JPS61235523A - Manufacture of al-b alloy - Google Patents

Manufacture of al-b alloy

Info

Publication number
JPS61235523A
JPS61235523A JP60077227A JP7722785A JPS61235523A JP S61235523 A JPS61235523 A JP S61235523A JP 60077227 A JP60077227 A JP 60077227A JP 7722785 A JP7722785 A JP 7722785A JP S61235523 A JPS61235523 A JP S61235523A
Authority
JP
Japan
Prior art keywords
alloy
temperature
melting
intermetallic compound
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60077227A
Other languages
Japanese (ja)
Inventor
Masayuki Harada
雅行 原田
Yoshioki Hirose
広瀬 喜興
Toshio Suzuki
敏夫 鈴木
Takeshi Mabuchi
馬渕 武
Masahiro Shimamura
島村 正博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP60077227A priority Critical patent/JPS61235523A/en
Publication of JPS61235523A publication Critical patent/JPS61235523A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To manufacture an Al-B alloy contg. uniformly dispersed B and having superior machinability and workability by melting and holding an Al-B alloy contg. a specified amount of B in the form of AlB2 as an intermetallic compound at a proper temp. CONSTITUTION:An Al-B alloy contg. 1.0-5.0 wt.5% B in the form of AlB2 as an intermetallic compound is melted and held at 850-1000 deg.c to obtain an Al-B alloy contg. B dispersed uniformly without causing segregation and having superior machinability, extrudability and suitability t working into a plate. The resulting Al-B alloy can be used in a nuclear power plant and has neutron absorbing power. When the Al-B alloy is cast, it is preferable that the alloy is melted and held at 850-1000 deg.C, cooled to >=700 deg.C and cast so as to prevent segregation.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明はAl−B系合金の製造方法に関し、さらに詳し
くは、中性子吸収能に優れたB含有のA1−B系合金の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to a method for producing an Al-B alloy, and more particularly to a method for producing an Al-B alloy containing B that has excellent neutron absorption ability.

[従来技術] 一般に従来上り使用されている中性子吸収能に優れたも
のとされている材料には次に示すものがある。
[Prior Art] The following materials are generally used in the past and are considered to have excellent neutron absorption ability.

(1)Boral  :  アルミニウム母材にB、C
粉末を30〜40wt%配合したもの。
(1) Boral: B, C on aluminum base material
Contains 30 to 40 wt% of powder.

(2)B4C−Cu焼結板 :  B、C粉末とCu粉
末を混合撹拌した後焼結したもの。
(2) B4C-Cu sintered plate: B, C powder and Cu powder are mixed and stirred and then sintered.

(3)B含有ステンレス鋼 : ステンレス鋼にBを1
〜5@t%含有させたもの。
(3) B-containing stainless steel: 1 B added to stainless steel
~5@t% contained.

しかし、これらの材料には以下に説明するような問題が
ある。
However, these materials have problems as explained below.

(1)Boral この材料はA1とB、C粉末を均一に混合した後焼結し
て製造するものであるが、均一に混合すること自体が困
難であり、均質な製品を製造することは難かしく、また
、強度力弓Okgf/ff1II12と低く、溶接が困
難であり、さらに、圧延・押出加工が困難である。
(1) Boral This material is manufactured by uniformly mixing A1, B, and C powders and then sintering them, but it is difficult to mix uniformly and it is difficult to manufacture a homogeneous product. Moreover, the strength is low at Okgf/ff1II12, making it difficult to weld and furthermore difficult to roll and extrude.

(2) B 4C−Cu焼結板 B、C−Cu焼結板単体は脆いものであって、強度が3
〜5kgf/am2と低く単体として使用することは困
難で、アルミニウム合金に鍋ぐるんで使用しており、ア
ルミニウム合金に鋳ぐるむ際B、C−Cu焼結体は多孔
質のため気泡を発生し、健全な製品を作製することは難
かしい。
(2) B 4C-Cu sintered plate B, the C-Cu sintered plate alone is brittle and has a strength of 3
The low value of ~5kgf/am2 makes it difficult to use as a single unit, and it is used in an aluminum alloy pot, and when cast in an aluminum alloy, bubbles are generated because the B, C-Cu sintered body is porous. , it is difficult to produce a healthy product.

