JPS61234932A - Catalyst for purifying exhaust gas of engine - Google Patents

Catalyst for purifying exhaust gas of engine

Info

Publication number
JPS61234932A
JPS61234932A JP60074861A JP7486185A JPS61234932A JP S61234932 A JPS61234932 A JP S61234932A JP 60074861 A JP60074861 A JP 60074861A JP 7486185 A JP7486185 A JP 7486185A JP S61234932 A JPS61234932 A JP S61234932A
Authority
JP
Japan
Prior art keywords
catalyst
alumina
exhaust gas
carrier
purification performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60074861A
Other languages
Japanese (ja)
Other versions
JPH0554380B2 (en
Inventor
Kazunori Ihara
井原 和則
Kunihiro Yagi
八木 邦博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP60074861A priority Critical patent/JPS61234932A/en
Publication of JPS61234932A publication Critical patent/JPS61234932A/en
Publication of JPH0554380B2 publication Critical patent/JPH0554380B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To maintain the excellent purification performance and the durability of the titled catalyst by providing an alpha-Al2O3 layer incorporating Pt on a catalytic carrier of an upstream side and providing a gamma-Al2O3 layer incorporating a catalytic component such as Pd other than Pt on the catalytic carrier of a downstream side. CONSTITUTION:The first catalyst 3 of an upstream side is formed by providing an alpha-Al2O3 layer 7 deposited with Pt, Rh on the surface part of a catalytic carrier 6 (monolithic wall body). The second catalyst 4 of a downstream side is formed by providing gamma-Al2O3 layer 8 deposited with Pd on the surface part of the catalytic carrier 6. A catalyst for purifying an exhaust gas is formed by interposing a monolith type catalyst 5 consisting of the first catalyst 3 of the upstream side and the second catalyst 4 of the downstream side in the inside of a catalytic vessel 2 formed on the way of an exhaust system 1. Pt and Pd are excellent in the purification performance of CO, HC contained in the exhaust gas and Rh is excellent in the purification performance of NOx and the purification of the harmful components contained in the exhaust gas is enabled at once with the three components.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エンジンの排気系に設けた排気ガス浄化用触
媒に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an exhaust gas purifying catalyst provided in an engine exhaust system.

(従来技術) 従来より、エンジンの排気ガスを浄化する触媒として、
例えば特開昭58−146441号に見られるように、
Pt等の触媒成分を含有するウォッシュコート層にはγ
−アルミナが使用されている。このγ−アルミナはα−
アルミナに比べて、表面が粗くて気孔率が大きく、低温
下での活性性能が高いものである。
(Prior art) Conventionally, catalysts have been used to purify engine exhaust gas.
For example, as seen in JP-A-58-146441,
The wash coat layer containing catalyst components such as Pt contains γ.
- Alumina is used. This γ-alumina is α-
Compared to alumina, it has a rougher surface, higher porosity, and higher activity at low temperatures.

しかるに、上記γ−アルミナは温度が高くなるとα−ア
ルミナに相転移し、表面が平滑になって気孔率が低下す
ることにより、含有されている触媒成分と排気ガスとの
接触面積が低減し、浄化性能が低下する熱劣化を生起す
るものである。特に、触媒成分としてPtが担持されて
いると、該Ptが上記γ−アルミナからα−アルミナへ
の相転移を促進し、比較的低い温度からでも結晶化が進
行して上記相転移が生じやすく、浄化性能の熱劣化が大
きくなるものである。また、上記Ptは高温状態で粒子
が結合するシンタリング現象により粒子が大きくなって
、さらに浄化性能が低下することになる。上記γ−アル
ミナから熱により相転移したα−アルミナに対し、最初
からα−アルミナにPt等を担持した触媒は、排気ガス
浄化に寄与する触媒成分が多く、浄化性能に優れるもの
である。
However, when the temperature increases, the γ-alumina undergoes a phase transition to α-alumina, and the surface becomes smooth and the porosity decreases, reducing the contact area between the contained catalyst components and the exhaust gas. This causes thermal deterioration that reduces purification performance. In particular, when Pt is supported as a catalyst component, the Pt promotes the phase transition from γ-alumina to α-alumina, and crystallization progresses even at relatively low temperatures, making it easy for the phase transition to occur. , thermal deterioration of purification performance increases. Furthermore, the particles of Pt become larger due to a sintering phenomenon in which particles are bonded together under high temperature conditions, further deteriorating the purification performance. In contrast to α-alumina, which has been phase-transformed from γ-alumina by heat, a catalyst in which Pt or the like is supported from the beginning on α-alumina has a large amount of catalytic components that contribute to exhaust gas purification, and has excellent purification performance.

