in Table 1 above, even if the rolling speed is increased, the oil pits remain shallow, and seizing is less likely to occur with high-speed rolling, so cold-rolled sheets with good surface accuracy are produced. It can be easily manufactured. In cold rolling of Ti plates, etc., in order to prevent oil pits, the diameter of the rolling rolls is made as small as possible to narrow the bite area, as disclosed in Japanese Patent Application Laid-open No. 56-165502. However, if an emulsion lubricant that satisfies the specified conditions of the present invention is used, it is possible to use rolling rolls with a considerably large diameter. Even if it is adopted, cold rolling can be performed without any problem, and it can contribute to improving productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、濃度及びけん化価の異なる牛脂系エ
マルジヨン潤滑剤を使用した場合における圧下率
〔εi=ln〔ho/hi)〕と平均圧延圧力(Pm)の関係
を示すグラフ、第2図は中心粒径の意味を説明す
る為の図、第3,4図は冷間圧延実験で得たTi
板の表面性状を示す図面代用顕微鏡写真、第5図
は6μmを基準とするその前後の大きさを有する油
粒子の含有比がオイルピツト深さに与える影響を
示すグラフである。
Figure 1 is a graph showing the relationship between rolling reduction [εi = ln [ho/hi]] and average rolling pressure (Pm) when tallow-based emulsion lubricants with different concentrations and saponification values are used. Figures 3 and 4 are diagrams to explain the meaning of the central grain size.
FIG. 5, which is a micrograph used as a drawing to show the surface properties of the plate, is a graph showing the influence of the content ratio of oil particles having a size around 6 μm on the oil pit depth.

Claims (1)

【特許請求の範囲】[Claims] 1 中心粒径が6μm以下でけん化価が80以上の油
性分散質を含むエマルジヨン型潤滑剤を使用する
ことを特徴とする稠密六方晶金属板の冷間圧延方
法。
1. A method for cold rolling a dense hexagonal metal sheet, characterized by using an emulsion type lubricant containing an oily dispersoid with a center particle size of 6 μm or less and a saponification value of 80 or more.
JP14500784A 1984-07-11 1984-07-11 Method for cold rolling dense hexagonal metal sheet Granted JPS6123696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14500784A JPS6123696A (en) 1984-07-11 1984-07-11 Method for cold rolling dense hexagonal metal sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14500784A JPS6123696A (en) 1984-07-11 1984-07-11 Method for cold rolling dense hexagonal metal sheet

Publications (2)

Publication Number Publication Date
JPS6123696A JPS6123696A (en) 1986-02-01
JPH0219877B2 true JPH0219877B2 (en) 1990-05-07

Family

ID=15375291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14500784A Granted JPS6123696A (en) 1984-07-11 1984-07-11 Method for cold rolling dense hexagonal metal sheet

Country Status (1)

Country Link
JP (1) JPS6123696A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478423A (en) * 1993-09-28 1995-12-26 W. L. Gore & Associates, Inc. Method for making a printer release agent supply wick

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219878A (en) * 1988-05-20 1990-01-23 Xerox Corp Developing apparatus for electrostatic latent image

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219878A (en) * 1988-05-20 1990-01-23 Xerox Corp Developing apparatus for electrostatic latent image

Also Published As

Publication number Publication date
JPS6123696A (en) 1986-02-01

Similar Documents

Publication Publication Date Title
US3280027A (en) Lubricants and lubricated structures
US4087898A (en) Metallic rod product, and method for producing same
JPH0219877B2 (en)
JPH0219878B2 (en)
Zhang et al. The effects of the reduction, speed and lubricant viscosity on friction in cold rolling
JPH03268808A (en) Tool for plastic working of metal
JPS62254902A (en) Cold rolling method for steel sheet
Kondo An improvement of rolling stability during cold rolling of aluminum
JPS60161488A (en) Cold rolling oil for steel plate
JPH03151101A (en) Method for cold-rolling titanium sheet
JP2898824B2 (en) Manufacturing method of high gloss metal plate
JPS5910403A (en) Cold tandem rolling device
JPH0245922B2 (en)
JPS60161487A (en) Cold rolling oil for steel plate
JP3415924B2 (en) Manufacturing method of high gloss stainless steel sheet
JP4863537B2 (en) Setting method of lower limit of aliphatic alcohol addition concentration of rolling oil in cold rolling of aluminum sheet
JP3447361B2 (en) Work roll for cold rolling
JPS63177903A (en) Method for cold rolling of hard-to-work material
JPH0234203A (en) Method for cold rolling steel sheet
JPH0334406B2 (en)
JPH0436196B2 (en)
JPH02284703A (en) Manufacture of cold-rolled stainless steel strip
JPS60144392A (en) Lubricant for cold rolling of titanium sheet
JPS60141794A (en) Cold rolling oil for steel plate
JPH0237912A (en) Method of drawing titanium and titanium base alloy pipe