(3)B含有ステンレス鋼 ステンレス鋼にBを含有させると加工性が劣化し、熱間
鍛造、熱間圧延が困難となり、また、ステンレス鋼はア
ルミニウム合金に比べて熱伝導度が劣るので好ましくな
い。
(3) B-containing stainless steel Including B in stainless steel deteriorates workability, making hot forging and hot rolling difficult, and stainless steel is undesirable because it has inferior thermal conductivity compared to aluminum alloys. .

[発明が解決しようとする問題点1 本発明は上記に説明した従来における中性子吸収能を有
する種々の材料に存在する問題点に鑑みなされたもので
あって、本発明者が鋭意研究した結果、B含有A1基合
金材料が優れた中性子吸収能を有しているが、その製造
に際して発生する、(1)B化合物が沈降して均一な合
金ができない。
[Problem to be Solved by the Invention 1] The present invention was made in view of the above-mentioned problems existing in various conventional materials having neutron absorption ability, and as a result of intensive research by the present inventor, B-containing A1-based alloy materials have excellent neutron absorption ability, but (1) B compounds generated during their production precipitate, making it impossible to form a uniform alloy.

(2)切削性が悪いという問題点を解消し、B化合物が
均一に分散し、かつ、切削性にも優れ、原子力発電に際
して生じる使用済燃料の輸送・貯蔵用バスケット或いは
発電に使用する燃料制御棒等に用いられる中性子吸収能
に優れたAt−B系合金の製造方法を開発したのである
(2) Eliminates the problem of poor machinability, allows the B compound to be uniformly dispersed, and has excellent machinability, and is used as a fuel control basket for transportation and storage of spent fuel generated during nuclear power generation, or for use in power generation. They developed a method for manufacturing At-B alloys that have excellent neutron absorption ability and are used in rods and the like.

[問題点を解決するための手段] 本発明に係るAl−B系合金の製造方法は、(1)Al
82金属間化合物で、B 1,0〜5,0wt%を含有
するAt−B系合金を850〜1000°Cの温度に溶
解保持することを特徴とするAl−B系合金の製造方法
を第1の発明とし、 (2)Al82金属間化合物で、81.0−5.0wt
%を含有すよAl−B系合金を850〜1000’Cの
温度に溶解保持した後、700℃以上の温度に溶湯保持
温度を低下して鋳込むことを特徴とするAl−B系合金
の製造方法を第2の発明とする2つの発明よりなるもの
である。
[Means for solving the problems] The method for producing an Al-B alloy according to the present invention includes (1) Al
A method for producing an Al-B alloy, which is an intermetallic compound containing 1.0 to 5.0 wt% of B, is melted and maintained at a temperature of 850 to 1000°C. (2) Al82 intermetallic compound, 81.0-5.0wt
After melting and holding the Al-B alloy at a temperature of 850 to 1000'C, the molten metal holding temperature is lowered to a temperature of 700°C or higher and cast. This invention consists of two inventions, with the manufacturing method as the second invention.

本発明に係るAl−B系合金の製造方法について以下詳
細に説明する。
The method for producing an Al-B alloy according to the present invention will be described in detail below.

先ず、Bは中性子吸収能を付与する元素であり、含有量
が1.OwL%未満では中性子@収能が少なく、中性子
吸収材として使用できず、また、5,0wt%を越えて
含有されるとA1合金中へのBの含有が難かしく、Al
−B系合金の製造が難かしくなる。
First, B is an element that imparts neutron absorption ability, and the content is 1. If the content is less than OwL%, the neutron@capacity is low and it cannot be used as a neutron absorber, and if the content exceeds 5.0wt%, it is difficult to incorporate B into the A1 alloy, and the Al
- It becomes difficult to manufacture B-based alloys.

よって、B含有量は1.0〜5.OwL%とする。Therefore, the B content is 1.0 to 5. Let it be OwL%.

