JPS61236896A - Production of high-purity hydrogen and synthesized natural gas from coke oven gas - Google Patents

Production of high-purity hydrogen and synthesized natural gas from coke oven gas

Info

Publication number
JPS61236896A
JPS61236896A JP60079809A JP7980985A JPS61236896A JP S61236896 A JPS61236896 A JP S61236896A JP 60079809 A JP60079809 A JP 60079809A JP 7980985 A JP7980985 A JP 7980985A JP S61236896 A JPS61236896 A JP S61236896A
Authority
JP
Japan
Prior art keywords
gas
adsorption
coke oven
natural gas
synthesized natural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60079809A
Other languages
Japanese (ja)
Inventor
Koichi Kono
河野 光一
Hideki Akinaga
秋永 英毅
Ryuichi Takeda
竹田 隆一
Atsushi Tabata
淳 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP60079809A priority Critical patent/JPS61236896A/en
Publication of JPS61236896A publication Critical patent/JPS61236896A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Industrial Gases (AREA)

Abstract

PURPOSE:The multi-stage separation of components included in coke oven gas such as H2, O2, N2, CO or CO2 is effected to produce synthesized natural gas of desirably high calorie and hydrogen of high purity without use of higher hydrocarbons such as butane or the like. CONSTITUTION:A coke oven gas is scrubbed with water to remove carbon dioxide, then hydrogen of high purity is selectively adsorbed on an adsorbent such as a synthetic zeolite or carbon molecular sieves with pores of about 5Angstrom . Subsequently, similar adsorbents are employed to adsorb H2, N2 and CO from the gas. Carbon monoxide in the desorbed gas is methanized and ethylene is converted into ethane to give synthesized natural gas.

Description

【発明の詳細な説明】 11上立1貝皇! 本発明は、コークス炉ガス(以下COGという)を原料
として高純度水素及び天然ガスに相当する高発熱量ガス
゛(いわゆる合成天然ガス、以下単にSNGという)を
製造する方法に関する。
[Detailed Description of the Invention] 11 Kyoto Ichikaiou! The present invention relates to a method for producing high-purity hydrogen and a high calorific value gas equivalent to natural gas (so-called synthetic natural gas, hereinafter simply referred to as SNG) using coke oven gas (hereinafter referred to as COG) as a raw material.

来の  とその 照点 COGを原料としてメタン化プロセスによりSNGを製
造する場合には、COG中に含まれるN2 、O* 、
Na 、Co、002等は、製造ガスの発熱量を低下さ
せる原因となる。従って、SNGとしての燃焼管理範囲
に調整する為には、メタン化プロセスの原料としてブタ
ン等の高級炭化水素の併用が必要であり、且つメタン化
プロセスからの製造ガスにも増熱用として多量のブタン
の添加が必要となる。
When producing SNG by methanation process using COG as raw material, N2, O*,
Na, Co, 002, etc. cause a decrease in the calorific value of the produced gas. Therefore, in order to adjust the combustion control range for SNG, it is necessary to use higher hydrocarbons such as butane as raw materials for the methanation process, and a large amount of gas produced from the methanation process is also used for heating purposes. Addition of butane is required.

間  を解決するための手 本発明者は、上記の如き従来技術の問題点に鑑みて種々
研究を重ねた結果、COG中のN2.02、N2 、G
o、Cot等ノ含有成分ヲ多段階に分けて除去する場合
には、ブタン等の高級炭化水素を一切使用することな(
所望の高発熱量のSNGが得られるのみならず、高純度
のN2が併せて得られることを見出した。即ち、本発明
は、以下の方法を提供するものである。
As a result of various studies in view of the problems of the prior art as described above, the inventor of the present invention has found that N2.02, N2, G
When removing components containing O, Cot, etc. in multiple stages, do not use higher hydrocarbons such as butane at all.
It has been found that not only the desired high calorific value SNG can be obtained, but also highly purified N2 can be obtained. That is, the present invention provides the following method.

