JPS61233972A - Formation of fuel cell matrix - Google Patents

Formation of fuel cell matrix

Info

Publication number
JPS61233972A
JPS61233972A JP60075577A JP7557785A JPS61233972A JP S61233972 A JPS61233972 A JP S61233972A JP 60075577 A JP60075577 A JP 60075577A JP 7557785 A JP7557785 A JP 7557785A JP S61233972 A JPS61233972 A JP S61233972A
Authority
JP
Japan
Prior art keywords
catalyst layer
matrix
electrode
powder
ptfe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60075577A
Other languages
Japanese (ja)
Inventor
Hirobumi Enomoto
博文 榎本
Masahiro Sakurai
正博 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60075577A priority Critical patent/JPS61233972A/en
Publication of JPS61233972A publication Critical patent/JPS61233972A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8892Impregnation or coating of the catalyst layer, e.g. by an ionomer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8896Pressing, rolling, calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0293Matrices for immobilising electrolyte solutions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To achieve high efficiency by reduction of man-hour, safety and harmlessness by bonding the mixture of matrix base material and PTFE powder on a catalyst layer by electrostatic deposition, and by baking the PTFE. CONSTITUTION:The mixture powder 8 of matrix material and PTFE is placed between a positive electrode 6 and a negative electrode 7 arranged in a box 5. When high voltage is applied across the electrodes 6 and 7, the mixture powder 8 is negatively charged and vibrated up and down. An electrode substrate 1a coated with catalyst layer 2a is arranged in the upper part of the box 5 and the earth 9 is set. The line of electric force 10 is produced between the negative electrode 7 and the catalyst layer 2a. By blowing air form an air blasting hole 11, negatively charged mixture powder 8 flys along the line of electric force 10 toward the substrate 1a and the mixture powder 8 deposites on the catalyst layer 2a. A gas diffusion electrode comprising the catalyst layer 2a bonded with the mixture powder 8 and the electrode substrate 1a is heated at a temperature of melting point of PTFE to form a stacked body of the electrode substrate 1, catalyst layer 2, and matrix 3.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は燃料電池のガス拡散電極におけるマトリックス
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a method for manufacturing a matrix in a gas diffusion electrode of a fuel cell.

〔従来技術とその問題点〕[Prior art and its problems]

一般に燃料電池のガス拡散電極とマ) IJフックス第
3図に示すような構造をもっている。第3図はガス拡散
電極とこのガス拡散電極に形成したマトリックスの縦断
面を模式的に示したものであり。
In general, it has a structure similar to the gas diffusion electrode of a fuel cell as shown in Figure 3 of IJ Fuchs. FIG. 3 schematically shows a longitudinal section of a gas diffusion electrode and a matrix formed on the gas diffusion electrode.

水素または酸素を電極内部に拡散させる通路を有するガ
ス透過性に優れた電極基板1、電気化学的触媒反応を行
なわせる触媒層2からなるガス拡散電極および触媒層2
の上に位置し、電解液を保持し耐電解液腐食性と電気絶
縁性にすぐれたマトリックス3を表わしている。
A gas diffusion electrode and a catalyst layer 2 consisting of an electrode substrate 1 having excellent gas permeability and having passages for hydrogen or oxygen to diffuse into the electrode, and a catalyst layer 2 for carrying out an electrochemical catalytic reaction.
The matrix 3 is located on top of the matrix 3 and holds the electrolyte, and has excellent electrolyte corrosion resistance and electrical insulation properties.

