JPS61232411A - Photoscanning optical system - Google Patents

Photoscanning optical system

Info

Publication number
JPS61232411A
JPS61232411A JP7358685A JP7358685A JPS61232411A JP S61232411 A JPS61232411 A JP S61232411A JP 7358685 A JP7358685 A JP 7358685A JP 7358685 A JP7358685 A JP 7358685A JP S61232411 A JPS61232411 A JP S61232411A
Authority
JP
Japan
Prior art keywords
light
optical system
optical modulator
mirror
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7358685A
Other languages
Japanese (ja)
Inventor
Michihiro Tokuhara
徳原 満弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7358685A priority Critical patent/JPS61232411A/en
Publication of JPS61232411A publication Critical patent/JPS61232411A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Dot-Matrix Printers And Others (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To eliminate the influence of an error in the arrangement of an optical system by turning an optical modulator around an axis coincident with or near the array direction of a mirror rocking part in a main scanning direction. CONSTITUTION:An electromechanic optical modulator 27 like a DMD element is equipped with a position correcting mechanism 38 which rotate the modulator 27 around the axis coincident with or nearby direction of line printing. Namely, even if luminous flux A incident on the optical modulator 27 shifts into luminous flux A', the optical modulator 27 is so rotated as to correct it, and consequently signal light B' can be made incident on the entrance pupil of an image forming lens 29 as well as a signal B having no shift. The axis around which the optical modulator 27 is rotated is not relative to the tilt direction of the mirror rocking part 13 for the optical modulator so much and set in the array direction of the main scanning direction of the mirror rocking part 13. Consequently, corrections are easily made and an image output device which has a little influence of an error in the position of the optical system is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電気機械的光変調器を用いた像出力走査器の光
走査光学系に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a light scanning optical system of an image output scanner using an electromechanical light modulator.

〔従来技術〕[Prior art]

像出力走査器は複写機、ファクシミリなどに用いられ、
文書等のオリジナルの像を走査し、光あるいは電気信号
などによって画像情報として出力する装置である。この
ような像出力走査器の種類としてはさまざまな形態のも
のが知られている。
Image output scanners are used in copying machines, facsimile machines, etc.
This is a device that scans an original image of a document or the like and outputs it as image information using light or electrical signals. Various types of such image output scanners are known.

次とえば一般のPPC複写機に用いられている像出力走
査器は、ハロゲノラング等の光で原稿上を走査し、その
反射光をそのまま電子写真感光体上に結像させて行うも
のが多い。その他には、レーデ−ビームグリ/ターのよ
うにオリジナルの像を電気信号に変換したのち光変調器
を用いてレーザビームを感光体上に結像させる方法もあ
る。
For example, the image output scanner used in general PPC copying machines scans the original with light from a halogen lamp, etc., and images the reflected light directly onto an electrophotographic photoreceptor. . Another method is to convert an original image into an electrical signal, such as a laser beam glare/tar, and then use an optical modulator to form a laser beam onto a photoreceptor.

また近年、集積回路技術の発達によって、基盤上に微小
な偏向素子を多数有する電気機械的光変調器を用いた像
出力走査器が提案されている。
Furthermore, in recent years, with the development of integrated circuit technology, an image output scanner using an electromechanical optical modulator having a large number of minute deflection elements on a substrate has been proposed.

上記のような電気機械的光変調器としては例えばDMD
 (Deformable Mirror Devic
e )が知られている。
Examples of the above electromechanical optical modulator include DMD.
(Deformable Mirror Device
e) is known.

DMD素子に関しては、IEE Transactio
n onElactron Dsvics Vol、 
FD−30No、5544(1983)に記述がされ、
又光学系についても特開昭59−17525に開示され
ている。
Regarding DMD elements, IEE Transaction
onElectron Dsvics Vol,
It is described in FD-30 No. 5544 (1983),
The optical system is also disclosed in Japanese Patent Laid-Open No. 59-17525.

以下DMDの一般的機構について図面に基づき説明する
The general mechanism of the DMD will be explained below based on the drawings.