(1)コークス炉ガスを洗浄してCotを除去する工程
、 (2)吸着を利用することにより前記洗浄工程からのガ
スから高純度H2を選択的に分離する第一の吸着工程、 (3)前記第一の吸着工程から脱着されたガスから吸着
を利用することによりN2,02、N2及びCOを分離
する第二の吸着工程、及び(4)前記第二の吸着工程か
ら脱着されたガス中のCOをメタン化するとともに02
 H4をエタン化して合成天然ガスを製造する工程 を備えたことを特徴とするコークス炉ガスから高純度水
素及び合成天然ガスを製造する方法。
(1) a step of cleaning coke oven gas to remove Cot; (2) a first adsorption step of selectively separating high-purity H2 from the gas from the cleaning step by utilizing adsorption; (3) a second adsorption step for separating N2,02, N2 and CO from the gas desorbed from the first adsorption step by utilizing adsorption; and (4) in the gas desorbed from the second adsorption step. In addition to methanizing CO, 02
A method for producing high-purity hydrogen and synthetic natural gas from coke oven gas, comprising a step of producing synthetic natural gas by ethanizing H4.

以下図面に示す実施態様を参照しつつ、本発明を更に詳
細に説明する。
The present invention will be described in more detail below with reference to embodiments shown in the drawings.

第1図に示すフローチャートにおいて、原料たるCOG
は、ライン(1)を経て第1の圧縮機(3)において5
〜20kMC■2・G程度に昇圧された後、ライン(5
)を通って洗浄塔(7)に入り、ライン(9)から供給
されライン(11)から排出される水により洗浄されて
含有Cotの80%以上を吸収除去される。洗浄塔(7
)を出たCOGは、ライン(13)を経て水分離a<図
示せず)に入り、同伴される水を除去された後、第1の
吸着装置(15)に入る。第1の吸着装置(15)は、
詳細には示していないが、少なくとも2個(通常3乃至
4個)の吸着塔からなり、夫々の吸着塔にはN2の分離
に適した吸着剤(例えば細孔径5人程度の合成ゼオライ
ト、カーボンモレキュラーシーブス、活性炭と細孔径5
人程度の合成ゼオライトとの組合せ等)が充填されてい
る。
In the flowchart shown in Figure 1, the raw material COG
5 in the first compressor (3) via line (1)
After being boosted to ~20kMC■2・G, the line (5
) and enters the washing tower (7), where it is washed by water supplied from line (9) and discharged from line (11), and more than 80% of the Cot contained therein is absorbed and removed. Washing tower (7
) exits the COG via line (13) into water separation a<not shown) and, after removing entrained water, enters the first adsorption device (15). The first adsorption device (15) is
Although not shown in detail, it consists of at least two (usually 3 to 4) adsorption towers, and each adsorption tower is equipped with an adsorbent suitable for N2 separation (for example, synthetic zeolite with a pore size of about 5 mm, carbon Molecular sieves, activated carbon and pore size 5
(combined with human-sized synthetic zeolite, etc.).

吸着を利用したN2の分離は、公知のプレッシャー ス
イング アトソープション法により行なえば良く、少な
くとも1個の吸着塔が吸着に使用されてN2の分離が行
なわれている間に少なくとも他の111の吸着塔から吸
着されたガスの脱着が行なわれる。ライン(17)から
得られるN2の純度は、吸着時及び脱着時の操作条件を
制御することにより、例えば99.99%以上とするこ
とも可能である。第1の吸着装@(15)においては、
COG中のN2の70〜80%程度を除去する様にCO
Gの滞留時間を調整すれば良い。第1の吸着装置(15
)においてCOG中のN2を除去されたCOGは、ライ
ン(19)を経て第2の圧縮II(21)において5〜
20kMC■2・G1!!度に昇圧された後、ライン(
23)を経て第2の吸着vRI!(25)に送られる。
Separation of N2 using adsorption may be performed by a known pressure swing atsorption method, in which at least one adsorption tower is used for adsorption and while separation of N2 is being performed, at least another 111 adsorption columns are used for adsorption. Desorption of the gas adsorbed from the column takes place. The purity of N2 obtained from the line (17) can be made, for example, 99.99% or more by controlling the operating conditions during adsorption and desorption. In the first adsorption device @(15),
CO to remove about 70-80% of N2 in COG.
All you have to do is adjust the residence time of G. First adsorption device (15
), the COG from which N2 in the COG has been removed passes through the line (19) to the second compression II (21), where 5~
20kMC■2・G1! ! After being boosted to a certain degree, the line (
23) and then the second adsorption vRI! (25).

