JPS6123643B2 - - Google Patents

Info

Publication number
JPS6123643B2
JPS6123643B2 JP56113394A JP11339481A JPS6123643B2 JP S6123643 B2 JPS6123643 B2 JP S6123643B2 JP 56113394 A JP56113394 A JP 56113394A JP 11339481 A JP11339481 A JP 11339481A JP S6123643 B2 JPS6123643 B2 JP S6123643B2
Authority
JP
Japan
Prior art keywords
granules
pressure
rubber
particles
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56113394A
Other languages
Japanese (ja)
Other versions
JPS5815210A (en
Inventor
Ryoichi Sado
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP11339481A priority Critical patent/JPS5815210A/en
Publication of JPS5815210A publication Critical patent/JPS5815210A/en
Publication of JPS6123643B2 publication Critical patent/JPS6123643B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は新しい構成の感圧抵抗素子に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pressure-sensitive resistance element with a new configuration.

従来感圧抵抗素子用の導電性ゴム状弾性体とし
ては、絶縁性ゴム弾性体中に金属粉粒体やカーボ
ンブラツクを混合分散させたもの、あるいはスポ
ンジ状体中にそれら導電体粒子を分散させたもの
などが種々開発されている。これらは印加圧力に
よつてゴム状弾性体中で、粒子間の接触の機会が
増加および/または当接している電極との実質接
触面積が増加することによつて、対電極間の抵抗
値が小さくなる機構のものである。この印加圧力
によつて導電性ゴム状弾性体が圧縮変形するが、
それによつて該絶縁性ゴム弾性体マトリツクスと
上記導電体粒子との間に剥離のせん断が働き、マ
トリツクスと粒子との間に接着剤やカツプリング
剤を使用して接着力を強固にしてあつても、くり
返しの印加圧力あいは大きい歪変形により、マト
リツクスと導電体粒子とは分離し、初期の抵抗〜
圧力の関係維持が困難で信頼性が低い欠点があ
る。この圧縮変形量を小さくしてそれらの欠点を
改良する場合には、圧縮方向の厚みがうす物に制
限されたり、圧力と抵抗値関係の微調節が極めて
困難とされるなどの不利がある。
Conventionally, conductive rubber-like elastic bodies for pressure-sensitive resistance elements have been prepared by mixing and dispersing metal powder or carbon black in an insulating rubber elastic body, or by dispersing conductive particles in a sponge-like body. Various products have been developed. These are caused by the applied pressure increasing the chances of contact between particles in the rubber-like elastic body and/or increasing the actual contact area with the electrode that is in contact with it, thereby increasing the resistance value between the counter electrode. It has a mechanism that makes it smaller. This applied pressure compresses and deforms the conductive rubber-like elastic body.
As a result, peeling shear acts between the insulating rubber elastic matrix and the conductive particles, and even if adhesive or coupling agent is used between the matrix and the particles to strengthen the adhesive force, , the repeated applied pressure causes the matrix and conductive particles to separate due to large strain deformation, reducing the initial resistance ~
It has the disadvantage that it is difficult to maintain the pressure relationship and has low reliability. In order to improve these drawbacks by reducing the amount of compression deformation, there are disadvantages such as the thickness in the compression direction being limited to a thin material and fine adjustment of the relationship between pressure and resistance value being extremely difficult.

例えば、米国特許第4199637号、同第4203088
号、同第4210895号、同第4209481号等の明細書に
は、印加圧力により当接電極面積内で貫通する針
状体の数が増加する構造の感圧抵抗素子が開示さ
れているが、これらは線状、針状体の座屈、屈曲
等の永久変形によりその信頼性を失う欠点を有し
ている。したがつてこれらの導電性ゴム状弾性体
を使用した感圧抵抗装置はきわめて限定された仕
様範囲で使用される不利を持つている。
For example, US Patent No. 4199637, US Patent No. 4203088
No. 4210895, No. 4209481, etc. disclose pressure-sensitive resistance elements having a structure in which the number of needle-like bodies penetrating within the contact electrode area increases with applied pressure. These have the disadvantage of losing their reliability due to permanent deformation such as buckling or bending of the linear or needle-like bodies. Therefore, pressure-sensitive resistance devices using these conductive rubber-like elastic bodies have the disadvantage of being used within a very limited range of specifications.