第4図(、)にDMDの拡大断面図を示す。lはミラー
構造でAI−a Ag等の物質で製造され入射光を反射
させる役割を示す。2は1のミラー構造を支持する基板
でAuなどで構成される。3,4は1.2の支持部材で
、3はミラーコンタクトと呼ばれ、特に電気機械動作を
するひんし部を受けるものであシ、4は?リオキサイド
Stの絶縁物質である。
FIG. 4(,) shows an enlarged sectional view of the DMD. 1 is a mirror structure made of a material such as AI-a Ag, and serves to reflect incident light. 2 is a substrate that supports the mirror structure of 1 and is made of Au or the like. 3 and 4 are the support members of 1.2, 3 is called a mirror contact, and is especially for receiving the palm part that performs electromechanical operation, and 4 is ? It is an insulating material of lyoxide St.

5はポリシリコンゲートでFETMO8)ランシスター
のダートの役割を示す。6はエアーギヤ、プで。
5 is a polysilicon gate and shows the role of dart in FETMO8) run sister. 6 is air gear, pu.

0.6μ〜数μの空どうである。7はフローティング、
フィールドプレートで、8ON+フローテイングソース
からトランジスターのON 、 OFF情報によシフの
フローティング、フィールドグレートに電圧がかかる。
It is 0.6μ to several μ in the sky. 7 is floating,
At the field plate, voltage is applied to the shift floating and field plate based on the ON/OFF information of the transistor from the 8ON+floating source.

9はN+ドレインを示す。これもMO8型FET )ラ
ンシスターの構成の役割をする。
9 indicates an N+ drain. This also serves as a configuration of a run sister (MO8 type FET).

10はダートオキサイド、11はP壓シリコン基板であ
る。
10 is dirt oxide, and 11 is a P silicon substrate.

第4図(b)は第4図(、)のA方向からの拡大正面図
で、12はエアー空隙で13は電気機械的に揺動するミ
ラー揺動部、14はひんし部分を示す。
FIG. 4(b) is an enlarged front view from the direction A of FIG. 4(,), in which 12 is an air gap, 13 is an electromechanically oscillating mirror swinging portion, and 14 is a base portion.

15はDMD表面のミラ一部13以外のミラー表面を示
す。DMDはIC又はLSIのプロセスと似た工程で製
作される。
Reference numeral 15 indicates a mirror surface other than the mirror portion 13 on the DMD surface. A DMD is manufactured using a process similar to that of an IC or LSI.

第4図(c)はDMDの電気的等価図を示す。16は1
.2のきラー及び支持部材にかかる電圧vMをを示す。
FIG. 4(c) shows an electrical equivalent diagram of the DMD. 16 is 1
.. The voltage vM applied to the filter and support member of No. 2 is shown.

17は8にかかる電圧V、を示す。18はトランジスタ
ー構成を示し【おシ、9のD(ドレイン)信号、50G
(ダート)信号のON 、 OFFによシv、の電圧が
8にON 、 OFF’される。この時1゜2に電圧v
Mがかかつてお)、1,2と8間に電位差がON 、 
OFF信号によシ増減されることになる。
17 indicates the voltage V applied to 8. 18 shows the transistor configuration [Oshi, 9 D (drain) signal, 50G
When the (dirt) signal is turned ON and OFF, the voltage of V is turned ON and OFF' at 8. At this time, the voltage v at 1°2
M is turned on), the potential difference is ON between 1, 2 and 8,
It will be increased or decreased by the OFF signal.

この時、電位差に応じて6,7間につぎの式に応じた力
Fが生じ、 FC/3KV” (K :定i  V :電位差α:定
数 F:曲げ力) ミラー1,2はひんじ部14で揺動される。第4図(、
)の左図は1,2と8の間に電圧差が大きく有る場合で
、ミラー揺動部13はひんじ部14から折れ曲がシ、こ
の作用のため入射光はミラーのふれ角の2倍角度をかえ
て反射される。
At this time, a force F according to the following formula is generated between 6 and 7 depending on the potential difference, and FC/3KV" (K: constant i V: potential difference α: constant F: bending force) Mirrors 1 and 2 are hinged. It is swung by the section 14.
) shows the case where there is a large voltage difference between 1, 2 and 8, the mirror swinging part 13 is bent from the hinge part 14, and due to this action, the incident light is 2 times the deflection angle of the mirror. It is reflected at twice the angle.