このような構造をもった電極のマトリックス3を製造す
るには通常次のごとく行なわれる。すなわち耐電解液腐
食性と電気絶縁性にすぐれたタングステンカーバイド(
WC)、シリコンカーバイト(Sic) 、窒化珪素(
sssN4)などとバインダーとなるポリテトラフルオ
ロエチレン(以下PTFEと称する)を溶媒に混会し、
噴霧法やスプレー法もしくは混合液の粘度を高めてペー
スト化し、ローラ掛は法やはけ塗り法などにより触媒層
2の上に塗布する。次いでこれを乾燥して溶媒を除去し
た後、PTFj3の溶融温度に加熱することにより、タ
ングステンカーバイド、シリコンカーバイトまたは窒化
珪素などの粉末を結着しマトリックス3を形成するとい
う方法がとられている。
The production of the electrode matrix 3 having such a structure is usually carried out as follows. In other words, tungsten carbide (
WC), silicon carbide (Sic), silicon nitride (
sssN4) etc. and polytetrafluoroethylene (hereinafter referred to as PTFE) as a binder is mixed in a solvent,
The mixture is made into a paste by a spraying method, a spray method, or by increasing the viscosity of the mixture, and is applied onto the catalyst layer 2 by a roller coating method, a brush coating method, or the like. This is then dried to remove the solvent, and then heated to the melting temperature of PTFj3 to bind powders such as tungsten carbide, silicon carbide, or silicon nitride to form the matrix 3. .

しかしながらこのようなマトリックス製造方法は1分散
混合液の調整、触媒層への塗布、溶媒除去、など一連の
多くの工程を要することに加えて。
However, such a matrix manufacturing method requires a series of many steps such as preparation of a dispersion mixture, application to a catalyst layer, and solvent removal.

イングロビルアルコールなどの有機物質の溶媒を用いる
ことから、取り扱い上作業者の健康衛生管理のために、
空気清浄器や廃液処理装置のような付帯設備を要するな
どの点で必ずしも十分な方法とは言えない。したがって
、このマ) IJフックス造方法に関しては、さらに簡
素化された工程とし、しかも安全無害に実施できること
が望ましい。
Because organic solvents such as Inglobil alcohol are used, for the health and hygiene management of workers when handling them,
This method cannot necessarily be said to be a sufficient method because it requires additional equipment such as an air purifier and a waste liquid treatment device. Therefore, it is desirable for the IJ hook manufacturing method to be a more simplified process and to be able to be carried out safely and without harm.

〔発明の目的〕[Purpose of the invention]

本発明は上述の点に鑑みてなされたものであり。 The present invention has been made in view of the above points.

その目的は従来より工数を大巾に短縮し、効率の高い無
公害の燃料電池用マ) IJフックス製造方法を提供す
ることにある。
The purpose is to provide a highly efficient, non-polluting method for manufacturing IJ hooks for fuel cells that greatly reduces the number of man-hours compared to conventional methods.

〔発明の要点〕 本発明はマトリックス構成材料とPTFBとを混合した
粉末を、静電粉体塗装法を用いて触媒層上に付着させた
後、PTFEの溶融温度で焼成する方法である。
[Summary of the Invention] The present invention is a method in which a powder containing a matrix constituent material and PTFB is deposited on a catalyst layer using an electrostatic powder coating method, and then fired at the melting temperature of PTFE.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.

まず従来法にしたがって、電気絶縁性と耐電解液腐食性
にすぐれたシリコンカーバイト、タングステンカーバイ
ドまたは窒化珪素の粉末にバインダーであるPTFB粉
末を混合した後これを粉砕して均一微細な混合粉末を製
作する。また通常の方法により、電極基板に触媒層を全
血したガス拡散電極を別に用意する。そして本発明では
電極基板上の触媒層に静電粉体塗装法により混合粉末を
付着させる。静電粉体塗装は、粉体を塗料として電界の
中に入れると被塗物の表面に飛んで行き、そこに付着す
る性質を利用した省力化・高性能化を目的とした箪装法
であるが、とくに塗料に全く有機溶剤を含まず、余剰の
塗料を回収再利用できることから、低公害化、省資源化
の点でも利点をもっているため、近年、建材、電気機器
、車輛など広い範囲に使われているものである。
First, according to the conventional method, PTFB powder, which is a binder, is mixed with silicon carbide, tungsten carbide, or silicon nitride powder, which has excellent electrical insulation and electrolyte corrosion resistance, and then pulverized to form a uniform and fine mixed powder. To manufacture. Further, a gas diffusion electrode with a catalyst layer on an electrode substrate is separately prepared by a usual method. In the present invention, the mixed powder is applied to the catalyst layer on the electrode substrate by electrostatic powder coating. Electrostatic powder coating is a method for reducing labor and improving performance by utilizing the property that when powder is put into an electric field as a paint, it flies to the surface of the object being coated and adheres there. However, in particular, since the paint does not contain any organic solvents and excess paint can be collected and reused, it has the advantage of reducing pollution and saving resources, so in recent years it has been used in a wide range of applications such as building materials, electrical equipment, and vehicles. It is what is used.