また特公昭55−26565号公報には、その図面に
示されているように、感圧抵抗構造体が押圧によ
つてその表層部に導電性粒子を混合した弾性体A
群の分布密度を高め、一方その構造体内部に導電
勢粒子を混合しない弾性体B群の分布密度を高め
るように構成した感圧抵抗体が示されている。し
かしこれは弾性体A群とB群を上記機能が発揮さ
れるように混合分散させたものであるため、その
構成が複雑であり、したがつて工程管理がやつか
いでコスト高なものになるという不利があるほ
か、品質のバラツキ、感圧抵抗の不安定さが認め
られる。
Furthermore, as shown in the drawings of Japanese Patent Publication No. 55-26565, a pressure-sensitive resistance structure is made of an elastic material A with conductive particles mixed in its surface layer by pressure.
A pressure-sensitive resistor is shown that is configured to increase the distribution density of the group, while increasing the distribution density of the elastic body B group in which conductive particles are not mixed inside the structure. However, since this is made by mixing and dispersing elastic bodies A group and B group so that the above functions are exhibited, the structure is complicated, and therefore process control is difficult and costs are high. In addition to this disadvantage, there are also variations in quality and instability in the pressure-sensitive resistor.

さらに実公昭49−32692号公報には、圧縮の程
度によつて電気抵抗値が変化する導電性スポンジ
が開示されているが、このものは例えばそのスポ
ンジ構造が独立気泡スポンンジの場合は、セルの
膨出ないし傍出変形による内壁の伸張、屈曲がく
り返されるし、またホームラバーあるいは連続気
泡スポンジの場合は、セル内壁の屈曲が鋭角状に
生じるので、いずれの場合にもセル内壁の疲労が
早期に発生し易い不利がある。
Furthermore, Japanese Utility Model Publication No. 49-32692 discloses a conductive sponge whose electrical resistance value changes depending on the degree of compression. The inner walls are repeatedly stretched and bent due to bulging or protruding deformation, and in the case of home rubber or open cell sponge, the inner walls of the cells are bent at acute angles, so in both cases fatigue of the inner walls of the cells occurs. There is a disadvantage that it tends to occur early.

本発明は、かかる不利、欠点を解決した感圧抵
抗素子を提供しようとするもので、これは電極間
に、少なくとも表面層が導電性であるゴム状弾性
体よりなる粒状体を集塊状態で配設してなり、押
圧時には粒状体の押圧による傍出および/または
膨出変形により、電極と粒状体、および粒状体相
互の接触面積が増加し、押圧を解除すると該接触
面積が減少するように構成したことを特徴とする
感圧抵抗素子に関するものである。
The present invention aims to provide a pressure-sensitive resistance element which solves these disadvantages and disadvantages, and which comprises agglomerated granules made of a rubber-like elastic material whose surface layer is electrically conductive between electrodes. When pressed, the contact area between the electrode and the granules and between the granules increases due to side-by-side and/or bulging deformation due to the pressure of the granules, and when the pressure is released, the contact area decreases. The present invention relates to a pressure-sensitive resistance element characterized in that it is configured as follows.

この本発明によれば導電性ゴム弾性体の集塊を
構成する粒状体が押圧に応じ傍出ないし膨出し、
これによつて粒状体相互の接触面積が増加して電
気抵抗値が変化する機構のものであるから、その
構成は従来のような複雑な構成のものではなく、
しかも疲労がきわめて生じ難く、信頼性は抜群に
高いものである。
According to the present invention, the granules constituting the agglomerate of the conductive rubber elastic body protrude or bulge in response to pressure,
This mechanism increases the contact area between the granules and changes the electrical resistance value, so the structure is not as complicated as conventional ones.
Furthermore, fatigue is extremely unlikely to occur and reliability is extremely high.