一方電圧差が少ない場合は第4図(a)の右図に示すよ
うに、1,2のミラー揺動部13は7によりひっばられ
る力が少なく湾曲されない。従って入射光はミラーのふ
れない状態で反射されることとなる。DMD素子とは電
気的ON 、 OFFをミラー揺動部13の揺動のON
 、 OFFに変換し、さらに光のふれ角に変換するも
のである。
On the other hand, when the voltage difference is small, as shown in the right diagram of FIG. 4(a), the mirror swinging parts 1 and 2 are not bent due to the small force exerted by the mirror 7. Therefore, the incident light is reflected without touching the mirror. The DMD element is electrically turned on and off when the rocking of the mirror rocking unit 13 is turned on.
, OFF, and further converts it into the deflection angle of light.

通常第4図(−)〜(C)に示したDMD素子は第5図
のような光走査光学系19内に用いられ又電子写真プロ
セス20と共に使用され、例えばプリンターとして応用
される。第2図において21はランプ、22.24はD
MD素子を照明するための光学系、23はその光学系の
九めのスリット板で、DMD素子のミラーアレイ素子の
ミラーアレイ部のみを照明するように構成される。25
.26は折り曲げミラーで27はDMD素子、この素子
は第4図(、)〜(c)の原理によシミ気、機械動作を
するもので、かつ第6図に示す様にアレイ状に多数の素
子が配列される。(数10〜数千個) 28はDMD素子27を駆動する回路、29はDMD素
子27の反射光を30の感光体上に結像するレンズで普
通DMD素子27に信号がON した時にのみ結像レン
ズ29の瞳に光が入る。31〜35は通常電子写真プロ
セスに用いられるもので、31は現像器、32は感光体
30上のトナーを33のコピー用紙に転写すべき帯電器
、34はクリーナー、35は感光体30に帯電を与える
帯電器である。また36はDMD素子のOFF信号光を
カットすべき遮光板である。
Generally, the DMD elements shown in FIGS. 4(-) to 4(C) are used in a light scanning optical system 19 as shown in FIG. 5, and are used together with an electrophotographic process 20, and are applied, for example, as a printer. In Figure 2, 21 is a lamp, 22.24 is D
An optical system 23 for illuminating the MD element is the ninth slit plate of the optical system, and is configured to illuminate only the mirror array portion of the mirror array element of the DMD element. 25
.. 26 is a folding mirror, and 27 is a DMD element. This element operates mechanically in accordance with the principle shown in Figs. The elements are arranged. (several tens to thousands) 28 is a circuit that drives the DMD element 27, 29 is a lens that focuses the reflected light from the DMD element 27 onto the photoreceptor 30, which normally forms an image only when the signal to the DMD element 27 is turned ON. Light enters the pupil of the image lens 29. 31 to 35 are those normally used in the electrophotographic process; 31 is a developing device; 32 is a charger for transferring the toner on the photoreceptor 30 onto copy paper 33; 34 is a cleaner; and 35 is a charger for charging the photoreceptor 30. It is a charger that gives Further, 36 is a light shielding plate that should cut off the OFF signal light of the DMD element.

プリンターとしての機能はDMD素子駆動回路28に入
力した信号がDMD素子27に指令入力を与えることに
よって行なわれる。DMD素子27は信号に応じて第4
図(、)〜(c)に示した動作原理に従い電気機械的に
反応し、第6図に示した様な多数配列された中の該信号
に和尚するアレイミラー37の中の1個が揺動する。ラ
ンプ21よシ発せられた照明系の光Aは、照明光学系2
2 、23 。
The function as a printer is performed by applying a command input to the DMD element 27 from a signal input to the DMD element drive circuit 28. The DMD element 27
One of the array mirrors 37 reacts electromechanically according to the operating principle shown in Figures (,) to (c), and responds to the signal in a large number of arrays as shown in Figure 6. move. The light A of the illumination system emitted from the lamp 21 is transmitted to the illumination optical system 2.
2, 23.

24.25.26をDMD素子27上をスリット状に照
明する。照射された光AはDMD素子27上のミラーア
レイ37のミラーの状況がOFFの場合はCの方向に反
射光が向い遮光板36で遮光され、感光体30上には光
がとどかない。ONの場合にはB方向に光が反射され結
像レンズ29に入射しアレイミラー1個に相応したドツ
トパターンが感光体30上に結ばれる。従りて、ライン
状のON 。
24, 25, and 26 are illuminated onto the DMD element 27 in a slit shape. When the mirror of the mirror array 37 on the DMD element 27 is OFF, the irradiated light A is reflected in the direction C and is blocked by the light shielding plate 36, so that the light does not reach the photoreceptor 30. In the case of ON, the light is reflected in the B direction and enters the imaging lens 29, and a dot pattern corresponding to one array mirror is formed on the photoreceptor 30. Therefore, a line of ON.

