JPS6123223A - Terminal pressure controller - Google Patents

Terminal pressure controller

Info

Publication number
JPS6123223A
JPS6123223A JP14333784A JP14333784A JPS6123223A JP S6123223 A JPS6123223 A JP S6123223A JP 14333784 A JP14333784 A JP 14333784A JP 14333784 A JP14333784 A JP 14333784A JP S6123223 A JPS6123223 A JP S6123223A
Authority
JP
Japan
Prior art keywords
pressure
pump
water
value
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14333784A
Other languages
Japanese (ja)
Inventor
Masaki Inayama
稲山 正樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14333784A priority Critical patent/JPS6123223A/en
Publication of JPS6123223A publication Critical patent/JPS6123223A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2006Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
    • G05D16/208Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using a combination of controlling means as defined in G05D16/2013 and G05D16/2066

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

PURPOSE:To secure an equal level of fed pressure between the high and low ground level sides with a simple constitution and a simple operation, by keeping a fixed level for a pressure gauge set at the pump discharge side by means of a control valve and deciding the pump discharge pressure from the fixed value of the pressure gauge. CONSTITUTION:A pump discharge valve 3 is provided at the discharge side of a pump 2, and the pipeline at the pump discharge side is branched to the high and low ground level sides 4a and 4b. The tap water is supplied via the supply valves 9 and 10 at the high and low ground level sides respectively. A pressure gauge 19 is set at a place where the pipelines join at the discharge side of the pump 2; while a pressure control valve 8 of the low ground level side and a pressure gauge 7 are provided to the supply pipeline at the low ground level side. The signals of both gauges 19 and 7 are supplied to a terminal pressure controller 18, and the target pressure value 17a of the low ground level is delivered to a pressure control part 13 from an arithmetic part 17 of the controller 18. Then the value 17a is collated with the pressure signal 7a of the gauge 7, and a pressure deviation signal 13a is delivered to the valve 8. The opening amount of the valve 8. The opening amount of the valve 8 is controlled to obtain the coincidence between the signal 7a and the value 17a. The part 17 delivers the target water pressure value 17b also to a pressure control part 16. The water pressure deviation signal 16a is delivered to a pressure distributing part 15 to obtain the coincidence between the value 17b and the feed pipeline pressure signal 19a of the gauge 19.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は互に揚程の異なる需要家に等しい圧力で給水す
る末端圧力制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a terminal pressure control device that supplies water at the same pressure to consumers having different head heights.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

たとえば71概用水設備に於て、複数台の揚水ポンプで
互に揚程の異なる箇所へ給水することがある。どのよう
な場合送水圧力を制御しないと低揚程側へは大量の給水
が行なわれ高揚粗側の給水は少量となって著しい不均衡
を生じる。
For example, in a 71 general purpose water facility, water may be supplied to locations with different lift heights using a plurality of water pumps. In any case, if the water supply pressure is not controlled, a large amount of water will be supplied to the low head side and a small amount of water will be supplied to the high and coarse side, resulting in a significant imbalance.

従来は高地側と低地側左の給水圧力を一定にするために
ポンプ吸込水槽より揚水ポンプで用水を汲み上げその吐
出側には1.揚水ポンプ吐出弁がありそしてその配管は
まとめられ、供給配管で高地側および低地側へと分岐し
ている。即ち、高地側。
Conventionally, in order to keep the water supply pressure constant on the highland side and the lowland side, water was pumped up from the pump suction tank using a lift pump, and the discharge side was pumped with 1. There is a lift pump discharge valve and its piping is combined and branched to the upland side and the lowland side with supply piping. That is, the highland side.

低地側と分岐した後それぞれの側に流量針、圧力針、低
地側圧力調整弁、高地側圧力調整弁を設け。
After branching off to the lowland side, a flow needle, pressure needle, lowland side pressure regulating valve, and highland side pressure regulating valve are installed on each side.