本発明に使用される導電性であるゴム状弾性体
の粒状体は、絶縁性のゴム弾性体マトリツクス中
に金属粉粒体やカーボンブラツク等の導電性部材
を混合分散させたものを粒状としたもの、あるい
はあらかじめ粒状体とされた絶縁性ゴム弾性体の
表面に導電性ゴムの被覆層を形成したものなどい
ずれでもよく、あるいはまた絶縁性ゴム弾性体粒
子の表面に導電性ゴム弾性体細粒が密に層状に接
合されているものでもよいが、この導電性ゴム状
弾性体としては比抵抗が10-4ohm・cm〜
104ohm・cmの範囲内のものであることが望まし
い。
The conductive rubber-like elastic granules used in the present invention are made by mixing and dispersing a conductive material such as metal powder or carbon black in an insulating rubber-elastic matrix. It may be a material in which a conductive rubber coating layer is formed on the surface of an insulating rubber elastic material that has been made into granules in advance, or a conductive rubber elastic material fine particle is formed on the surface of an insulating rubber elastic material particle. A conductive rubber-like elastic material with a resistivity of 10 -4 ohm・cm~
It is desirable that it be within the range of 10 4 ohm cm.

導電性ゴム状弾性体は粒状体の形で使用するの
であるが、これは加硫によつて導電性ゴム状弾性
体を製造する際に所定形状の粒状体に成形加硫す
ることにより得ることができるほか、シート状も
しくは棒状、塊状、ひも状等の導電性ゴム状弾性
体を、適当な大きさの粒状体に、粉砕、切断ある
いは裁断して得たものでよい。したがつて、これ
ら粒状体の断面形状あるいは投影形状などには特
に制限がなく、粉体工学で示されるあらゆる形状
のほか、リング状、パイプ状、中空体、多孔質体
等いずれも含まれる。
The conductive rubber-like elastic body is used in the form of granules, which can be obtained by molding and vulcanizing the conductive rubber-like elastic body into granules of a predetermined shape when manufacturing the conductive rubber-like elastic body by vulcanization. In addition, it may be obtained by crushing, cutting, or cutting a conductive rubber-like elastic body in the form of a sheet, rod, lump, string, etc. into particles of an appropriate size. Therefore, the cross-sectional shape or projected shape of these granules is not particularly limited, and includes all shapes shown in powder engineering, as well as ring shapes, pipe shapes, hollow bodies, porous bodies, etc.

粒状体がこれらのいずれのものであつても、そ
の最大外径が10μm〜10mm(好もしくは50μm〜
5mm)であり、断面の実面積が75μm2〜100mm2
(好ましくは200μm2〜75mm2)であるものが望まし
い。これがあまりに小さいものであると、前記し
た機能を備えた感圧抵抗素子を構成することが困
難である。すなわち、粒状体間の摩擦力と粒状体
個々の弾性復元力のバランスが悪くなり易く集塊
状態での弾性復元力が不足し具合が悪く、印加圧
力と抵抗値関係の微調節を行い難いものとなる。
一方この粒状体が大きすぎると、この導電性ゴム
状弾性体の体積に対する表面積の比が小さくなる
ことによつて、押圧時の圧縮による膨出表面の固
有抵抗が大きくなる傾向があり、押圧による抵抗
変化量があまり変らないものとなるほか、圧縮さ
れる際、粒状体表面の傍出伸張による摩擦力が大
きなものなり、表面でのクラツキングが生じ易く
なるという不利がある。
No matter which of these particles the granules are, their maximum outer diameter is 10 μm to 10 mm (preferably or 50 μm to 10 mm).
5mm), and the actual area of the cross section is 75μm 2 ~ 100mm 2
(preferably 200 μm 2 to 75 mm 2 ). If this is too small, it will be difficult to construct a pressure-sensitive resistance element with the above-mentioned functions. In other words, the balance between the frictional force between the granules and the elastic restoring force of each granule tends to be poor, and the elastic restoring force in the agglomerated state is insufficient, making it difficult to finely adjust the relationship between the applied pressure and the resistance value. becomes.
On the other hand, if this granular material is too large, the ratio of surface area to volume of this conductive rubber-like elastic material becomes small, and the specific resistance of the bulging surface due to compression during pressing tends to increase. In addition to the amount of change in resistance not changing much, there is a disadvantage that when compressed, the frictional force due to side elongation of the surface of the granular material becomes large, making cracking more likely to occur on the surface.