一般にAl−B系合金は、B含有量が増加すると液相線
の温度が急激に上昇し、B含有量が4wt%になると液
相線温度は約1350℃となり、通常のアルミニウム合
金の溶解温度の700℃以上では固相のAl−B化合物
を含有する固液混合溶液であり、また、At−B化合物
の形態として、AlB2とA I B 12の2つの金
属間化合物がある。
In general, the liquidus temperature of Al-B alloys increases rapidly as the B content increases, and when the B content reaches 4 wt%, the liquidus temperature reaches approximately 1350°C, which is the melting temperature of ordinary aluminum alloys. At 700° C. or higher, it is a solid-liquid mixed solution containing a solid phase Al-B compound, and there are two intermetallic compounds, AlB2 and A I B 12, as forms of the At-B compound.

このような、Al−B系合金において、溶解保持温度お
よびAl−B化合物の形態によって、Bの偏析また切削
性がどうなるかについて以下に説明する。
In such an Al-B alloy, how B segregation and machinability will be affected depending on the melting and holding temperature and the form of the Al-B compound will be explained below.

1)使用する供試材 (イ)Al−B化合物としてAlB、金属間化合物で、
B含有量4u+t%のAl−B系合金インゴットと、(
ロ)Al−B化合物としてAlB、2金属間化合物で、
B含有量4u+t%のAl−B系合金インゴットとを使
用して、 (1)Al−3wt%B合金、 (2)At  10wt%Si−3wt%B合金、(3
)Al−0,4wL%Si  007tuj%Mg  
3wt%B合金 を夫々溶製した。
1) Test materials used (a) AlB as an Al-B compound, an intermetallic compound,
An Al-B alloy ingot with a B content of 4u+t%,
b) AlB as an Al-B compound, a bimetallic compound,
Using an Al-B alloy ingot with a B content of 4u+t%, (1) Al-3wt%B alloy, (2) At 10wt%Si-3wt%B alloy, (3
)Al-0,4wL%Si 007tuj%Mg
3wt% B alloys were respectively melted.

そして、溶解は50kg坩堝で行ない、750〜110
0°Cの間において50℃の温度間隔で溶湯を保持し、
φ90X h 200の鉄坩堝に鋳込み、(1)鉄坩堝
の底部から冷却、 (2)炉中冷却 の2通りの冷却を行なった。
Then, melting was performed in a 50 kg crucible, and the melting temperature was 750 to 110.
Holding the molten metal at temperature intervals of 50°C between 0°C,
It was poured into a φ90×h 200 iron crucible and cooled in two ways: (1) cooling from the bottom of the iron crucible, and (2) cooling in the furnace.

鋳造後にインゴットをφ90X h 200に調整し、
断面のマクロmm、ミクロ組織、分析結果、切削性につ
いて調査し、その結果を第1表に示す。
After casting, adjust the ingot to φ90 x h 200,
The macroscopic mm, microstructure, analysis results, and machinability of the cross section were investigated, and the results are shown in Table 1.

このtjIJ1表から明らかなように、マクロ組織、ミ
クロ組織、分析結果から偏析の生じ方が金属間化合物A
 I 82とA I B 、2とによって異なることが
わかる。即ち、 (1)AlB22の場合には、Bの偏析は溶解保持温度
による温度差が少なく、上部の方が若干濃度が高くなっ
ている。
As is clear from this tjIJ1 table, from the macrostructure, microstructure, and analysis results, segregation occurs in intermetallic compound A.
It can be seen that there is a difference between I 82 and A I B ,2. That is, (1) In the case of AlB22, there is little temperature difference in the segregation of B depending on the melting and holding temperature, and the concentration is slightly higher in the upper part.

(2)AlB2の場合には、溶解保持温度により異なり
、s o o ’c以下では下部にBが沈降し、中央部
より上の高さではBは殆んど認められないが、850℃
以上ではBが均一に分散している。
(2) In the case of AlB2, it varies depending on the melting and holding temperature; at temperatures below so o'c, B settles at the bottom, and at a height above the center, almost no B is observed, but at 850 °C
In the above, B is uniformly dispersed.