流量計および圧力針の流量信号及び圧力信号を制御装置
に入力し、制御装置はこれらの信号をたとえばディジタ
ル変換して所定の演算式によって高地側、および低地側
の給水圧力を等しくするように、低地側圧力調整弁及び
高地側圧力調整弁の開度を調整している。しかし、この
ような制御方法では低地側圧力調整弁、高地側圧力調整
弁及び流量計、圧力計を各2組づつ必要とし、しかも制
御装置では複雑な演算を行うため、構成も複雑で保守も
容易でなく高価になるといつ不具合があった。
The flow rate signals and pressure signals from the flow meter and the pressure needle are input to the control device, and the control device converts these signals into, for example, digital data to equalize the water supply pressures on the highland side and the lowland side using a predetermined calculation formula. The opening degrees of the lowland side pressure regulating valve and the highland side pressure regulating valve are adjusted. However, such a control method requires two sets each of a low-altitude pressure regulating valve, a high-altitude pressure regulating valve, a flow meter, and a pressure gauge, and the control device performs complex calculations, making the configuration complex and requiring maintenance. It's not easy and it's expensive when something goes wrong.

〔発明の目的〕[Purpose of the invention]

本発明は上記不具合をなくすためのもので簡単な構成、
簡単な演算で高地側および低地側の送給圧力を等しく出
来建設費も安価な末端圧力制御装置を提供することを目
的とする。
The present invention is intended to eliminate the above-mentioned problems, and has a simple configuration,
It is an object of the present invention to provide a terminal pressure control device which can equalize the feeding pressures on the highland side and the lowland side with simple calculations and is inexpensive to construct.

〔発明の概要〕[Summary of the invention]

本発明は揚程の異なる需要家に複数の揚水ポンプで流体
を供給するものにおいて複数の揚水ポンプの吐出側の圧
力を得る圧力計と、この圧力計の出口側に連通ずる管路
抵抗の高い高地側吐出管と。
The present invention relates to a pressure gauge that obtains the pressure on the discharge side of a plurality of lift pumps in a system that supplies fluid to customers with different lift heights using a plurality of lift pumps, and a highland area with high resistance in a pipe connected to the outlet side of the pressure gauge. With side discharge pipe.

管路抵抗の低い低地側吐出管と、この低地側吐出側に設
置した調整弁及び圧力計を設け、調整弁によりこの圧力
計の値を一定の値に保つと共にその一定の値より低地側
管路抵抗を求め低地側管路抵抗に高地側揚程を加算して
、加算した値を圧力計の目標値として圧力計の値が目標
値になるように揚水ポンプの台数及び回転数を制御する
ことを特徴とする末端圧力制御装置である。
A low-lying discharge pipe with low pipe resistance, and a regulating valve and pressure gauge installed on this low-lying discharge side are installed, and the regulating valve maintains the value of this pressure gauge at a constant value, and the low-lying pipe is lower than the fixed value. Calculate the pipe resistance, add the lift on the highland side to the resistance on the lowland side, use the added value as the target value of the pressure gauge, and control the number and rotation speed of the pumps so that the value on the pressure gauge becomes the target value. This is a terminal pressure control device characterized by:

(発明の実施例〕 次に本発明の詳細な説明する。第1図は互に所要揚程の
異なる高地側及び低地側の地区に揚水すべく並列に接続
された揚水ポンプ2と、揚水ポンプ2にそれぞれ直列に
接続された揚水ポンプ吐出弁3と、揚水ポンプ吐出弁3
の吐出側を合流して送水する供給配管、4と、供給配管
4から分岐された低地側の送水圧力を調整する低圧側圧
力調整弁8と、低圧側圧力調整弁8によって調整された
低地側の送水圧力を計測する圧力計7と、低圧側圧力調
整弁8によって圧力調整された送水を低地側に分散して
供給する低地側供給弁10と、低圧側圧力調整弁8の揚
水ポンプ側から分岐して取り出された高地側の送水を分
散して供給する高地側供給弁9とからなる末端圧力制御
装置に於て、供給配管部の送水圧力を計測する圧力計1
9と、圧力計7からの圧力信号7a及び予め整定された
圧力目標値17aからの偏差を検出して低圧側圧力調整
弁8に圧力偏差信号13aを出力する圧力制御部13と
(Embodiments of the Invention) Next, the present invention will be described in detail. Fig. 1 shows a pump 2 connected in parallel to pump water to areas on the highland side and lowland side, each having a different required head. a pump discharge valve 3 and a pump discharge valve 3 connected in series to each other.
A supply pipe 4 that joins the discharge sides of the water and sends water, a low-pressure side pressure regulating valve 8 that adjusts the water supply pressure on the low-lying side branched from the supply pipe 4, and a low-pressure side pressure regulating valve 8 adjusted by the low-pressure side pressure regulating valve 8. A pressure gauge 7 that measures the water supply pressure, a lowland side supply valve 10 that distributes and supplies water whose pressure has been adjusted by the low pressure side pressure regulating valve 8 to the lowland side, and a water pump side of the low pressure side pressure regulating valve 8. In a terminal pressure control device consisting of a highland side supply valve 9 that distributes and supplies water to the highland side that has been branched and taken out, a pressure gauge 1 measures the water supply pressure in the supply piping section.
9, and a pressure control unit 13 that detects a pressure signal 7a from the pressure gauge 7 and a deviation from a preset pressure target value 17a and outputs a pressure deviation signal 13a to the low pressure side pressure regulating valve 8.