なお、導電性ゴム状弾性体の粒状体は前記した
平均直径の範囲のものであれば、大小まざつてい
ても原則的には差支えないが、望ましくは直径の
そろつたものあるいは粒体分布巾をできるだけ小
さい状態で、さらには形状をそろえて使用するこ
とがよいい。
Incidentally, as long as the particles of the conductive rubber-like elastic material have an average diameter within the above-mentioned range, there is no problem in principle even if the particles are of different sizes, but it is preferable that the particles have a uniform diameter or have a particle distribution width. It is better to use them as small as possible and even in the same shape.

本発明は上記した粒状体が集塊状態で電極間に
配設されるものであるが、この集塊状態とは粒状
体が堆積構造を形成し、粒状体が1個1個分離せ
ず、密充填状態、整配列の堆積状態あるいは疎に
充填堆積している状態であつて、各粒状体のも
つ、例えば中空構造、多孔質構造を除く空隙率は
5〜80%、粒状体の実容積によつても異なるが好
ましくは10〜75%、より好ましくは20〜70%であ
る。5%より小さいと抵抗値変化量を大きく得難
く、80%より大きいと粒状体表面の伸張による抵
抗値増加あるいは粒状体間の摩擦劣化が生じ易
く、粒状体間の粘着が発生したりし易いので、信
頼性の維持が困難なものとなる。
In the present invention, the above-mentioned granules are arranged between the electrodes in an agglomerated state, but this agglomerated state means that the granules form a stacked structure, and the granules do not separate one by one. The porosity of each granule, excluding hollow structures and porous structures, is 5 to 80%, and the actual volume of the granule is in a densely packed state, an ordered stacked state, or a sparsely packed and deposited state. It is preferably 10 to 75%, more preferably 20 to 70%, although it varies depending on the situation. If it is less than 5%, it is difficult to obtain a large amount of change in resistance value, and if it is more than 80%, resistance value increases due to elongation of the granule surface or friction deterioration between granules tends to occur, and adhesion between granules tends to occur. Therefore, maintaining reliability becomes difficult.

本発明におけるかかる粒状体の集塊状態はその
外観形状が板状体、柱状体、環状体、球面体で透
影外観はその外径表面が平滑面ないし粗面、凹凸
面を呈する。
In the present invention, the agglomerated state of the granules has an external shape of a plate, columnar, annular, or spherical body, and the outer diameter surface of the granular material has a smooth surface, a rough surface, or an uneven surface.

このような粒状体の集塊状態の外観形状は、印
加圧方向での厚み、高さは選ばれた粒状体最大外
径の平均が大きいものを用いた場合には0.5倍〜
5倍、小さい方のものを用いた場合には0.5倍〜
100倍にて行うのがよく、先の粒状体外径、空隙
率の効果的な範囲と相まつてさらに信頼性を高め
るのに有効である。
The appearance shape of such agglomerated granules has a thickness and height in the direction of applied pressure of 0.5 to 0.5 times when the average maximum outer diameter of the selected granules is large.
5 times, 0.5 times ~ if the smaller one is used
It is best to do this at a magnification of 100 times, and in combination with the above-mentioned effective ranges for the outside diameter and porosity of the granules, this is effective in further increasing reliability.