第2ff)吸11置(25)も、第1の吸着装置(15
)と同様に、少なくとも2個以上の吸着塔からなってお
り、公知のプレッシャー スイング アトソープション
法により、ガス中のN2.02 、N2及びCOの分離
及び吸着されたガスのライン(29)からの脱着を行な
う。第2の吸着装置I(25)における吸着剤としては
、第1の吸着装置I(15)におけると同様のものを使
用する。第2の吸着装置(25)においては、これ等ガ
スの70〜80%程度を除去する様にCOGの滞留時間
を調整すれば良い。第2の吸着装置(25)においてN
2.02 、N2及びCOを除去されたCOGは、ライ
ン(29)を経て第3の圧縮II (31)に入り、5
〜35 kQ/C■2・G程度に昇圧された後、ライン
(33)を経て、メタン化反応装置(35)に入る。メ
タン     □化反応装置(35)には、ガス中に存
在するCOとN2とによるメタン化反応及びCQ HA
の水素添加によるC2H6生成反応を起こさせるN1系
、Go−MO系、N1−Go系等の触媒が充填されてお
り、これ等の反応は、通常温度200〜500℃程度、
圧力5〜35kMC■2・G程度の条件下に行なわれる
。斯(して得られた発熱量約11000Kcae以上の
SNGは、ライン(37)を経て収得される。
2ff) The suction 11 position (25) is also the first suction device (15).
), it consists of at least two or more adsorption towers, and uses the known pressure swing atsorption method to separate N2.02, N2, and CO from the gas and to remove the adsorbed gas from the line (29). Attach and detach. As the adsorbent in the second adsorption device I (25), the same one as in the first adsorption device I (15) is used. In the second adsorption device (25), the residence time of COG may be adjusted so as to remove about 70 to 80% of these gases. In the second adsorption device (25)
2.02, the COG stripped of N2 and CO enters the third compression II (31) via line (29) and
After being pressurized to about 35 kQ/C2.G, it enters the methanation reactor (35) through a line (33). The methane conversion reaction device (35) is equipped with a methanation reaction using CO and N2 present in the gas and CQ HA.
It is filled with catalysts such as N1 type, Go-MO type, N1-Go type, etc. that cause C2H6 production reaction by hydrogenation of .
It is carried out under conditions of a pressure of 5 to 35 kmC and 2.G. The thus obtained SNG having a calorific value of about 11,000 Kcae or more is obtained through the line (37).

発明の効果 本発明によれば、以下の如き効果が奏される。Effect of the invention According to the present invention, the following effects are achieved.

(a)原料としてCOG以外にブタン等の高級炭化水素
を使用することなく高発熱量ガスを得ることが出来る。
(a) High calorific value gas can be obtained without using higher hydrocarbons such as butane other than COG as raw materials.

(b)生成ガスの発熱量ガスを11000kcaQ/N
m”まで高めることが出来るので、増熱用のブタンを使
用することなく、SNGが得られる。
(b) The calorific value of the generated gas is 11000 kcaQ/N
m'', SNG can be obtained without using butane for heating.

(C)高純度のH2を併せて製造することが出来る。(C) Highly purified H2 can also be produced.

衷−Jiff 以下実施例を示し、本発明の特徴とするところをより一
層明・らかにする。
EXAMPLES Examples will be shown below to further clarify the features of the present invention.

実施例1 第1図に示すフローに従って本発明方法を実施した。Example 1 The method of the present invention was carried out according to the flow shown in FIG.