揚水ポンプ2に付属した回転数計20から出力された回
転数20a及び予め整定された回転数目標値14aから
偏差を検出して揚水ポンプ2に回転数偏差信号12aを
出力する回転数制御部12と、予め入力されている揚水
ポンプ2の流量−揚程特性及び供給配管4の配管抵抗特
性から圧力目標値17a及び送水圧力目標値17bを出
力する演算部17と、演算部17からの送水圧力目標値
17b及び圧力計19からの供給配管圧力信号19aと
によって送水圧力偏差信号16aを出力する圧力制御部
16と、圧力制御部16からの送水圧力偏差信号16a
及び予め整定された揚水ポンプ2の流量−揚程特性から
圧力分配値15aを出力する圧力分配部15と、圧力分
配部15からの圧力分配値15aを回転数偏差信号14
aに変換する圧力−回転数変換部14とを具備してなる
末端圧力制御装置を示している。
A rotation speed control unit 12 that detects a deviation from a rotation speed 20a output from a rotation speed meter 20 attached to the lift pump 2 and a rotation speed target value 14a set in advance and outputs a rotation speed deviation signal 12a to the lift pump 2. and a calculation unit 17 that outputs a pressure target value 17a and a water supply pressure target value 17b from the flow rate-head characteristics of the water pump 2 and pipe resistance characteristics of the supply pipe 4 that have been input in advance, and a water supply pressure target from the calculation unit 17. a pressure control section 16 that outputs a water supply pressure deviation signal 16a based on the value 17b and a supply piping pressure signal 19a from the pressure gauge 19; and a water supply pressure deviation signal 16a from the pressure control section 16.
and a pressure distribution unit 15 that outputs a pressure distribution value 15a from the flow rate-head characteristic of the lift pump 2 that has been set in advance, and a rotation speed deviation signal 14 that outputs the pressure distribution value 15a from the pressure distribution unit 15.
2 shows a terminal pressure control device comprising a pressure-to-rotation speed converter 14 for converting the pressure to the rotational speed.

1はポンプ吸込槽であり、ポンプ吸込槽1より3台の揚
水ポンプ2で用水を吸み上げている。揚水ポンプ2の吐
出側には揚水ポンプ吐出弁36−あリ、その吐出側配管
は合流されて需要家近くまで行って高地側4aと低地側
4bに分岐され、高地側供給弁9および低地側供給弁1
0を介して、用水を給水している。
1 is a pump suction tank, from which water is sucked up by three water pumps 2. A pump discharge valve 36 is provided on the discharge side of the pump 2, and its discharge side piping is merged and goes near the consumer, and is branched into a highland side 4a and a lowland side 4b, and is connected to a highland side supply valve 9 and a lowland side. Supply valve 1
Water is supplied through 0.