OFF信号を駆動回路28に入力すれば、電子写真プロ
セスを経て現像され、その後コピー用紙上にそのトナー
像が転写されるゾリンターとしての役割を生じる。
When an OFF signal is input to the drive circuit 28, the toner image is developed through an electrophotographic process and then acts as a solinter, in which the toner image is transferred onto copy paper.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

さて上述したようなりMD素子27を第5図に示したよ
うな走査光学系19に用いる場合において、光学系19
の配置の誤差(特にランプ21の取シ扱え時に生じる誤
差および経時的な光学系位置の変化等)が問題となる。
Now, as described above, when the MD element 27 is used in the scanning optical system 19 as shown in FIG.
Errors in the arrangement (particularly errors occurring when handling the lamp 21 and changes in the position of the optical system over time) become a problem.

第7図、第8図はそのような光学系19の位置の変化に
よる影響を説明するための図である。
FIGS. 7 and 8 are diagrams for explaining the influence of such a change in the position of the optical system 19.

第7図はDMD素子27の配置誤差の様子を表わしたも
ので、DMD素子27が正規の角度(点線で示す)から
00ずれて配置され、他の光学要素が正規の位置に配置
された場合を示したものである。
FIG. 7 shows the placement error of the DMD element 27, when the DMD element 27 is placed at a 00 degree deviation from the normal angle (indicated by the dotted line) and the other optical elements are placed at the normal positions. This is what is shown.

同図において、正規に配置されたDMD素子27ではA
の光は、結像レンズ29に対して信号ONの場合点線B
のよ5に入射する。又信号OFFの場合DMD素子27
で偏光された光は点線Cの方向に反射される。
In the same figure, in the DMD element 27 which is normally arranged, A
When the signal is ON, the light is directed to the imaging lens 29 by the dotted line B.
Enter Noyo 5. Also, when the signal is OFF, the DMD element 27
The light polarized by is reflected in the direction of dotted line C.

第8図に結像レンズ29の瞳とDMD六子27からの反
射光束の関連を図示する。第8図(−)においてアは第
7図においてX方向から見た結像レンズ29の瞳の大き
さを示す。今正規に配置されたDMD素子27からの信
号ONの反射光Bは結像レンズ29の瞳ア上では円すの
ひろがシを示し、DMD素子27からの反射光Bが結像
レンズ29内にすべてとシ込まれる。一方信号OFFの
反射光CはDMD素子27のミラー揺動部13が信号に
より偏向することにより、結像レンズ29の瞳アから外
れた位置の円Cに移動し、レンズの瞳ア内に光は全く来
なくなシ、信号08時とOFF時の光量(DMD素子2
7からの回折光、散乱光のノイズのみ)の比は非常に小
さくなる〇 ところがDMD素子27がθ0だけずれて配置されると
第7図において、同じようにAの光が入射しても信号O
Nの反射光B′は正規の反射光Bから20だけずれ、同
様に信号OFFの反射光C′は正規の反射光Cから20
ずれる。ここで第8図(、)においてレンズの瞳アに対
して反射光B′の光の広がシは円b′のようになシレン
ズの瞳アでけられてしまうことになる。反射光C′はレ
ンズの瞳アから完全に逃げることになるが、信号光(反
射光B/)の光量は感光体上では少なくなシ、かつSハ
は劣化することとなる。また、DMD素子27が逆の方
向にθOずれた場合を考えると、第8図(b)のように
瞳アの中には信号ONの反射光B′と信号0FIY)反
射光σの両方が入ることになシ、S/Nの劣化がさらに
大きくなる。
FIG. 8 illustrates the relationship between the pupil of the imaging lens 29 and the reflected light flux from the DMD hexagon 27. In FIG. 8(-), A indicates the size of the pupil of the imaging lens 29 when viewed from the X direction in FIG. The reflected light B of the signal ON from the DMD element 27 which is now properly placed shows a wide circle on the pupil A of the imaging lens 29, and the reflected light B from the DMD element 27 is reflected inside the imaging lens 29. Everything is included in this. On the other hand, when the signal is OFF, the reflected light C moves to a circle C at a position away from the pupil A of the imaging lens 29 as the mirror swinging section 13 of the DMD element 27 is deflected by the signal, and the light enters the pupil A of the lens. does not come at all, and the light intensity at signal 08 and OFF (DMD element 2
However, if the DMD element 27 is shifted by θ0, the signal will not be detected even if the light from A is incident in the same way as shown in FIG. 7. O
The reflected light B' of N is shifted by 20 from the normal reflected light B, and similarly, the reflected light C' of the signal OFF is shifted by 20 from the normal reflected light C.
It shifts. Here, in FIG. 8(,), the spread of reflected light B' with respect to the pupil A of the lens is cut off by the pupil A of the lens as shown by circle b'. The reflected light C' will completely escape from the pupil A of the lens, but the amount of signal light (reflected light B/) will be small on the photoreceptor, and S will be degraded. Furthermore, considering the case where the DMD element 27 is shifted by θO in the opposite direction, both the reflected light B' of the signal ON and the reflected light σ of the signal 0 FIY are present in the pupil A as shown in FIG. 8(b). However, the deterioration of the S/N ratio becomes even greater.