(発明の目的) 本発明は上記事情に鑑み、α−アルミナとγ−アルミナ
との特性を利用して熱劣化を抑制し、良好な浄化性能を
維持するようにしたエンジンの排気ガス浄化用触媒を提
供することを目的とするものである。
(Object of the Invention) In view of the above circumstances, the present invention provides a catalyst for purifying engine exhaust gas, which utilizes the characteristics of α-alumina and γ-alumina to suppress thermal deterioration and maintain good purification performance. The purpose is to provide the following.

(発明の構成) 本発明の触媒は、排気系上流側の第1触媒の触媒担体に
、少なくともPtを含有するα−アルミナ層を設ける一
方、下流側の第2触媒の触媒担体上にPt以外のPd等
の触媒成分を含有するγ−アルミナ層を設けたことを特
徴とするものである。
(Structure of the Invention) In the catalyst of the present invention, an α-alumina layer containing at least Pt is provided on the catalyst carrier of the first catalyst on the upstream side of the exhaust system, while a layer other than Pt is provided on the catalyst carrier of the second catalyst on the downstream side. It is characterized by providing a γ-alumina layer containing a catalyst component such as Pd.

(発明の効果) 本発明によれば、触媒上流側は温度条件が厳しく耐熱性
が要求されるため、触媒を上流側の第1触媒と下流側の
第2触媒とに分け、上5IiHIlの触媒にはα−アル
ミナ層を形成することにより熱的に安定した活性を維持
することができるとともに、下流側は比較的温度が低下
する傾向にあるため、この下流側の第2触媒には活性の
優れたγ−アルミナ層を形成するようにしたことにより
、良好な浄化性能および耐久性が確保できるものである
(Effects of the Invention) According to the present invention, since the temperature conditions on the upstream side of the catalyst are severe and heat resistance is required, the catalyst is divided into a first catalyst on the upstream side and a second catalyst on the downstream side, and It is possible to maintain thermally stable activity by forming an α-alumina layer on the catalyst, and since the temperature tends to be relatively low on the downstream side, the second catalyst on the downstream side has a high level of activity. By forming an excellent γ-alumina layer, good purification performance and durability can be ensured.

すなわち、上流側の第1触媒にPtが存在しても、この
部分はα−アルミナであるため、熱およびPtによる影
響を受けることなく相転移が生起せずに熱安定性に優れ
ており、このα−アルミナの気孔率はγ−アルミナに比
べて低いが、その気孔部分に有効に触媒成分が担持され
ており、触媒全体として熱劣化が少なく安定した排気浄
化性能が得られるものである。
That is, even if Pt is present in the first catalyst on the upstream side, since this part is α-alumina, it is not affected by heat and Pt, and has excellent thermal stability without causing phase transition. Although the porosity of α-alumina is lower than that of γ-alumina, the catalyst component is effectively supported in its pores, and the catalyst as a whole exhibits less thermal deterioration and stable exhaust purification performance.

(実施例) 以下、図面により本発明の実施例を詳細に説明する。(Example) Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は排気ガス浄化用触媒の構成図、第2図は触媒の
要部拡大断面図であり、排気系1の途中に形成された触
媒容器2内に、上流側の第1触媒3と下流側の第2触媒
4とによるモノリス型触媒5が介装されている。
FIG. 1 is a configuration diagram of an exhaust gas purification catalyst, and FIG. 2 is an enlarged cross-sectional view of the main parts of the catalyst. A monolithic catalyst 5 is interposed with a second catalyst 4 on the downstream side.