また、溶解保持温度力弓050″C以上になると、溶湯
のガス吸収が激しく、マクロ断面に気泡が多く認められ
、さらに、切削性、押出・板加工性はA I B + 
2のAl−B系合金では悪く、生産に使用するには不適
当であり、かつ、インゴットの冷却条件(坩堝底部Mg
の場合は凝固時間約5分、炉中冷却の場合は凝固時間約
50分)の差は認められないので冷却条件は考慮しなく
てもよいことがわかり従って、上記何れのAl−B系合
金を使用しても、A I 82金属間化合物で、B 1
,0〜5.0社%のAl−B系合金を850〜1000
°Cの温度で溶解保持してから鋳込むことによって、B
が均一に分散し、かつ、切削性の良好なAl−B系合金
を製造することができる。
In addition, when the melting and holding temperature exceeds 050"C, gas absorption of the molten metal is intense, many air bubbles are observed in the macro cross section, and the machinability, extrusion and plate workability are A I B +
The Al-B alloy of No. 2 is bad and unsuitable for use in production, and the ingot cooling conditions (Mg at the bottom of the crucible
There is no difference in the solidification time (about 5 minutes in the case of cooling, about 50 minutes in the case of cooling in a furnace), so it is clear that there is no need to consider the cooling conditions. Even when using A I 82 intermetallic compound, B 1
, 0-5.0% Al-B alloy 850-1000
By melting and holding at a temperature of °C and then casting, B
It is possible to produce an Al-B alloy in which the aluminum alloy is uniformly dispersed and has good machinability.

次に、Al82金属間化合物で、B 1,0〜5,0w
t%を含有するAl−B系合金を850〜1000℃の
温度に溶解保持してから、700℃以上の温度に溶湯温
度を低下させてから鋳込むことによっても、Bは均一に
分布していて偏析はなく、切削性も良好となる。この場
合、溶湯温度を700℃以下とすると溶湯の渦流れが不
良となったが、700 ’C以上ではこのような問題は
ない。
Next, with Al82 intermetallic compound, B 1,0~5,0w
B can also be distributed uniformly by melting and holding an Al-B alloy containing t% at a temperature of 850 to 1000°C, and then lowering the molten metal temperature to 700°C or higher before casting. There is no segregation and the machinability is good. In this case, when the temperature of the molten metal was 700°C or less, the vortex flow of the molten metal became poor, but when the temperature was 700'C or higher, there was no such problem.

第2表に、上記において使用した3種類のAl−B系合
金(A I B 2金属間化合物のもの。)による本発
明に係るAl−B系合金の製造方法とこれ以外の方法と
を比較して示す。
Table 2 compares the method for producing the Al-B alloy according to the present invention using the three types of Al-B alloys (A I B intermetallic compound) used above and other methods. and show.

[発明の効果] 以上説明したように、本発明に係るAl−B系合金の製
造方法は上記の構成を有しているものであるか呟原子力
発電におい使用することができる中性子吸収能を有し、
Bが偏析することがなく均一に分散しており、さらに切
削性にも優れたAl−B系合金を製造することができる
という効果を有するものである。
[Effects of the Invention] As explained above, the method for producing an Al-B alloy according to the present invention has the above-mentioned structure and has a neutron absorption ability that can be used in nuclear power generation. death,
This has the effect that it is possible to produce an Al-B alloy in which B is uniformly dispersed without segregation and has excellent machinability.

Claims (2)

【特許請求の範囲】[Claims] (1)AlB_2金属間化合物で、B1.0〜5.0w
t%を含有するAl−B系合金を850〜1000℃の
温度に溶解保持することを特徴とするAl−B系合金の
製造方法。
(1) AlB_2 intermetallic compound, B1.0~5.0w
A method for producing an Al-B alloy, the method comprising melting and maintaining an Al-B alloy containing t% at a temperature of 850 to 1000°C.
(2)AlB_2金属間化合物で、B1.0〜5.0w
t%を含有するAl−B系合金を850〜1000℃の
温度に溶解保持した後、700℃以上の温度に溶湯保持
温度を低下して鋳込むことを特徴とするAl−B系合金
の製造方法。
(2) AlB_2 intermetallic compound, B1.0~5.0w
Production of an Al-B alloy, which is characterized by melting and holding an Al-B alloy containing t% at a temperature of 850 to 1000°C, and then lowering the molten metal holding temperature to a temperature of 700°C or higher and casting. Method.
JP60077227A 1985-04-11 1985-04-11 Manufacture of al-b alloy Pending JPS61235523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60077227A JPS61235523A (en) 1985-04-11 1985-04-11 Manufacture of al-b alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60077227A JPS61235523A (en) 1985-04-11 1985-04-11 Manufacture of al-b alloy