次に第9図においてランフ’21がランプ交換又は耐性
によりてフィラメント位置がずれた待合の光束Aのずれ
について考える。第9図において正規の位置にフィラメ
ントがある場合照明光学系22.23,24,25,2
6を通った光は正規の光の主光線入となる。この時ラン
フ’21が距離tだけ位置ずれした場合の光束の主光線
はA′となシ、やはシDMD素子27に入射する角度が
ずれ、第7図と同じ状況となる。また照明光学系22゜
24.25,26の位置誤差についても同様にDMD素
子27に入射する角度がずれてくる。
Next, in FIG. 9, let us consider the deviation of the luminous flux A when the lamp 21 is in a state where the filament position is deviated due to lamp replacement or durability. In Fig. 9, when the filament is in the normal position, the illumination optical system 22, 23, 24, 25, 2
The light passing through 6 becomes the principal ray of regular light. At this time, if the lamp '21 is displaced by a distance t, the principal ray of the luminous flux will be shifted from A', or the angle of incidence on the DMD element 27 will be shifted, resulting in the same situation as shown in FIG. Similarly, the angle of incidence on the DMD element 27 also shifts due to the positional error of the illumination optical system 22.degree. 24.25, 26.

以上述べてきたように像出力走査器にDMD素子を用い
る場合ミラーディバイスが由に照明系の入射光の角度又
は結像系のミラーの反射光を捨5角度の精度が通常の光
学系の場合に比べて2倍の精度が要求され、アライメン
トに手間がかかるという欠点があシ、精度が悪いと要求
されるべき性能が得られないという問題がある。また照
明系内にランプを使用することによシ、ランプフィラメ
ントの経時的な位置ズレ、ランプ交換時のフィラメント
の位置合せ不良等によ少記録装置の感光体上に結像され
るミラーアレイの結像光のON時の光量又OFF時の光
量の比であるS/Nが大きく変化するという問題もある
。これら2つの問題は尚熱記録装置でのアウトプットで
ある印字品質に大きく影響を与え、上記のアライメント
がきつちシと達成出来ない場合は重大な問題となる。
As mentioned above, when using a DMD element for an image output scanner, the mirror device uses the angle of the incident light of the illumination system or the reflected light of the mirror of the imaging system. It requires twice as much accuracy as compared to the conventional method, and has the drawback that alignment is time-consuming.If the accuracy is poor, the required performance cannot be obtained. Additionally, when a lamp is used in the illumination system, the position of the lamp filament may shift over time, the filament may not be properly aligned when the lamp is replaced, etc. There is also a problem that the S/N, which is the ratio of the amount of light when the imaging light is ON and the amount of light when it is OFF, changes greatly. These two problems greatly affect the print quality that is the output of the thermal recording device, and become a serious problem if the above alignment cannot be precisely achieved.