上記上流側の第1触媒3は、触媒担体6(モノリス壁体
)の表面部分にPt(白金)、Rh(ロジウム)を担持
したα−アルミナ層7(ウォッシュコート層)を設けて
なり、下流側の第2触tJs4は、触媒担体6の表面部
分にPd(パラジウム)を担持したγ−アルミナ層8(
ウォッシュコート層)を設けてなるものである。なお、
PtおよびPdは排気ガス中のC01HCの浄化性能に
優れ、Rh G、t N OXの浄化性能に優れ、この
3成分によって一度に排気ガスの有害成分の浄化が行え
る。
The first catalyst 3 on the upstream side is formed by providing an α-alumina layer 7 (wash coat layer) supporting Pt (platinum) and Rh (rhodium) on the surface portion of a catalyst carrier 6 (monolith wall body). The second contact tJs4 on the side is a γ-alumina layer 8 (with Pd (palladium) supported on the surface portion of the catalyst carrier 6).
wash coat layer). In addition,
Pt and Pd have excellent purification performance of CO1HC in exhaust gas, and excellent purification performance of Rh G and t NO OX, and these three components can purify harmful components of exhaust gas at once.

上記触媒5は、同一担体6に第1触媒3と第2触媒4を
形成するもの、もしくは別々の担体にそれぞれ形成した
第1触媒3と第2触ts4とを組付けるものなどがある
The catalyst 5 may be one in which the first catalyst 3 and the second catalyst 4 are formed on the same carrier 6, or one in which the first catalyst 3 and the second catalyst 4 are respectively formed on separate carriers.

同一担体6に第1触媒3と第2触媒4とを形成する製造
法について説明する。まず、触媒担体6としてコージラ
イト質モノリス担体(400セル)を用意する。また、
蒸溜水1ooccに硝酸0.4CCを加えた溶液に、担
体重量に対し25W【%のウォッシュコート層になるよ
うにα−アルミナ粉末とバインダーを添加し、充分撹拌
してスラリー液を調整する。
A manufacturing method for forming the first catalyst 3 and the second catalyst 4 on the same carrier 6 will be explained. First, a cordierite monolith carrier (400 cells) is prepared as the catalyst carrier 6. Also,
Add α-alumina powder and a binder to a solution of 0.4 cc of nitric acid in 1 oocc of distilled water to form a wash coat layer of 25 W% based on the carrier weight, and stir thoroughly to prepare a slurry liquid.

このスラリー液に上記触媒担体6を所定位置まで浸漬し
た後、セル内の不要なスラリーはエアーブローにより除
去し、α−アルミナによるウォッシュコート層を形成す
る。上記担体6を塩化白金H(H2PtCl4)と塩化
ロジウム(RilCI)を含有する水溶液による触媒液
に浸漬し、エアーブローを行う。上記スラリー液および
触媒液が第1触媒3となる所定位置より上の第2触媒4
部分の担体6に含浸しないように、第2触媒4となる部
分には予め撥水剤(オイル)を含浸させてマスキングを
行うものである。
After the catalyst carrier 6 is immersed in this slurry liquid to a predetermined position, unnecessary slurry inside the cell is removed by air blowing, and a wash coat layer of α-alumina is formed. The carrier 6 is immersed in a catalyst solution made of an aqueous solution containing platinum chloride H (H2PtCl4) and rhodium chloride (RilCI), and then air blown. A second catalyst 4 above a predetermined position where the slurry liquid and catalyst liquid become the first catalyst 3
The portion that will become the second catalyst 4 is previously impregnated with a water repellent (oil) and masked so as not to impregnate the carrier 6 in that portion.

その後、220℃で8分間乾燥して、さらに、330℃
で1時間焼成しオイルを焼失することによって、担体6
にPt、Rhを含むα−アルミナ層7を形成して第1触
媒3を得る。
Then, dry at 220°C for 8 minutes, and then dry at 330°C.
By baking for 1 hour to burn off the oil, the carrier 6
A first catalyst 3 is obtained by forming an α-alumina layer 7 containing Pt and Rh.