Publications (1)

Publication Number Publication Date
JPS61235523A true JPS61235523A (en) 1986-10-20

Family

ID=13627965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60077227A Pending JPS61235523A (en) 1985-04-11 1985-04-11 Manufacture of al-b alloy

Country Status (1)

Country Link
JP (1) JPS61235523A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63247334A (en) * 1987-04-03 1988-10-14 Showa Alum Corp Aluminum alloy for extrusion having excellent surface smoothness
JPH01312044A (en) * 1988-06-09 1989-12-15 Hitachi Zosen Corp Manufacture of boron-containing aluminum alloy
JPH01312043A (en) * 1988-06-09 1989-12-15 Hitachi Zosen Corp Manufacture of boron-containing aluminum alloy
JPH04333542A (en) * 1991-05-09 1992-11-20 Hashimoto Kasei Kk Al-b alloy and its manufacture
US5925313A (en) * 1995-05-01 1999-07-20 Kabushiki Kaisha Kobe Seiko Sho Aluminum base alloy containing boron and manufacturing method thereof
EP1119006A1 (en) * 1999-07-30 2001-07-25 Mitsubishi Heavy Industries, Ltd. Aluminum composite material having neutron-absorbing ability
FR2805828A1 (en) * 2000-03-03 2001-09-07 Kobe Steel Ltd Aluminum-based alloy contains specific amount of boron in isotropic form, and has capacity to absorb neutrons and retain good mechanical properties over long periods of time and at high temperatures
WO2003012155A1 (en) * 2001-07-30 2003-02-13 Jfe Engineering Corporation Material being resistant to chloride-containing molten salt corrosion, steel pipe for heat exchanger coated with the same, and method for production thereof
JP2003041337A (en) * 2001-07-30 2003-02-13 Nkk Corp Contact material with chloride-containing molten salt and manufacturing method therefor
US6630100B1 (en) 1999-10-15 2003-10-07 Mitsubishi Heavy Industries, Ltd. Manufacturing method for spent fuel storage member and mixed power
US6726741B2 (en) 2000-07-12 2004-04-27 Mitsubishi Heavy Industries, Ltd. Aluminum composite material, aluminum composite powder and its manufacturing method
US7177384B2 (en) 1999-09-09 2007-02-13 Mitsubishi Heavy Industries, Ltd. Aluminum composite material, manufacturing method therefor, and basket and cask using the same
JP2007533851A (en) * 2004-04-22 2007-11-22 アルキャン・インターナショナル・リミテッド Improved neutron absorption efficiency of boron-containing aluminum materials
JP2014080658A (en) * 2012-10-17 2014-05-08 Kobe Steel Ltd Boron-containing aluminum material and manufacturing method thereof
US10815552B2 (en) 2013-06-19 2020-10-27 Rio Tinto Alcan International Limited Aluminum alloy composition with improved elevated temperature mechanical properties