〔問題点を解決するための手段〕[Means for solving problems]

本発明においては上記のような問題点を解決するために 放射光源からの光束を入力信号に応じて少なくとも2方
向に偏向しうるミラー揺動部を主走査方向に多数個配列
してなる電気機械的光変調器に照射し、各素子側の偏向
方向の切換えによって、反射光を分割し、そのうち信号
光のみを結像光学系によって感光部材上に結像する像出
力走査器の光走査光学系であって、前記光変調器を前記
ミラー揺動部の主走査方向の配列方向またはその近傍を
軸として回動できるようにしたことを特徴とする光走査
光学系が提供される。
In order to solve the above-mentioned problems, the present invention provides an electric machine in which a large number of mirror swinging parts are arranged in the main scanning direction and can deflect a light beam from a radiation source in at least two directions according to an input signal. An optical scanning optical system of an image output scanner that illuminates a target light modulator, divides the reflected light by switching the deflection direction of each element, and images only the signal light on a photosensitive member using an imaging optical system. There is provided an optical scanning optical system, characterized in that the optical modulator can be rotated around the alignment direction of the mirror swinging section in the main scanning direction or around the axis.

〔実施例〕〔Example〕

以下、図面に基づき本発明の実施例について説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の光走査光学系の一実施例を示した概略
図である。同図においてDMD素子のような電気機械的
光変調器27は、ライン印字する方向又はその近傍を軸
として該変調器27を回転せしめる位置補正機!fIt
38をそなえている。つまシ光変調器27に入射する光
束Aにずれが生じ、光束A′になったとしてもそれを補
正する方向に光変調器27を回転せしめることによって
、信号光B′を結像レンズ29の入射瞳に、ずれがない
ときの信号光Bと同じように入射せしめるようにしたも
のである。光変調器27を回転させる軸のとシ方は、光
変調器27のミラー揺動部13の倒れる向きにはあまシ
関係なく、ミラー揺動部13の主走査方向の配列方向に
とると効果が大きい。
FIG. 1 is a schematic diagram showing an embodiment of the optical scanning optical system of the present invention. In the figure, an electromechanical optical modulator 27 such as a DMD element is a position corrector that rotates the modulator 27 around the line printing direction or its vicinity. fIt
It has 38. Even if a shift occurs in the light beam A entering the optical modulator 27 and the light beam A' becomes the light beam A', by rotating the light modulator 27 in a direction that corrects the deviation, the signal light B' is transferred to the imaging lens 29. It is made to enter the entrance pupil in the same way as the signal light B when there is no shift. It is effective to set the direction of the axis for rotating the optical modulator 27 in the direction in which the mirror oscillating parts 13 of the optical modulator 27 are arranged in the main scanning direction, regardless of the direction in which the mirror oscillating parts 13 of the optical modulator 27 fall. is large.

上述した回転軸のとシ方についてさらに詳しく説明する
The direction of the rotation axis mentioned above will be explained in more detail.

第2図(a) 、 (b)はそれぞれひんじ部14がミ
ラ一部13の左下隅にある場合と真下にある場合のDM
D素子を示したものである。入射光束Aは(a)。
Figures 2 (a) and (b) show the DM when the hinge part 14 is located at the lower left corner of the mirror part 13 and directly below it, respectively.
This shows a D element. The incident light flux A is (a).

(b)共に、(1)のようにミラ一部13が倒れていな
い場合は反射光Cとなり 、 (ii)のように倒れて
いる場合は反射光B(信号光)となる。
In both (b), when the mirror part 13 is not fallen as in (1), it becomes reflected light C, and when it is fallen as in (ii), it becomes reflected light B (signal light).

第3図(a) 、 (b)は第2図(a) 、 (b)
の場合のDMI)素子から反射方向に有限距離離れた結
像レンズ29の入射瞳を含む平面での反射光の分布を模
式的に示した図である。同図(a) 、 (b)におい
てCは信号OFF状態の反射光Cの分布、すなわち不要
光の回折ノ’l?ターン(実際は十字形の回折ツクター
ンに近くなる)であシ、39はフィラメントの像である
。またアは結像レンズ29の入射瞳であシ、bは信号O
N状態の反射光Bの分布を示している。ここでもし、D
MD素子が角度ずれを生じれば信号ONの反射光Bの光
分布すがb′の位置にずれ、不要回折パターンCがC′
の位置にずれることになる。
Figures 3(a) and (b) are similar to Figures 2(a) and (b).
FIG. 4 is a diagram schematically showing the distribution of reflected light on a plane including the entrance pupil of the imaging lens 29 that is a finite distance away from the DMI (DMI) element in the reflection direction. In the same figures (a) and (b), C is the distribution of reflected light C in the signal OFF state, that is, the diffraction of unnecessary light? It is a turn (actually it is close to a cross-shaped diffraction turn), and 39 is an image of a filament. Also, a is the entrance pupil of the imaging lens 29, and b is the signal O.
The distribution of reflected light B in the N state is shown. If so, D
If the MD element deviates in angle, the light distribution of the reflected light B when the signal is ON will shift to the position b', and the unnecessary diffraction pattern C will become C'.
It will shift to the position of