この集塊状態は通常電極間の配設に際し、動作
していないときの電極への接触あるいは離間は限
定しないが、押圧の方向に垂直な面の周囲はでき
るだけ、他の固い部材に接触していない方がよ
い。押圧を解除したとき元の厚みに復帰し易い柔
軟なゴム状弾性体に接触している場合は、そのゴ
ム状弾性体の弾発挙動により上記復帰が助勢され
るので具合よく、一体化しているものはさらに具
合がよい。
This agglomeration state is usually caused by the arrangement between electrodes, which does not limit the contact or separation of the electrodes when not in operation, but the periphery of the plane perpendicular to the direction of pressing should be in contact with other solid members as much as possible. It's better not to have it. If it is in contact with a flexible rubber-like elastic body that easily returns to its original thickness when the pressure is released, the above-mentioned return is assisted by the elastic behavior of the rubber-like elastic body, so that it is conveniently integrated. Things are even better.

粒状体の集塊状態は加硫した導電性ゴムの粒状
体を平面状で敷設し、つぎに加硫し得る未加硫導
電性ゴムの粒状体を重ねて敷設し必要により交互
多重に積層堆積して、加硫するその際空隙率を維
持して型わくに入れ熱圧して加硫してもよい。あ
るいは上記粒状体は初めに全て加硫し得る未加硫
導電性ゴムであつて堆積状態を維持して熱風加
硫、蒸気加硫も行ない得る。またあるいは加硫導
電性ゴム粒状体と加硫し得る未加硫ゴム粒状体を
適度な割合で均一分散混合して堆積させたものを
加硫させてもよい。さらには導電性および/また
は絶縁性の加硫および/または未加硫ゴム粒状体
を、底が通液性の容器状のもの例えばふるいやざ
るの中に堆積させて室温で流体であり硬化後ゴム
弾性体を呈し、導電性となるゴム液状原料に浸漬
して、ろ過あるいは蒸留塔における充填層のパブ
リング状態のない、液ぬれ状態で液状ゴム原料を
硬化させる方法によてもよい。液状ゴム原料はシ
リコーンゴムにおいては室温硬化、加温硬化の一
液型、二液型のいずれでもよく、また溶剤を使用
してもよい。粒状体が平面に一層に敷設状態とな
し集塊化してもよい。
The agglomerated state of granules is achieved by laying granules of vulcanized conductive rubber in a flat shape, then laying granules of unvulcanized conductive rubber that can be vulcanized in layers, alternating and stacking them as necessary. Then, during vulcanization, the porosity may be maintained, placed in a mold, and vulcanized by hot pressure. Alternatively, the granules may be all unvulcanized conductive rubber that can be vulcanized at first, and hot air vulcanization or steam vulcanization may be performed while maintaining the granules in a deposited state. Alternatively, vulcanized conductive rubber particles and vulcanizable unvulcanized rubber particles may be uniformly dispersed and mixed in an appropriate ratio and deposited, and then vulcanized. Furthermore, conductive and/or insulating vulcanized and/or unvulcanized rubber particles may be deposited in a liquid-permeable bottom container, such as a sieve or colander, to remain fluid at room temperature and after curing. A method of curing the liquid rubber raw material in a wet state without filtration or bubbling of a packed bed in a distillation column by immersing it in a rubber liquid raw material that exhibits a rubber elastic body and becomes conductive may be used. In the case of silicone rubber, the liquid rubber raw material may be either a one-component type or a two-component type, curing at room temperature or heating, and a solvent may be used. The granules may be laid out in a single layer on a flat surface to form an agglomerate.

本発明の集塊状態にある粒状体(図面における
集塊2)に配設される電極は、可とう性、剛体、
基板上にエツチング形成されたもの、あるいは従
来公知のピン状、板状、リボン状の接触子形状の
もの、針金状、可とう性、弾力性金属薄板、箔を
可とう性合成樹脂、合成ゴムシート状、板状体に
一体的にしたものあるいは蒸着、スパツタにより
形成されたものなどいずれでもよく、また必要に
より貴金属メツキ処理してもよい。
The electrodes arranged on the granular bodies in the agglomerated state (agglomerate 2 in the drawings) of the present invention are flexible, rigid,
Those formed by etching on a substrate, or conventionally known pin-shaped, plate-shaped, ribbon-shaped contacts, wire-shaped, flexible, elastic thin metal plates, flexible synthetic resins, synthetic rubber, etc. It may be in the form of a sheet, integrated into a plate, or formed by vapor deposition or sputtering, and may be plated with a precious metal if necessary.