なお、揚水ポンプ2の吐出側で配管が合流した所には圧
力計19を設け、また、低地側供給配管には低地側圧力
調整弁8.及び圧力計7を設けている。そして圧力計1
9及び圧力計7の信号は末端圧力制御装置18に入力さ
れている。末端圧力制御装置18には、演算部17があ
り、演算部17から低地側圧力目標値17aが圧力制御
部13に出力され圧力制御部13では演算部17からの
低地側圧力目標値17aと圧力計7の圧力信号7aを照
合し、その圧力偏差信号13aを低地側圧力調整弁8に
出力し、圧力計7の圧力信号7aが演算部17からの圧
力目標値17aと等しくなる様に低地側調整弁8の開度
を調節する。
In addition, a pressure gauge 19 is installed at the place where the pipes meet on the discharge side of the pump 2, and a low-land pressure regulating valve 8 is installed in the low-land supply pipe. and a pressure gauge 7. and pressure gauge 1
9 and pressure gauge 7 are input to a terminal pressure controller 18. The terminal pressure control device 18 includes a calculation section 17, and the calculation section 17 outputs the lowland side pressure target value 17a to the pressure control section 13, and the pressure control section 13 outputs the lowland side pressure target value 17a from the calculation section 17 and the pressure. A total of 7 pressure signals 7a are compared, and the pressure deviation signal 13a is outputted to the lowland side pressure regulating valve 8, and the pressure signal 7a of the pressure gauge 7 is adjusted to the lowland side so that the pressure signal 7a is equal to the pressure target value 17a from the calculation unit 17. Adjust the opening degree of the regulating valve 8.

また、演算部17は圧力制御部16にも送水圧力目標値
17bを出力して圧力制御部16には圧力計19の供給
配管圧力信号19aが入力されており目標値17bと圧
力計19の供給配管圧力信号19aが一致する様に送水
圧力偏差信号16aを圧力分配部15に出力する。圧力
分配部15では、偏差信号16aにより揚水ポンプ2の
運転台数を決定するとともに運転台数に基づき各揚水ポ
ンプ2の圧力分配を計算して圧力分配値15aを圧力−
回転数変換部14に出力する。圧力−回転数変換部14
では分配された圧力−信号を各揚水ポンプの回転数に変
換して揚水ポンプ2にある回転数制御部12に回転数目
標値14aとして出力する。
The calculation unit 17 also outputs the water supply pressure target value 17b to the pressure control unit 16, and the pressure control unit 16 receives the supply pipe pressure signal 19a of the pressure gauge 19, and the target value 17b and the supply pipe pressure signal 19a of the pressure gauge 19 are inputted to the pressure control unit 16. The water supply pressure deviation signal 16a is output to the pressure distribution unit 15 so that the pipe pressure signal 19a matches. The pressure distribution unit 15 determines the number of operating pumps 2 based on the deviation signal 16a, calculates the pressure distribution of each pump 2 based on the number of operating pumps, and calculates the pressure distribution value 15a as pressure -
It is output to the rotation speed converter 14. Pressure-rotation speed converter 14
Then, the distributed pressure signal is converted into the rotation speed of each lift pump and outputted to the rotation speed control section 12 in the lift pump 2 as the rotation speed target value 14a.

回転数制御部12には9回転数計20の回転数20aが
入力されていて回転数制御部12では回転数計20の回
転数20aが回転数目標値14aになる様に回転数偏差
信号12aを各揚水ポンプに出力して揚水ポンプ2の回
転数を制御している。
The rotation speed 20a of the rotation speed meter 20 is input to the rotation speed control section 12, and the rotation speed deviation signal 12a is inputted to the rotation speed control section 12 so that the rotation speed 20a of the rotation speed counter 20 becomes the rotation speed target value 14a. is outputted to each pump to control the rotational speed of the pump 2.

以下第2図に示すグラフを参照して本発明の詳細な説明
する。なお第2図では横軸に揚水ポンプの吐出tl (
Q)、縦軸に圧力(P)及び揚程α力を示している。今
、揚水ポンプ2の内の1台のQ−H特性を曲線(Q−H
)、1とし、揚水ポンプ2の内の2台運転のときのQ−
H特性を曲線(Q−H)、2とすると、現在の揚水ポン
プ2の1台運転時の運転点は低地側管路抵抗R1と高地
側管路抵抗R2との合成の曲線(R1+R2)と揚水ポ
ンプ1台のときの曲線(Q−H)、□との点Aになる。
The present invention will be described in detail below with reference to the graph shown in FIG. In Fig. 2, the horizontal axis represents the discharge tl (
Q), pressure (P) and lift α force are shown on the vertical axis. Now, the Q-H characteristic of one of the pumps 2 is expressed as a curve (Q-H
), 1, and Q- when two of the water pumps 2 are in operation.
Assuming that the H characteristic is a curve (Q-H), 2, the current operating point when one pump 2 is operated is the composite curve (R1+R2) of the lowland side pipe resistance R1 and the highland side pipe resistance R2. The curve (Q-H) when there is one water pump, becomes point A with □.