ここで第2図に示したように、光変調器27をミラー揺
動部13の主走査方向の配列方向(ライン印字方向)軸
tを回転軸として回転させることによシ、第3図(a)
 、 (b)においてb′をbの位置に補正してやるこ
とが可能となる。もちろんこの方向に回転軸をとること
は補正の効果において望まれるが、この方向からすこし
ずれた位置に回転軸を設けてもある程度は光学系のずれ
を補正できる。
Here, as shown in FIG. 2, by rotating the optical modulator 27 about the axis t in the arrangement direction (line printing direction) in the main scanning direction of the mirror swinging section 13, as shown in FIG. a)
, (b), it becomes possible to correct b' to the position of b. Of course, it is desirable to have the rotation axis in this direction for the correction effect, but even if the rotation axis is provided at a position slightly deviated from this direction, the deviation of the optical system can be corrected to a certain extent.

さらに第9図で述べたようなラング交換等によるフィラ
メント位置ずれ、および照明光学系のずれに対しては、
DMD素子に当る光の位置はずれることになるが、照明
系のDMD素子に対する照射幅を広くとる設定や、DM
D i子自体の高さ調整などの設定上の工夫と本発明の
DMD素子に回転軸をつけるという対策を組み合せれば
十分に対拠できる。
Furthermore, as described in Fig. 9, the filament position shift due to rung replacement, etc., and the illumination optical system shift,
Although the position of the light hitting the DMD element will be shifted, it is possible to set the illumination system to widen the irradiation width for the DMD element, or
A sufficient countermeasure can be achieved by combining settings such as adjusting the height of the Di element itself with the measure of attaching a rotating shaft to the DMD element of the present invention.

また光波調器をほぼライン方向に動かすことによってド
ラム状感光体の母線の方向に対してほぼ平行に移動でき
、斜めスキャンにならず画像的に有利となる利点がある
Furthermore, by moving the optical wave modulator substantially in the line direction, it can be moved substantially parallel to the direction of the generatrix of the drum-shaped photoreceptor, which has the advantage of preventing oblique scanning, which is advantageous in terms of image quality.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の光走査光学系によれば光学
系の位置誤差又はアラインメント誤差が光変調器をライ
ン方向を軸として回転することによって簡単に補正でき
、光学系の位置誤差の影響を受けにくい像出力装置を提
供できる。
As explained above, according to the light scanning optical system of the present invention, the positional error or alignment error of the optical system can be easily corrected by rotating the optical modulator around the line direction, thereby eliminating the influence of the positional error of the optical system. It is possible to provide an image output device that is not easily affected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光走査光学系の光変調器周辺の様子を
示す概略図である。第2図はミラ一部の倒れ方が違う光
変調器の2つの例を示した図であシ、第3図はその2つ
の光変調器の結像レンズの入射瞳を含む平面での信号光
のずれを表わした模式図である。 第4図はDMD素子の説明図、第5図は該素子を用いた
プリンターの概略図、第6図はDMD素子の正面図であ
る。 第7図、第8図、第9図はそれぞれ光学系のずれの影響
を説明する図である。 21:ラング、22.23,24,25,26:照明光
学系、27:電気機械的光変調器、29:結像レンズ、
38:位置補正機構。 代理人  弁理士 山 下 穣 子 弟1図 1  。 −−−B 一千 く区 第5図   、719 第6図 第7図 第8図 第9図
FIG. 1 is a schematic diagram showing the area around the optical modulator of the optical scanning optical system of the present invention. Figure 2 is a diagram showing two examples of optical modulators in which the mirror portions are tilted in different ways, and Figure 3 is a diagram showing signals on a plane containing the entrance pupil of the imaging lens of the two optical modulators. FIG. 3 is a schematic diagram showing the shift of light. FIG. 4 is an explanatory diagram of a DMD element, FIG. 5 is a schematic diagram of a printer using the element, and FIG. 6 is a front view of the DMD element. FIG. 7, FIG. 8, and FIG. 9 are diagrams each illustrating the influence of the deviation of the optical system. 21: Lang, 22. 23, 24, 25, 26: Illumination optical system, 27: Electromechanical light modulator, 29: Imaging lens,
38: Position correction mechanism. Agent Patent Attorney Minoru Yamashita Child 1 Figure 1. ---B Ichiku Ward Figure 5, 719 Figure 6 Figure 7 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】[Claims] (1)放射光源からの光束を入力信号に応じて少なくと
も2方向に偏向しうるミラー揺動部を主走査方向に多数
個配列してなる電気機械的光変調器に照射し、各素子別
の偏向方向の切換えによって、反射光を分割し、そのう
ち信号光のみを結像光学系によって感光部材上に結像す
る像出力走査器の光走査光学系であって、前記光変調器
を前記ミラー揺動部の主走査方向の配列方向またはその
近傍を軸として回動できるようにしたことを特徴とする
光走査光学系。
(1) The light flux from the synchrotron radiation source is irradiated onto an electromechanical optical modulator consisting of a large number of mirror oscillating units arranged in the main scanning direction that can deflect the beam in at least two directions according to an input signal, and An optical scanning optical system of an image output scanner that splits reflected light by switching the deflection direction and images only the signal light on a photosensitive member by an imaging optical system, the optical scanning system comprising: 1. A light scanning optical system, characterized in that the moving parts are rotatable about the arrangement direction in the main scanning direction or around the axis.
JP7358685A 1985-04-09 1985-04-09 Photoscanning optical system Pending JPS61232411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7358685A JPS61232411A (en) 1985-04-09 1985-04-09 Photoscanning optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7358685A JPS61232411A (en) 1985-04-09 1985-04-09 Photoscanning optical system