次に、上記と同様な方法によりγ−アルミナを含有した
スラリー液に、第2触媒4を形成する部分の担体6を浸
漬した後、エアーブローを行って、γ−アルミナによる
ウォッシュコート層を形成する。上記担体6を塩化パラ
ジウム(PdC1)を含有する水溶液による触媒液に浸
漬し、エアーブローを行う。この場合も、前記と同様に
第1触媒3の部分に対して、予めオイルを含浸させてマ
スキングを行うものである。
Next, the part of the carrier 6 that will form the second catalyst 4 is immersed in a slurry liquid containing γ-alumina in the same manner as above, and then air blowing is performed to form a wash coat layer of γ-alumina. do. The carrier 6 is immersed in a catalyst solution made of an aqueous solution containing palladium chloride (PdC1), and then air blown. In this case as well, masking is performed by impregnating the first catalyst 3 with oil in advance in the same manner as described above.

その後、300℃で8分間乾燥して、さらに、400℃
で13分、500℃で12分、600℃で33分と段階
的に焼成しオイルを焼失することによって、担体6にP
dを含むγ−アルミナ層8を形成して第2触媒4を得る
。これにより、例えば触媒の1/2にPt、Rhを含有
したα−アルミナ層7が、他の1/2にPdを含有した
γ−アルミナ層8が形成された第1触媒3と第2触媒4
とを有する触媒5を得るものである。
Then, dry at 300°C for 8 minutes, and then dry at 400°C.
P is added to the carrier 6 by burning out the oil by stepwise baking: 13 minutes at 500°C, 12 minutes at 600°C, and 33 minutes at 600°C.
A second catalyst 4 is obtained by forming a γ-alumina layer 8 containing d. As a result, for example, the first catalyst 3 and the second catalyst have an α-alumina layer 7 containing Pt and Rh formed in one half of the catalyst, and a γ-alumina layer 8 containing Pd formed in the other half of the catalyst. 4
A catalyst 5 having the following is obtained.

なお、上記オイルを使用しないで直接担体6に触媒液を
含浸させると、触媒担体6の周囲の部分が毛細管現象に
より中心部より高い位置まで含浸し、この周囲の部分は
境界付近で第1触媒3と第2触媒4との触媒成分が混合
する一方、中心部分には触媒成分が含浸されていない状
態に形成され、浄化性能が充分に得られない。
Note that if the catalyst liquid is directly impregnated into the carrier 6 without using the above oil, the peripheral part of the catalyst carrier 6 will be impregnated to a higher position than the center due to capillary action, and this peripheral part will be impregnated with the first catalyst near the boundary. While the catalyst components of the second catalyst 3 and the second catalyst 4 are mixed, the central portion is not impregnated with the catalyst component, and sufficient purification performance cannot be obtained.

上記触媒の効果を確認した試験結果を示す。第4図は上
記と同様の方法によって形成した触媒の排気ガス温度に
対する排気ガス浄化性能(He浄化率)を、使用rM始
時の熱劣化前と、1000℃で6時間熱劣化させた後と
でそれぞれ求めた結果を比較例とともに示す。なお、本
発明触媒の触媒液における触媒成分の濃度は、第1触媒
3においてはPt/Rh−4/1−1.4Q/9.で、
第2触*4kj5いTはPd−1,1/免であり、第1
触媒3と第2触媒4との比率は1:1である。
The test results confirming the effectiveness of the above catalyst are shown below. Figure 4 shows the exhaust gas purification performance (He purification rate) with respect to the exhaust gas temperature of the catalyst formed by the same method as above before thermal deterioration at the beginning of use and after thermal deterioration at 1000°C for 6 hours. The results obtained for each are shown together with comparative examples. Note that the concentration of the catalyst components in the catalyst liquid of the catalyst of the present invention is Pt/Rh-4/1-1.4Q/9. in,
The second touch*4kj5iT is Pd-1,1/min, and the first
The ratio of catalyst 3 to second catalyst 4 is 1:1.