このとき、圧力計2の圧力値を圧力P2とすると圧力P
2は実揚程と末端圧との合成の圧力H2及び高地配管抵
抗azQzの和となり次の(1)式で示される。
At this time, if the pressure value of pressure gauge 2 is pressure P2, pressure P
2 is the sum of the combined pressure H2 of the actual head and terminal pressure and the high altitude piping resistance azQz, and is expressed by the following equation (1).

P 1 = Hi 十a2 Q2 −  (1)また圧
力計7の値を圧力P1とすると圧力P1は低地側圧力調
整弁8の出口圧力すなわち低地側需要家までの実揚程と
末端圧の合成の圧力H1および低地配管抵抗atQτの
和となり点A′及び次の(2)式で表わされる。
P 1 = Hi 10a2 Q2 - (1) Also, if the value of the pressure gauge 7 is pressure P1, the pressure P1 is the outlet pressure of the lowland side pressure regulating valve 8, that is, the combined pressure of the actual head to the lowland side consumer and the terminal pressure. The sum of H1 and low-lying piping resistance atQτ is expressed by the point A' and the following equation (2).

PH=l(1+ a、 Ql また$2図では曲線(Q−H)、は低地側圧力調整弁8
のQ−H特性、 R3は調節弁以降の配管抵抗である。
PH=l(1+a, Ql Also, in the $2 figure, the curve (Q-H) is the lowland side pressure regulating valve 8
Q-H characteristic, R3 is the piping resistance after the control valve.

よって圧力計19の圧力P2及び圧力計7の圧力P1の
差の圧力(P2Pl)は低地側圧力調整弁8の前後に生
じる圧力損失である。
Therefore, the pressure difference (P2Pl) between the pressure P2 of the pressure gauge 19 and the pressure P1 of the pressure gauge 7 is a pressure loss occurring before and after the lowland side pressure regulating valve 8.

そして揚水ポンプ2の内の1台の運転点が点Aの状態で
高地側供給弁9を需要家が開くと高地側管路抵抗は減少
して抵抗R2から抵抗fL2’となり管路配管合成曲線
は曲線(R1+ R2Xり曲線(R1+ RS )に移
り揚水ポンプ2運転点も点Bに移動する。
Then, when the consumer opens the high-altitude side supply valve 9 with the operating point of one of the pumps 2 at point A, the high-altitude side pipe resistance decreases and changes from resistance R2 to resistance fL2', resulting in a pipe line piping composite curve. moves to the curve (R1+R2X curve (R1+RS)), and the pump 2 operating point also moves to point B.

この場合の圧力計19の圧力P、は式(3)で表わされ
る。
In this case, the pressure P of the pressure gauge 19 is expressed by equation (3).

れ=馬+a*Qs’・・・ (3) 但しazQ2は高地側供給弁11を開いたときの高地側
配管抵抗、即ち圧力計19の圧力値は高地側供給弁11
を開くことにより圧力(afi Qt  R2Q:’ 
)だけ減少する。
= horse+a*Qs'... (3) However, azQ2 is the highland side piping resistance when the highland side supply valve 11 is opened, that is, the pressure value of the pressure gauge 19 is the highland side supply valve 11.
Pressure (afi Qt R2Q:'
) decreases by

また圧力計7の圧力P、は高地側の吐出tqtが吐出m
 Q’、に移行するために低地側圧力調整弁8のQ−H
特性の曲線(Q−H)マも曲線(Q−H)&l二移りそ
れによって減少して点B′及び式(4)で表わされる。
In addition, the pressure P of the pressure gauge 7 is the discharge tqt on the highland side and the discharge m
Q-H of the lowland side pressure regulating valve 8 to shift to Q'.
The characteristic curve (Q-H) is also reduced by the curve (Q-H) &l and is expressed by point B' and equation (4).

P’1=HH+ a HQ’+ ’ ・・・(4)但し
p  atQ?は高地側を開いた時の低地側配管抵抗、
即ち圧力計7の値は高地側供給弁】1を開くことにより
圧力(81Q;’  a1Q’; ’)だけ減少する。
P'1=HH+ a HQ'+ '...(4) However, p atQ? is the lowland side piping resistance when the highland side is open,
That is, the value on the pressure gauge 7 decreases by the pressure (81Q; 'a1Q';') by opening the highland side supply valve ]1.