タール、ナフタレン、BTX等の不純物を予め除いたC
OG (組成は、第1表に示すとおりである)100O
Nm” /hを第1 (D圧111 (3) ニより約
9 kg/ cm2 ・Gに昇圧した後、洗浄塔(7)
に送給して水洗し、含有CO2の約90%を吸収除去し
た。次いで、水分離器により同伴される水を除去したC
OGを第1の吸着装置(15)に送り、含有H2の約7
5%を除去した後、第2の圧縮機(21)により再度的
9kMc−2・Gに昇圧し、第2の吸着装置(25)に
送給した。H2,02、N2 及びGO(7)約80%
及びcHt(7)約20%を除去されたCOGは、第3
の圧縮機(31)により約9 kg/ cm2 ・Gに
昇圧された一後、メタン化反応装置(35)に送られ、
メタン化反応に供された。
C from which impurities such as tar, naphthalene, and BTX have been removed in advance
OG (composition is as shown in Table 1) 100O
After increasing the pressure from the first (D pressure 111 (3) 2 to approximately 9 kg/cm2 ・G), the washing tower (7)
It was then washed with water to absorb and remove about 90% of the CO2 it contained. Then, C with the entrained water removed by a water separator
The OG is sent to the first adsorption device (15), and about 7
After removing 5%, the pressure was again increased to 9 kMc-2·G by the second compressor (21) and fed to the second adsorption device (25). H2,02, N2 and GO (7) about 80%
The COG from which about 20% of cHt(7) and cHt(7) have been removed is
After being pressurized to approximately 9 kg/cm2 G by the compressor (31), it is sent to the methanation reactor (35),
It was subjected to methanation reaction.

第1図に示すフローの所定地点におけるガスの組成を第
1表に示す。
Table 1 shows the composition of the gas at predetermined points in the flow shown in FIG.

尚、第1の吸着装置(15)では、吸着剤として細孔径
約5人の合成ゼオライトを使用し、399ONm3 /
hの82  (99,99%以上)を収得した。
In addition, in the first adsorption device (15), a synthetic zeolite with a pore size of about 5 pores is used as an adsorbent, and the amount of 399ONm3/
82 (more than 99,99%) of h was obtained.

第2の吸着装置(25)における吸着剤は、細孔径約5
人の合成ゼオライトであった。
The adsorbent in the second adsorption device (25) has a pore size of about 5
It was human-made synthetic zeolite.

メタン化反応装置(35)では、Go−MO系触媒を使
用し、反応条件は、圧力9kl)/C12・G1温度2
50℃であった。又、得られたSNGの発熱量は、11
017 kcaQ/Nm3t’あった。
In the methanation reactor (35), a Go-MO catalyst is used, and the reaction conditions are pressure 9kl)/C12・G1 temperature 2
The temperature was 50°C. In addition, the calorific value of the obtained SNG was 11
017 kcaQ/Nm3t'.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法の実施態様の一例を示すフローチ
ャートである。 (3)・・・第1の圧縮機、 (7)・・・洗浄塔、 (15)・・・第1の吸着装置、 (21)・・・第2の圧縮機、 (25)・・・第2の吸着装置、 (31)・・・第3の吸着装置、 (35)・・・メタン化反応装置。 (以 上) 第1図 z3  どυ
FIG. 1 is a flowchart showing an example of an embodiment of the method of the present invention. (3)...First compressor, (7)...Cleaning tower, (15)...First adsorption device, (21)...Second compressor, (25)... -Second adsorption device, (31)...Third adsorption device, (35)...Methanation reaction device. (That's all) Figure 1 z3 Do υ

Claims (1)