また、比較例は、ウォッシュコート全体をγ−アルミナ
層で形成したものである。
Moreover, in the comparative example, the entire washcoat was formed of a γ-alumina layer.

第4図から分るように、本発明触媒は比較例のものに対
して、熱劣化前においてはγ−アルミナの方が活性性能
が高いことから浄化性能は若干劣るが、熱劣化後は比較
例のものが相転移によって活性低下が大きくなって浄化
性能は逆転し、本発明によるものは低い温度から活性化
し、安定した浄化性能が得られている。
As can be seen from Figure 4, the purification performance of the catalyst of the present invention is slightly inferior to that of the comparative example because γ-alumina has higher activity performance before thermal deterioration, but after thermal deterioration, the purification performance is slightly inferior to that of the comparative example. In the case of the example, the activity decreases greatly due to phase transition and the purification performance is reversed, whereas the case of the present invention is activated from a low temperature and stable purification performance is obtained.

また、熱劣化に伴うPtの粒子径の変化は第5図に示す
ように、比較例におけるγ−アルミナ層のPtは、シン
タリング現象によってその平均粒子径が劣化処理後(1
000℃X6hr)においては大幅に増大しているのに
対して、本発明のα−アルミナ層のPtはその粒子径の
増加率は低いものである。
Furthermore, as shown in Figure 5, the change in the particle size of Pt due to thermal deterioration shows that the average particle size of Pt in the γ-alumina layer in the comparative example changes due to the sintering phenomenon after the deterioration treatment (1
000° C. x 6 hr), whereas the particle size of Pt in the α-alumina layer of the present invention increases at a low rate.

さらに、γ−アルミナにおけるPtの含有によるアルミ
ナの結晶化状態をX線回折で測定した結果は、第6図に
示すように、Ptの介在によってα−アルミナへの相転
移が低い温度から進行しているのが分る。α−アルミナ
は熱による細孔分布など物理的特性の変化は少なく、ま
た、触媒成分の分散性への影響も少なく、前記のように
熱的に安定している。
Furthermore, the results of X-ray diffraction measurements of the crystallization state of alumina due to the inclusion of Pt in γ-alumina show that the phase transition to α-alumina progresses from a low temperature due to the presence of Pt, as shown in Figure 6. I can see that it is. α-Alumina has little change in physical properties such as pore distribution due to heat, has little effect on the dispersibility of catalyst components, and is thermally stable as described above.

上記実施例によれば、Pt−Rh−Pd系触媒において
、PdがPtあるいはRhと共存すると、これらの相互
作用による合金化により、触媒の活性性能が低下する問
題があるが、触媒をPtおよびRhを含有する上流側の
第1触媒3と、Pdを含有する下流側の第2触媒4とに
分けたことにより、両者間の相互作用による合金化を防
止でき、各成分の活性性能を良好に維持することができ
る。
According to the above example, in a Pt-Rh-Pd-based catalyst, when Pd coexists with Pt or Rh, there is a problem that the activity performance of the catalyst decreases due to alloying due to interaction between them. By dividing the catalyst into the first catalyst 3 on the upstream side containing Rh and the second catalyst 4 on the downstream side containing Pd, it is possible to prevent alloying due to interaction between the two and improve the activity performance of each component. can be maintained.

また、上記各触媒成分の耐被毒性がPt>Rh>Pdの
順である点を考慮し、耐被毒性に優れたPtおよびRh
を排気ガス中のP、Pb、S等の被毒物質が付着しやす
い上流側部分の第1触媒3に設けたことにより、全体と
しての耐被毒性が向上できる。しかも、上流側のPt−
Rh触媒が被毒等の影響を受けても、下流側のPd触媒
には排気ガスが接触して有効に浄化作用が機能するもの
である。
In addition, considering the fact that the poisoning resistance of each of the catalyst components is in the order of Pt>Rh>Pd, Pt and Rh, which have excellent poisoning resistance,
By providing the first catalyst 3 in the upstream portion where poisonous substances such as P, Pb, and S in the exhaust gas tend to adhere, the overall poisoning resistance can be improved. Moreover, the upstream Pt-
Even if the Rh catalyst is affected by poisoning or the like, exhaust gas comes into contact with the Pd catalyst on the downstream side, and the purifying action is effective.