電極は上記集塊状態を挾む、集塊状態表面
に並設する、集塊状態を少なくとも1個が貫通
する、などで配置するが、1個の集塊に対し極数
は2極ないし3極以上で配置される。
The electrodes are arranged such that they sandwich the agglomerated state, are arranged in parallel on the surface of the agglomerated state, or at least one electrode penetrates the agglomerated state, and the number of electrodes is 2 to 3 per one agglomerated state. Placed above poles.

本発明の具体的内容を図面に基づき説明する
と、第1図は電極3,3′間に導電性粒子1を集
塊2として配設した構成からなる感圧抵抗素子の
概略断面図を示したもので、同図aは非押圧状態
をまたbは押圧状態をそれぞれ示す。このb図か
ら判るように、押圧により電極と導電性粒子との
接触面積が増加すると共に粒子相互が接触し、こ
の結果電極3,3′間の抵抗が非押圧時(a図)
に比べて大巾に小さくなる。
To explain the specific content of the present invention based on the drawings, FIG. 1 shows a schematic cross-sectional view of a pressure-sensitive resistance element having a structure in which conductive particles 1 are arranged as agglomerates 2 between electrodes 3 and 3'. In the figure, a shows the non-pressed state and b shows the pressed state. As can be seen from figure b, pressing increases the contact area between the electrode and the conductive particles, and the particles come into contact with each other.As a result, the resistance between electrodes 3 and 3' increases when no pressure is applied (figure a).
It is much smaller than .

第2図は電極配置を別の構成としたもので、こ
れは同図aに示したように、片側の支持板4に導
電性粒状体からなる集塊2を固定する層5を設け
てある。この5は導電性、絶縁性のいずれでもよ
い。そして反対側の支持板4′には対電極3,
3′,3″が設けられている。もちろんこの対電極
は2極以上であればよい。同図bはa図において
導電性粒子が電極面に押圧された状態を示したも
のであり、これにより3,3′,3″間が導通状態
となる。
Figure 2 shows a different configuration of the electrode arrangement, in which, as shown in figure a, a layer 5 is provided on one side of the support plate 4 to fix the agglomerate 2 made of conductive particles. . This 5 may be either conductive or insulating. And on the opposite support plate 4' there is a counter electrode 3,
3', 3'' are provided. Of course, this counter electrode only needs to have two or more poles. Figure b shows the state in which the conductive particles are pressed against the electrode surface in Figure a. As a result, conduction is established between 3, 3', and 3''.

第3図、第4図および第5図は本発明の感圧抵
抗素子を応用した装置の二三の例を示したもので
あり、例えばカリキユレーター、電話その他マイ
クロコンピユータ装置のセンサースイツチ、電子
機器用センサースイツチ、多項目入力装置ないし
抵抗―圧力巾を大きくして演奏効果をすなわちア
フターコントロールを可能とした押釦状ないしは
けん盤下に使用した電子楽器あるいは電子玩具な
どのキーボード装置として使用するもの、および
ME用の圧力センサー等に使用するものである。
第3図中支持板4は可とう性体でも剛体でもよ
い。第3図〜第5図中6は絶縁性ゴム弾性体であ
り、これは多孔質体、発泡体でもよく、また絶縁
性ゴム弾性体粒からなる集塊状態の成形体でもよ
い。
Figures 3, 4 and 5 show a few examples of devices to which the pressure-sensitive resistance element of the present invention is applied, such as calculators, sensor switches for telephones and other microcomputer devices, and electronic devices. Sensor switches for equipment, multi-item input devices or resistors - push-button-shaped or under-key keyboard devices for electronic musical instruments or electronic toys that increase the pressure range to enable after-control of performance effects; and
It is used in pressure sensors for ME, etc.
The support plate 4 in FIG. 3 may be a flexible body or a rigid body. Reference numeral 6 in FIGS. 3 to 5 indicates an insulating rubber elastic body, which may be a porous body, a foam, or a molded body made of insulating rubber elastic particles in an agglomerated state.