【特許請求の範囲】 [1](1)コークス炉ガスを洗浄してCO_2を除去
する工程、 (2)吸着を利用することにより前記洗浄工程からのガ
スから高純度H_2を選択的に分離する第一の吸着工程
、 (3)前記第一の吸着工程から脱着されたガスから吸着
を利用することによりH_2、O_2、N_2及びCO
を分離する第二の吸着工程、及び (4)前記第二の吸着工程から脱着されたガス中のCO
をメタン化するとともにC_2H_4をエタン化して合
成天然ガスを製造する工程 を備えたことを特徴とするコークス炉ガスから高純度水
素及び合成天然ガスを製造する方法。
[Claims] [1] (1) A step of cleaning coke oven gas to remove CO_2; (2) selectively separating high-purity H_2 from the gas from said cleaning step by utilizing adsorption. a first adsorption step, (3) H_2, O_2, N_2 and CO by utilizing adsorption from the gas desorbed from the first adsorption step;
and (4) CO in the gas desorbed from the second adsorption step.
A method for producing high-purity hydrogen and synthetic natural gas from coke oven gas, comprising a step of methanating C_2H_4 and ethanizing C_2H_4 to produce synthetic natural gas.
JP60079809A 1985-04-15 1985-04-15 Production of high-purity hydrogen and synthesized natural gas from coke oven gas Pending JPS61236896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60079809A JPS61236896A (en) 1985-04-15 1985-04-15 Production of high-purity hydrogen and synthesized natural gas from coke oven gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60079809A JPS61236896A (en) 1985-04-15 1985-04-15 Production of high-purity hydrogen and synthesized natural gas from coke oven gas

Publications (1)

Publication Number Publication Date
JPS61236896A true JPS61236896A (en) 1986-10-22

Family

ID=13700534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60079809A Pending JPS61236896A (en) 1985-04-15 1985-04-15 Production of high-purity hydrogen and synthesized natural gas from coke oven gas

Country Status (1)

Country Link
JP (1) JPS61236896A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108102752A (en) * 2017-07-19 2018-06-01 湖北申昙环保新材料有限公司 The method that coke-stove gas produces natural gas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849322A (en) * 1981-09-18 1983-03-23 Hitachi Zosen Corp Methanation process using hydrogen-rich gas and hydrogen-lean gas as raw material
JPS59168094A (en) * 1983-03-09 1984-09-21 デイデイエル・エンジニアリング・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Manufacture of substitutive natural gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849322A (en) * 1981-09-18 1983-03-23 Hitachi Zosen Corp Methanation process using hydrogen-rich gas and hydrogen-lean gas as raw material
JPS59168094A (en) * 1983-03-09 1984-09-21 デイデイエル・エンジニアリング・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Manufacture of substitutive natural gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108102752A (en) * 2017-07-19 2018-06-01 湖北申昙环保新材料有限公司 The method that coke-stove gas produces natural gas

Similar Documents

Publication Publication Date Title
KR940006239B1 (en) Integrated processes for the production of carbon monoxide
US3338030A (en) Depressuring technique for deltap adsorption process
KR101535685B1 (en) Hydrogen adsorption purification method with co-generation of a pressurised co2 flow
CN107789949B (en) Gas separation method by negative pressure swing adsorption
US4869894A (en) Hydrogen generation and recovery
CA2489479C (en) Process to remove nitrogen and/or carbon dioxide from methane-containing streams
KR0137440B1 (en) Hydrogen recovery by absorbent membranes
US5669960A (en) Hydrogen generation process
US4359328A (en) Inverted pressure swing adsorption process
JPS62223587A (en) Method and device for recovering argon from purge gas of ammonia plant using combination of low-temperature separation means and non-low temperature separation means
JPS6362522A (en) Adsorptive separation of gaseous mixture
WO2008142009A1 (en) Process for purifying a gas by cpsa having two regeneration stages, and purification unit for implementing this process
KR870700395A (en) Improved pressure vibration adsorption process
JPH04280807A (en) Method of recovering argon from supply mixture containing argon, carbon monoxide, methane, hydrogen and nitrogen
EP0411506A2 (en) Production of hydrogen, carbon monoxide and mixtures thereof
US4772420A (en) Gas separation
US6814787B2 (en) Layered adsorption zone for hydrogen production swing adsorption
WO2008151913A1 (en) Psa process suitable for recovering specific compounds
EP0178833A2 (en) Gas recovery
KR20070085137A (en) Pressure-swing adsorption method and device
JPS61236896A (en) Production of high-purity hydrogen and synthesized natural gas from coke oven gas
JPH03242302A (en) Production of hydrogen and carbon monoxide
JPH04200713A (en) Manufacture of high-purity carbon monoxide
AU2016201267A1 (en) A plant and process for simutaneous recovering multiple gas products from petrochemical offgas
JPH07165B2 (en) Refining method of hydrocarbon reformed gas