Publications (1)

Publication Number Publication Date
JPS61232411A true JPS61232411A (en) 1986-10-16

Family

ID=13522560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7358685A Pending JPS61232411A (en) 1985-04-09 1985-04-09 Photoscanning optical system

Country Status (1)

Country Link
JP (1) JPS61232411A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011013081A (en) * 2009-07-01 2011-01-20 Atom Kosan Kk Luminaire for fine dust observation
CN103376548A (en) * 2012-04-11 2013-10-30 联想(北京)有限公司 Laser scanning system, apparatus and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011013081A (en) * 2009-07-01 2011-01-20 Atom Kosan Kk Luminaire for fine dust observation
CN103376548A (en) * 2012-04-11 2013-10-30 联想(北京)有限公司 Laser scanning system, apparatus and method
CN103376548B (en) * 2012-04-11 2015-08-26 联想(北京)有限公司 A kind of laser scanning system, device and method

Similar Documents

Publication Publication Date Title
US6288830B1 (en) Optical image forming method and device, image forming apparatus and aligner for lithography
JP3111515B2 (en) Scanning optical device
EP0049165B1 (en) Raster scanners
JP3566474B2 (en) Light beam scanning device
JP4632528B2 (en) Light beam adjusting method, multi-beam scanning apparatus and image forming apparatus in multi-beam scanning apparatus
US5150250A (en) Light scanning optical system for an image output scanner using an electro-mechanical light modulator
JPS61232411A (en) Photoscanning optical system
JP2007047749A (en) Optical scanning device, image forming apparatus and lens
JPS62125320A (en) Scanning method and apparatus controlling incidental beam
US4755013A (en) Light scanning optical system of an image output scanner using an electro mechanical light modulator
JPH09159962A (en) Optical scanner
JPH0519186A (en) Scanning optical device
US6154244A (en) Beam scanning apparatus of electrophotographic color printer
JP2004069843A (en) Image forming apparatus and its luminous flux position detecting method
JPS61169812A (en) Photoscanning optical system
JP4677124B2 (en) Optical scanning apparatus and image forming apparatus
JP2002082302A (en) Optical scanning method, optical scanner, photosensitive medium, and image forming apparatus
JPH10324019A (en) Image-forming apparatus
JP3450999B2 (en) Image forming device
JP3720692B2 (en) Optical scanning device
JP4060423B2 (en) Image forming apparatus
JPH04264417A (en) Optical device for image forming device
JP2001318335A (en) Device and method for optical scanning and image forming device
JP3754801B2 (en) Image forming apparatus
JP4194315B2 (en) Laser exposure equipment