さらに、上記各触媒成分の耐熱性がPd >Rh>Pt
の順である点を考慮し、Ptは高温状態で粒子が結合す
るシンタリング現象により粒子が大きくなって浄化性能
が低下することで耐熱性が低いが、このPtを熱的安定
性に優れたα−アルミナ層7に担持するとともに、Pt
より耐熱性に優れたRhが介在しているので、温度上昇
によってPt粒子が結合して大きな粒子となるのをRh
が阻止してシンタリング現象の発生を防止し、安定な浄
化性能が得られる。
Furthermore, the heat resistance of each of the above catalyst components is Pd>Rh>Pt
Considering the fact that Pt has low heat resistance due to the sintering phenomenon in which particles bond together at high temperatures, the particles become larger and the purification performance decreases. In addition to being supported on the α-alumina layer 7, Pt
Since Rh, which has better heat resistance, is present, Rh prevents Pt particles from bonding to become larger particles due to temperature rise.
This prevents the occurrence of sintering phenomenon and provides stable purification performance.

第3図は変形例を示し、この例の触媒5′は、上記実施
例における第2触媒4のγ−アルミナ層8を、第1触媒
3における触媒担体6とα−アルミナ層7との間にも形
成したものであり、その他は前例と同様である。
FIG. 3 shows a modified example, and the catalyst 5' of this example has the γ-alumina layer 8 of the second catalyst 4 in the above embodiment between the catalyst carrier 6 and the α-alumina layer 7 of the first catalyst 3. The other features are the same as in the previous example.

上記第3図の例において、γ−アルミナ層8を担体6の
全体に形成するのは、触媒5の温度が高くなる部分は、
上流側でしかも表面側であって、この部分にα−アルミ
ナ層7を形成し、下層側は担体6と接しているので熱が
放散されて熱的影響が少ないことから、上記α−アルミ
ナ層7の形成による活性性能の低下を補うためにγ−ア
ルミナ層8を広く形成したものである。すなわち、α−
アルミナ117は前述のように、熱的安定性優れている
が活性性能が低いので、湿度の低い部分には活性性能に
優れたγ−アルミナ層8を形成することによって、活性
性能を向上するようにしたものである。
In the example shown in FIG. 3 above, the reason why the γ-alumina layer 8 is formed on the entire carrier 6 is because the portion where the temperature of the catalyst 5 becomes high is
The α-alumina layer 7 is formed on the upstream side and on the surface side, and the lower layer side is in contact with the carrier 6, so heat is dissipated and there is little thermal influence. The γ-alumina layer 8 is formed to be wide in order to compensate for the decrease in activity performance caused by the formation of the γ-alumina layer 8. That is, α−
As mentioned above, alumina 117 has excellent thermal stability but low activity performance, so the activity performance can be improved by forming the γ-alumina layer 8, which has excellent activity performance, in areas with low humidity. This is what I did.

なお、上記実施例においては、第1触ts3のα−アル
ミナ層7にはPtに加えてRhを含有するようにしてN
Oxの浄化性能の向上およびシンタリング現象の抑制を
行うようにしているが、Ptだけを含有させるようにし
てもよい。また、第2触媒4のγ−アルミナ層8は、長
時間の使用後には相転移によって活性性能が低下するが
、それを補うために触媒助剤としてNi、Fe、Ce等
を添加するようにしてもよく、α−アルミナ層7にも同
様に添加してもよい。
In the above embodiment, the α-alumina layer 7 of the first contact ts3 contains Rh in addition to Pt, so that N
Although the purification performance of Ox is improved and the sintering phenomenon is suppressed, only Pt may be contained. In addition, the activity of the γ-alumina layer 8 of the second catalyst 4 decreases due to phase transition after long-term use, but to compensate for this, Ni, Fe, Ce, etc. are added as catalyst aids. It may also be added to the α-alumina layer 7 in the same way.