本発明は上記図面に基づく説明からも判るよう
に、導電性ゴム状粒状体の粒子1個1個が電気・
電子機器の信頼性を100%満さなければならない
というものではなく粒状体の集塊状態において前
記した機能(効果)が果されればよい。粒体工学
的、化学工学的領域において確立された分野の取
扱いで、電気・電子機器向けの品質管理、加工装
置、組立装置等の自動化等のきわめて容易なもの
となる。このことは粒状体の集塊において例えば
そのうち1個あるいは2個が本発明にいう機能を
備えていない不良品としても、集塊状態物1個に
おけるる機能、さらに例えば第3図、第4図、第
5図のような構造で集塊の単位ごとの不良は皆無
なものとなる、という意味で実際上はきわめて大
きな利点である。
As can be seen from the explanation based on the above drawings, the present invention allows each particle of the conductive rubber-like granules to conduct electricity.
It is not necessary that the electronic device has 100% reliability; it is sufficient that the above-mentioned functions (effects) can be achieved in the state of agglomeration of the granules. By handling established fields in the fields of particle engineering and chemical engineering, quality control for electrical and electronic equipment, automation of processing equipment, assembly equipment, etc. will be extremely easy. This means that even if one or two of the particles in an agglomeration are defective and do not have the functions according to the present invention, the functions in one agglomerate, for example, as shown in FIGS. 3 and 4. This is actually a very great advantage in the sense that with the structure shown in FIG. 5, there will be no defects in each agglomerate unit.

本発明による他の利点は抵抗―圧力の関係を容
易に調節することができるということであり、ゴ
ム状弾性体粒子が圧縮変形する際、粒子固体の体
積と自由表面積の比を大きくすることによつて、
粒子内部でのクリープを小さくし、粒子物相互の
接触面積変化と対電極との接触面積変化による相
乗面積変化による抵抗―圧力の変化巾を大きく
し、これにより調節が容易となり、信頼性が大き
くなるという利点が与えられる。
Another advantage of the present invention is that the resistance-pressure relationship can be easily adjusted, increasing the volume to free surface area ratio of the particle solids when the elastomer particles are compressively deformed. Then,
Creep inside the particles is reduced, and the range of resistance-pressure changes due to synergistic area changes due to changes in the contact area between the particles and the counter electrode is increased, making adjustment easier and increasing reliability. It gives you the advantage of being

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に関する感圧抵抗素子のもつと
も基本的な構成を示す概略断面図を示したもので
そのa図は非押圧状態、b図は押圧状態を示す。
第2図は電極配置を別の構成とした感圧抵抗素子
の概略断面図を示したもので、そのa図は非押圧
状態、b図は押圧状態を示す。第3図a,bはセ
ンサースイツチ、第4図a,bはキーボードスイ
ツチ、第5図a,bはME圧力センサーとしての
それぞれ使用態様を示したものである。 1……導電性粒子、2……集塊、3,3′,
3″,3……電極、4,4′……支持板、5……
集塊2を固定する層、6……絶縁性弾性体。
FIG. 1 shows a schematic sectional view showing the most basic structure of a pressure-sensitive resistance element according to the present invention, in which figure a shows a non-pressed state and figure b shows a pressed state.
FIG. 2 shows a schematic cross-sectional view of a pressure-sensitive resistance element with a different electrode arrangement, in which figure a shows the non-pressed state and figure b shows the pressed state. FIGS. 3a and 3b show how the device is used as a sensor switch, FIGS. 4a and 4b show how it is used as a keyboard switch, and FIGS. 5a and 5b show how it is used as an ME pressure sensor. 1... Conductive particles, 2... Agglomerates, 3,3',
3″, 3... Electrode, 4, 4'... Support plate, 5...
A layer for fixing the agglomerate 2, 6... an insulating elastic body.