第1図はこの静電塗装法を本発明に適用した場合を説明
するための概念図である。第1図においてプラスチック
製ボックス5の下方に配置された二つの平行電極、すな
わちボックス5の床上の正極6とその上側の負極7の間
にマドIJックス材とPTFE粉末との混合粉末8をl
iを、両電極6,7間に高電圧を印加すると混合粉末8
は負に帯電し上下に振動する。このときボックス5内の
上方に触媒層2aを塗布した電極基板1aをアース9を
設けて配置しておくと、負極7と触媒層2aとの間に電
気力線10を生じ、ボックス5の下部の送風口11がら
空気を吹き込むことにより負に帯電している静°1振動
状態の混合粉末8は電気力線10に沿って触媒層2aに
向って飛行し、混合粉末8を触媒層2aに静電的に付着
させることができる。
FIG. 1 is a conceptual diagram for explaining the case where this electrostatic coating method is applied to the present invention. In FIG. 1, a mixed powder 8 of Mad IJx material and PTFE powder is placed between two parallel electrodes placed below the plastic box 5, that is, a positive electrode 6 on the floor of the box 5 and a negative electrode 7 above it.
When a high voltage is applied between both electrodes 6 and 7, mixed powder 8
is negatively charged and vibrates up and down. At this time, if the electrode substrate 1a coated with the catalyst layer 2a is placed above the box 5 with the ground 9 provided, electric lines of force 10 are generated between the negative electrode 7 and the catalyst layer 2a, and the lower part of the box 5 By blowing air through the air outlet 11, the negatively charged mixed powder 8 in a static 1 degree vibration state flies along the lines of electric force 10 toward the catalyst layer 2a, and the mixed powder 8 is transferred to the catalyst layer 2a. It can be attached electrostatically.

この際当然のことながら、基板1aに設けた触媒層2a
の混合粉末8を付着させる面を負極7に対向するように
一*する。また混合粉末8の飛行する方向を矢印で表わ
しである。なおこの過程において、帯電しなかった混合
粉末8は元の位置にとどまっており、触媒層2aに付着
しなかった混合粉末8はボックス5の床に戻るのでこれ
らの粉末は次回に用いることができる。かくして混合粉
末8の付着した触媒層2aと電極基板1aからなるガス
拡散電極をPTFImの溶融温度に加熱すること番こよ
り、第3図に示したように電極基板1.触媒層2および
マトリックス3からなる積層体が得られる。
At this time, as a matter of course, the catalyst layer 2a provided on the substrate 1a
The surface to which the mixed powder 8 is attached is placed so as to face the negative electrode 7. Further, the direction in which the mixed powder 8 flies is indicated by an arrow. In this process, the uncharged mixed powder 8 remains in its original position, and the mixed powder 8 that did not adhere to the catalyst layer 2a returns to the floor of the box 5, so these powders can be used next time. . By heating the gas diffusion electrode consisting of the catalyst layer 2a to which the mixed powder 8 is attached and the electrode substrate 1a to the melting temperature of PTFIm, the electrode substrate 1. is heated as shown in FIG. A laminate consisting of catalyst layer 2 and matrix 3 is obtained.