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63247334A (en) * 1987-04-03 1988-10-14 Showa Alum Corp Aluminum alloy for extrusion having excellent surface smoothness
JPH01312044A (en) * 1988-06-09 1989-12-15 Hitachi Zosen Corp Manufacture of boron-containing aluminum alloy
JPH01312043A (en) * 1988-06-09 1989-12-15 Hitachi Zosen Corp Manufacture of boron-containing aluminum alloy
JPH04333542A (en) * 1991-05-09 1992-11-20 Hashimoto Kasei Kk Al-b alloy and its manufacture
US5925313A (en) * 1995-05-01 1999-07-20 Kabushiki Kaisha Kobe Seiko Sho Aluminum base alloy containing boron and manufacturing method thereof
EP1119006A1 (en) * 1999-07-30 2001-07-25 Mitsubishi Heavy Industries, Ltd. Aluminum composite material having neutron-absorbing ability
EP1119006A4 (en) * 1999-07-30 2004-11-10 Mitsubishi Heavy Ind Ltd Aluminum composite material having neutron-absorbing ability
US7177384B2 (en) 1999-09-09 2007-02-13 Mitsubishi Heavy Industries, Ltd. Aluminum composite material, manufacturing method therefor, and basket and cask using the same
US6630100B1 (en) 1999-10-15 2003-10-07 Mitsubishi Heavy Industries, Ltd. Manufacturing method for spent fuel storage member and mixed power
US7125515B2 (en) 2000-03-03 2006-10-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum base alloy containing boron and manufacturing method thereof
FR2805828A1 (en) * 2000-03-03 2001-09-07 Kobe Steel Ltd Aluminum-based alloy contains specific amount of boron in isotropic form, and has capacity to absorb neutrons and retain good mechanical properties over long periods of time and at high temperatures
US6726741B2 (en) 2000-07-12 2004-04-27 Mitsubishi Heavy Industries, Ltd. Aluminum composite material, aluminum composite powder and its manufacturing method
JP2003041337A (en) * 2001-07-30 2003-02-13 Nkk Corp Contact material with chloride-containing molten salt and manufacturing method therefor
WO2003012155A1 (en) * 2001-07-30 2003-02-13 Jfe Engineering Corporation Material being resistant to chloride-containing molten salt corrosion, steel pipe for heat exchanger coated with the same, and method for production thereof
JP2007533851A (en) * 2004-04-22 2007-11-22 アルキャン・インターナショナル・リミテッド Improved neutron absorption efficiency of boron-containing aluminum materials
JP2014080658A (en) * 2012-10-17 2014-05-08 Kobe Steel Ltd Boron-containing aluminum material and manufacturing method thereof
US10815552B2 (en) 2013-06-19 2020-10-27 Rio Tinto Alcan International Limited Aluminum alloy composition with improved elevated temperature mechanical properties

Similar Documents

Publication Publication Date Title
JPS61235523A (en) Manufacture of al-b alloy
CN102424924B (en) WN2 and LiBH4 powder added high-strength aluminum alloy and preparation method thereof
US3194656A (en) Method of making composite articles
EP0079755B1 (en) Copper base spinodal alloy strip and process for its preparation
CN103060642A (en) High-strength aluminum alloy subjected to carbonitride complex treatment and preparation method thereof
CN102660693B (en) Aluminum alloy treated by using TiN powder and BeH2 powder, and preparation method thereof
CN102433472B (en) High strength aluminium alloy and smelting and casting methods thereof
RU2244025C2 (en) Sintered agglomerates and method for producing the same
CN102534310B (en) High-strength aluminum alloy doped with Mo2C and MgH2 and preparation method thereof
EP1281780B1 (en) Method of grain refining cast magnesium alloy
CN107400813A (en) Mg Li Si magnesium lithium alloys and its processing technology with anti-flammability
CN100387741C (en) Sn-Zn-Cr alloy lead-free solder preparation method
US4023992A (en) Uranium-base alloys
JPH02225642A (en) Niobium-base alloy for high temperature
CN102517475B (en) ZrC-doped high strength aluminum alloy and preparation method thereof
JPS5935642A (en) Production of mo alloy ingot
CN102433469B (en) Smelting method of aluminium alloy co-dissolved with VC
CN102505084B (en) High-strength aluminum alloy added with TaC and preparation method for high-strength aluminum alloy
US4420460A (en) Grain refinement of titanium alloys
CN102433471A (en) High-toughness aluminum alloy and preparation method thereof
JP3475607B2 (en) Prevention of chunky graphite crystallization of spheroidal graphite cast iron.
US3997332A (en) Steelmaking by the electroslag process using prereduced iron or pellets
RU2015833C1 (en) Method of monocrystal ingots production
US4661317A (en) Method for manufacturing a hydrogen-storing alloy
CN102433470B (en) Aluminium alloy co-dissolved with TiAlN and CaH3 powder and smelting method