さらに、上記実施例においては、触媒担体6にウォッシ
ュコート層を形成してから触媒液に浸漬するようにして
いるが、ウォッシュコート層を形成するスラリー液に予
め触媒成分を添加混合し、これに触媒担体を浸漬して形
成するようにしてもよい。
Furthermore, in the above embodiment, the wash coat layer is formed on the catalyst carrier 6 and then immersed in the catalyst liquid. It may also be formed by dipping the catalyst carrier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における排気ガス浄化用触媒
の構成図、 第2図は触媒の要部を拡大して示す断面図、第3図は変
形例における触媒の要部を拡大して示す断面図、 第4図は熱劣化による排気ガス浄化性能の変化を比較例
とともに示す排気ガス温度とHC浄化率のグラフ、 第5図は本発明のα−アルミナと比較例のγ−アルミナ
における熱劣化によるPtの粒子径の変化を示す説明図
、 第6図はγ−アルミナのPtの介在による結晶化状態を
示すX線回折測定図である。 1・・・・・・排気系      2・・・・・・触媒
容器3・・・・・・第1触媒     4・・・・・・
第2触媒5・・・・・・モノリス型触媒  6・・・・
・・触媒担体7・・・・・・α−アルミナ層  8・・
・・・・γ−アルミナ層Oく・禰 oく ・鴫 エケ3薙 ど
Fig. 1 is a configuration diagram of an exhaust gas purifying catalyst according to an embodiment of the present invention, Fig. 2 is an enlarged sectional view showing the main parts of the catalyst, and Fig. 3 is an enlarged view of the main parts of the catalyst in a modified example. Figure 4 is a graph of exhaust gas temperature and HC purification rate showing changes in exhaust gas purification performance due to thermal deterioration along with comparative examples. Figure 5 is a graph of α-alumina of the present invention and γ-alumina of comparative example. FIG. 6 is an X-ray diffraction measurement diagram showing the crystallization state of γ-alumina due to the presence of Pt. 1... Exhaust system 2... Catalyst container 3... First catalyst 4...
Second catalyst 5... Monolith type catalyst 6...
...Catalyst carrier 7...α-alumina layer 8...
...γ-alumina layer

Claims (1)

【特許請求の範囲】[Claims] (1)エンジンの排気系に設けた排気ガス浄化用触媒に
おいて、上流側の第1触媒の触媒担体に少なくともPt
を含有するα−アルミナ層を設け、下流側の第2触媒の
触媒担体上にPt以外のPd等の触媒成分を含有するγ
−アルミナ層を設けたことを特徴とするエンジンの排気
ガス浄化用触媒。
(1) In the exhaust gas purifying catalyst provided in the exhaust system of the engine, at least Pt is added to the catalyst carrier of the first catalyst on the upstream side.
A γ-alumina layer containing a catalyst component other than Pt such as Pd is provided on the catalyst carrier of the second catalyst on the downstream side.
-A catalyst for purifying engine exhaust gas, characterized by having an alumina layer.
JP60074861A 1985-04-09 1985-04-09 Catalyst for purifying exhaust gas of engine Granted JPS61234932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60074861A JPS61234932A (en) 1985-04-09 1985-04-09 Catalyst for purifying exhaust gas of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60074861A JPS61234932A (en) 1985-04-09 1985-04-09 Catalyst for purifying exhaust gas of engine

Publications (2)

Publication Number Publication Date
JPS61234932A true JPS61234932A (en) 1986-10-20
JPH0554380B2 JPH0554380B2 (en) 1993-08-12

Family

ID=13559526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60074861A Granted JPS61234932A (en) 1985-04-09 1985-04-09 Catalyst for purifying exhaust gas of engine

Country Status (1)

Country Link
JP (1) JPS61234932A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205051A (en) * 2000-01-27 2001-07-31 Cataler Corp Catalyst for purifying exhaust gas
JP2008520895A (en) * 2004-11-23 2008-06-19 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Exhaust mechanism with exothermic catalyst