第2図は以上の静電粉体塗装法による処理時間と混合粉
末の付着量すなわちマ) IJフックス厚さの関係を示
した線図である。第2図から実用上必要なマ) リック
スの厚さを得るの番こ僅か数秒で済ませることができ極
めて効率が高いことがわかる。
FIG. 2 is a diagram showing the relationship between the processing time and the amount of adhesion of mixed powder, ie, IJ Fuchs thickness, by the electrostatic powder coating method described above. From Figure 2, it can be seen that it is possible to obtain the practically necessary matrix thickness in just a few seconds, which is extremely efficient.

またこの方法は自動化も可能であることからマトリック
ス形成の工数は飛躍的Iこ短縮されることが期待できる
Furthermore, since this method can be automated, it is expected that the number of steps for matrix formation will be dramatically reduced.

さらに静電粉体塗装法を用いることにより、PTFB分
散液の調整、塗布、溶媒除去などの工程を省くことがで
き、混合粉末を触媒層に付着させる際にも有機溶剤を全
く必要としないという長所をもっている。
Furthermore, by using the electrostatic powder coating method, steps such as preparing the PTFB dispersion, coating, and removing the solvent can be omitted, and no organic solvent is required at all when attaching the mixed powder to the catalyst layer. It has advantages.

〔発明の効果〕〔Effect of the invention〕

電極基板、触媒層からなる燃料電池のガス拡散電極にマ
) IJワックス層形成する際に、電極基板上に設けら
れた触媒層にマトリックス基材とPTFB粉末の混合分
散液を塗布し乾燥焼成していた従来の方法は多くの工程
を必要とするほかに、有機溶剤の使用に伴う公害などの
問題をもっていたのに対し、本発明では実施例で説明し
たように静電粉体塗装法を用いて、マ) IJフックス
材とPTFE粉末との混合粉末を触媒層に付着した後焼
成するようにしたために、この混合粉末の触媒層への付
着は僅か数秒間を要するのみであり、しかも有機溶剤は
全く使用することなく、混合分散液の調整から塗布、溶
媒除去などに至る従来の一連の工程を省略することがで
きるので、著しい工数の短縮による高効率化と溶剤を排
除したことによる安全、無害化を一挙に達成すること番
ご成功したものである。
When forming an IJ wax layer on a fuel cell gas diffusion electrode consisting of an electrode substrate and a catalyst layer, a mixed dispersion of a matrix base material and PTFB powder is applied to the catalyst layer provided on the electrode substrate, and then dried and fired. The conventional method required many steps and had problems such as pollution due to the use of organic solvents, whereas the present invention uses an electrostatic powder coating method as explained in the examples. (Ma) Since the mixed powder of IJ Fuchs material and PTFE powder is baked after being attached to the catalyst layer, it takes only a few seconds for the mixed powder to attach to the catalyst layer, and moreover, it requires no organic solvent. It is possible to omit a series of conventional processes from preparing the mixed dispersion liquid to coating and removing the solvent without using it at all, resulting in high efficiency due to a significant reduction in man-hours and safety due to the elimination of solvents. It was a great success in making it harmless all at once.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法が適用される静電粉体塗装法を説
明するための概念図、第2図は静電粉体塗装法による処
理時間とマトリックスの厚さとの関係を示す線図、第3
図は燃料電池のガス拡散電極とその上に形成したマ) 
IJフックス模式的断面図である。 1.1a・・・電極基板、2.2a・・・触媒層、3・
・・マトリックス、5・・・ボックス、6・・・正極、
7・・・負極。 8・・・混合粉末、9・・・アース、10・・・電気力
線。 第1図 に理叶肩(秒) 置 9F!ff
Figure 1 is a conceptual diagram for explaining the electrostatic powder coating method to which the method of the present invention is applied, and Figure 2 is a diagram showing the relationship between processing time and matrix thickness in the electrostatic powder coating method. , 3rd
The figure shows the gas diffusion electrode of a fuel cell and the matrix formed on it)
FIG. 2 is a schematic cross-sectional view of an IJ hook. 1.1a... Electrode substrate, 2.2a... Catalyst layer, 3.
...Matrix, 5...Box, 6...Positive electrode,
7...Negative electrode. 8... Mixed powder, 9... Earth, 10... Electric force lines. Rika shoulder (second) is placed on the 9th floor in Figure 1! ff