Claims (1)

【特許請求の範囲】[Claims] 1 電極間に、少なくとも表面層が導電性である
ゴム状弾性体よりなる粒状体を集塊状態で配設し
てなり、押圧時には粒状体の押圧による傍出およ
び/または膨出変形により、電極と粒状体、およ
び粒状体相互の接触面積が増加し、押圧を解除す
ると該接触面積が減少するように構成したことを
特徴とする感圧抵抗素子。
1. Granular bodies made of a rubber-like elastic material whose surface layer is electrically conductive are disposed between the electrodes in an agglomerated state, and when pressed, the electrodes are A pressure-sensitive resistance element characterized in that the contact area between the granules and the granules increases, and when the pressure is released, the contact area decreases.
JP11339481A 1981-07-20 1981-07-20 Pressure sensitive resistance element Granted JPS5815210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11339481A JPS5815210A (en) 1981-07-20 1981-07-20 Pressure sensitive resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11339481A JPS5815210A (en) 1981-07-20 1981-07-20 Pressure sensitive resistance element

Publications (2)

Publication Number Publication Date
JPS5815210A JPS5815210A (en) 1983-01-28
JPS6123643B2 true JPS6123643B2 (en) 1986-06-06

Family

ID=14611189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11339481A Granted JPS5815210A (en) 1981-07-20 1981-07-20 Pressure sensitive resistance element

Country Status (1)

Country Link
JP (1) JPS5815210A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349448U (en) * 1986-09-18 1988-04-04

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2676057B2 (en) * 1991-09-24 1997-11-12 イナバゴム 株式会社 Tactile sensor
JP5263641B2 (en) * 2007-05-28 2013-08-14 日立金属株式会社 Pressure-sensitive body, pressure-sensitive element, and pressure detection method using the same
JP5263643B2 (en) * 2007-09-25 2013-08-14 日立金属株式会社 Pressure sensitive material
JP2013165090A (en) * 2012-02-09 2013-08-22 Polytec Design:Kk Pressure sensitive conductive elastomer molding and variable resistance device using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256840U (en) * 1975-10-23 1977-04-25
JPS54105518A (en) * 1978-02-07 1979-08-18 Brother Ind Ltd Key switch circuit for electronic instrument
JPS554879U (en) * 1979-05-02 1980-01-12

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5741830Y2 (en) * 1976-01-30 1982-09-13

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256840U (en) * 1975-10-23 1977-04-25
JPS54105518A (en) * 1978-02-07 1979-08-18 Brother Ind Ltd Key switch circuit for electronic instrument
JPS554879U (en) * 1979-05-02 1980-01-12

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349448U (en) * 1986-09-18 1988-04-04

Also Published As

Publication number Publication date
JPS5815210A (en) 1983-01-28

Similar Documents

Publication Publication Date Title
EP0658248B1 (en) Conductive particulate force transducer
Hussain et al. Fabrication process and electrical behavior of novel pressure-sensitive composites
US4065197A (en) Isolated paths connector
EP0649518B1 (en) Stannous oxide force transducer and composition
EP1050054B1 (en) Polymer composition
US6114645A (en) Pressure activated switching device
US5060527A (en) Tactile sensing transducer
US4914416A (en) Pressure sensing electric conductor and its manufacturing method
GB2054277A (en) Pressure-sensitive electroconductive bodies
JPS59230270A (en) Laminated piece connector
JPS648403B2 (en)
JPS6123643B2 (en)
JPS61271706A (en) Pressure sensing conductive rubber
CN212659063U (en) Stress sensing film, touch module and electronic equipment
US5194205A (en) Process for forming a force sensor
JPS62112641A (en) Pressure-sensitive, electrically conductive elastomer composition
JPS61207939A (en) Pressure sensor
JPH02502310A (en) pressure responsive potentiometer
CN114112159B (en) Resistance type flexible three-dimensional force sensor based on spring-shaped sensitive unit
WO2022209026A1 (en) Electrostatic capacitance-type pressure-sensitive sensor
JPS6150363B2 (en)
CN100452260C (en) Push-button switch-use member and production method therefor
JPS6244804B2 (en)
JPH0917276A (en) Pressure sensitive sensor
JPH0648701Y2 (en) Pressure-sensitive sensor element