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827125A (en) * 1971-08-11 1973-04-10
JPS5541894A (en) * 1978-09-18 1980-03-24 Ford Motor Co Alpha aluminaametal rhodium catalyst
JPS55164715A (en) * 1979-06-09 1980-12-22 Fuji Heavy Ind Ltd Catalytic converter used for purifying exhaust gas
JPS5787837A (en) * 1980-11-20 1982-06-01 Toyota Motor Corp Production of catalyst for purification of waste gas
JPS58146441A (en) * 1982-02-24 1983-09-01 Toyota Motor Corp Catalyst for purification of exhaust gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827125A (en) * 1971-08-11 1973-04-10
JPS5541894A (en) * 1978-09-18 1980-03-24 Ford Motor Co Alpha aluminaametal rhodium catalyst
JPS55164715A (en) * 1979-06-09 1980-12-22 Fuji Heavy Ind Ltd Catalytic converter used for purifying exhaust gas
JPS5787837A (en) * 1980-11-20 1982-06-01 Toyota Motor Corp Production of catalyst for purification of waste gas
JPS58146441A (en) * 1982-02-24 1983-09-01 Toyota Motor Corp Catalyst for purification of exhaust gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205051A (en) * 2000-01-27 2001-07-31 Cataler Corp Catalyst for purifying exhaust gas
JP2008520895A (en) * 2004-11-23 2008-06-19 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Exhaust mechanism with exothermic catalyst
JP2012125765A (en) * 2004-11-23 2012-07-05 Johnson Matthey Plc Exhaust system comprising exotherm-generating catalyst
US8220251B2 (en) 2004-11-23 2012-07-17 Johnson Matthey Public Limited Company Exhaust system comprising exotherm-generating catalyst
US8925304B2 (en) 2004-11-23 2015-01-06 Johnson Matthey Public Limited Company Exhaust system comprising exotherm-generating catalyst
US9528408B2 (en) 2004-11-23 2016-12-27 Johnson Matthey Public Limited Company Exhaust system comprising exotherm-generating catalyst

Also Published As

Publication number Publication date
JPH0554380B2 (en) 1993-08-12

Similar Documents

Publication Publication Date Title
EP2301661B1 (en) Honeycomb catalyst for purifying exhaust gas discharged from automobile, method for producing the same, and exhaust gas purifying method using the catalyst
EP1793914B1 (en) Catalyst for purifying exhaust gases
KR101059807B1 (en) Exhaust gas purification catalyst
JPH0760117A (en) Exhaust gas purifying catalyst
JP5982987B2 (en) Exhaust gas purification catalyst containing exhaust gas purification catalyst material
JP2002518171A (en) Exhaust gas catalyst containing rhodium, zirconia and rare earth oxide
JP4350250B2 (en) Exhaust gas purification catalyst
JP2005066482A (en) Exhaust gas cleaning catalyst and method for evaluating low temperature cleaning capacity of catalyst
JPH0338894B2 (en)
JPS61234932A (en) Catalyst for purifying exhaust gas of engine
JPS6031828A (en) Catalyst for purifying exhaust gas and its preparation
JP3549901B2 (en) Engine exhaust gas purification catalyst
JP3247956B2 (en) Exhaust gas purification catalyst
JPH0554382B2 (en)
JPS6178438A (en) Monolithic catalyst for purifying exhaust gas
JPH03196841A (en) Catalyst for purification of exhaust gas
JPS61234936A (en) Catalyst for purifying exhaust gas of engine
JPH08281071A (en) Waste gas purifying method and waste gas purifying catalyst
JP2823251B2 (en) Exhaust gas purifying catalyst and method for producing exhaust gas purifying catalyst
JPH0554384B2 (en)
JP3330154B2 (en) Exhaust gas purification catalyst
JPS61234935A (en) Catalyst for purifying exhaust gas of engine
JPH0520435Y2 (en)
JPH0549929A (en) Catalyst for purifying exhaust gas
JPH025854Y2 (en)