Claims (1)

【特許請求の範囲】[Claims] 1)電極基板に触媒層を備えた燃料電池のガス拡散電極
にマトリックスを形成するに当り、マトリックス基材粉
末とポリテトラフルオロエチレン粉末との混合粉末を静
電塗装法を用いて触媒層の主面全域に付着させた後、ポ
リテトラフルオロエチレンの溶融温度で焼成することを
特徴とする燃料電池のマトリックス形成方法。
1) When forming a matrix on the gas diffusion electrode of a fuel cell that has a catalyst layer on the electrode substrate, a mixed powder of matrix base material powder and polytetrafluoroethylene powder is applied to the main part of the catalyst layer using an electrostatic coating method. A method for forming a fuel cell matrix, which comprises depositing it on the entire surface and then firing it at the melting temperature of polytetrafluoroethylene.
JP60075577A 1985-04-10 1985-04-10 Formation of fuel cell matrix Pending JPS61233972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60075577A JPS61233972A (en) 1985-04-10 1985-04-10 Formation of fuel cell matrix

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60075577A JPS61233972A (en) 1985-04-10 1985-04-10 Formation of fuel cell matrix

Publications (1)

Publication Number Publication Date
JPS61233972A true JPS61233972A (en) 1986-10-18

Family

ID=13580183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60075577A Pending JPS61233972A (en) 1985-04-10 1985-04-10 Formation of fuel cell matrix

Country Status (1)

Country Link
JP (1) JPS61233972A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0343961A (en) * 1989-07-11 1991-02-25 Tomoegawa Paper Co Ltd Manufacture of electrolyte retainer for phosphoric acid fuel cell
WO2005004260A1 (en) * 2003-07-07 2005-01-13 Revolt Technology As Production of gas diffusion electrodes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0343961A (en) * 1989-07-11 1991-02-25 Tomoegawa Paper Co Ltd Manufacture of electrolyte retainer for phosphoric acid fuel cell
WO2005004260A1 (en) * 2003-07-07 2005-01-13 Revolt Technology As Production of gas diffusion electrodes

Similar Documents

Publication Publication Date Title
JP3466082B2 (en) Manufacturing method of fuel cell electrode
EP1573836B1 (en) Composite material and current collector for battery
KR100201572B1 (en) Method producing electrode for fuel cell with method mixing coating and rolling
DE69911150D1 (en) A method of manufacturing electrodes of a battery and electrode made by methods
JP2006507635A5 (en)
EP0875950A3 (en) Process of manufacturing porous separator for electrochemical power supply
CN109205607B (en) Method for forming graphene film by horizontally tiling and self-assembling graphene
DE60334163D1 (en) Particles consisting of nonconductive or semiconducting cores coated with a conductive hybrid layer, their production processes and uses in electrochemical devices
WO2000072373A1 (en) Method for manufacturing nanostructured thin film electrodes
WO2011073754A1 (en) Drying device
EP0915526A3 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
KR910019277A (en) Method of bonding the connection layer on the electrode of the battery
WO2015054848A1 (en) Making lithium secodary battery electrodes using an atmospheric plasma
JPS61233972A (en) Formation of fuel cell matrix
CN112985201A (en) Preparation method of energetic film Ni-Cr bridge wire initiating explosive device with strong ignition capability
CN209626296U (en) A kind of novel lithium ion battery diaphragm
CN109383087B (en) A method of preparing multilayer self-supporting carbon film
JPH07320757A (en) Solid electrolytic fuel cell interconnector, and its manufacture
CN105047920A (en) Method for manufacturing silicon nitride micro-tube
JP3166333B2 (en) Ceramic coating method
JPS61233971A (en) Water repellent treatment of fuel cell gas diffusion electrode
JPH07254418A (en) Solid electrolyte fuel cell and manufacture thereof
JPH05304050A (en) Electric double layer capacitor
JPS6240822B2 (en)
JPH07268645A (en) Production of three-dimensional copper network structure