式(1)乃至式(4)により圧力H,、Htは固定値だ
から第2図よりatqW = aiQtとすれば低地側
圧力と高地側圧力は等しくなる。
Since the pressures H, Ht are fixed values according to equations (1) to (4), if atqW = aiQt from FIG. 2, the pressure on the lowland side and the pressure on the highland side become equal.

今圧力計7の値が圧力P/之に下ったとすると圧力PI
は P; =H2+ a IQr = Ht + at Q
:にすると共に圧力計7の値もPH=H1+ a、 Q
τにすレバat QW=atQンとなり、高地側の圧力
と低地側の圧力は等しくなる。
If the value on pressure gauge 7 has now fallen to pressure P/, then pressure PI
is P; =H2+ a IQr = Ht + at Q
: At the same time, the value of pressure gauge 7 is also PH=H1+ a, Q
At τ, the lever atQW=atQ, and the pressure on the highland side and the pressure on the lowland side become equal.

よって圧力計7の値はある目標値になるように圧力計7
の値を制御する。今、仮に圧力計7の目標値を圧力P1
とすると Pl=H,+aIQ7となりa、 Q: = P、−H
,で圧力asqrを求め圧力計19ノ値をHl + a
 I Q’; = P ト’jlるように制御すれば低
地側圧力と高地側圧力は等しくなる。
Therefore, the pressure gauge 7 is adjusted so that the value of the pressure gauge 7 becomes a certain target value.
control the value of Now, suppose that the target value of pressure gauge 7 is set to pressure P1.
Then, Pl=H, +aIQ7 and a, Q: = P, -H
, find the pressure asqr, and calculate the value of pressure gauge 19 as Hl + a
If the pressure is controlled so that I Q';

演算部17では保守員が圧力P、を設定することにより
圧力P、の値を圧力制御部13に出力し、圧力制御部1
3では圧力計7・の値が圧力P、となるように制御する
In the calculation unit 17, the maintenance personnel sets the pressure P, and outputs the value of the pressure P to the pressure control unit 13.
3, the pressure gauge 7 is controlled so that the value becomes the pressure P.

また演算部17は圧力P1より圧* atq:を求め。Further, the calculation unit 17 calculates the pressure *atq: from the pressure P1.

圧力axQ′: より圧力Pを計算し、圧力計19の値
が圧力Pになるように制御をする。
Pressure axQ': Calculate pressure P and control so that the value of pressure gauge 19 becomes pressure P.

第3図では圧力計19の値がpj=H1+alql迄下
ったのでP ” Hl + 711 Q?で圧力Pを算
出して、圧力(P  pt)の偏差が大きいので揚水ポ
ンプ2に2台目の運転指令を出した所で、そのときの揚
水ポンプ2の運転点は2台の揚水ポンプ2のQ−H特性
の曲線(Q−aLzと高地側配管抵抗R2’と低地側配
管抵抗R1の合成の曲線(几1+R2’)の交点Cにな
る。この時の圧力計19の圧力P:はP r = Hl
 + a I Q’l ’ ・”  (5)但しt  
atQ”xは揚水ポンプ2台運転した時の高地側管路抵
抗である。また圧力計7の値は高地側吐出量が流量仏か
ら流量Qlに移行するため、低地側調整弁8のQ −H
特性も曲線(Q−H)TI’から曲線(q−n)、’に
移行し、それによって点Cに行動する。この時の圧力計
7の示す圧力P、′はP、・=H,“十atQW″ に
なる。
In Fig. 3, the value of the pressure gauge 19 has fallen to pj = H1 + alql, so the pressure P is calculated by P '' Hl + 711 Q?, and since the deviation of the pressure (P pt) is large, a second pump is installed in the water pump 2. When the operation command is issued, the operating point of the lift pump 2 at that time is determined by the Q-H characteristic curve of the two lift pumps 2 (combined Q-aLz, high-altitude side piping resistance R2', and low-altitude side piping resistance R1). is the intersection point C of the curve (几1+R2').At this time, the pressure P of the pressure gauge 19 is P r = Hl
+ a I Q'l ' ・” (5) However, t
atQ"x is the highland side pipe resistance when two pumps are operated. Also, the value of the pressure gauge 7 is the Q - of the lowland side regulating valve 8 because the discharge amount on the highland side shifts from the flow rate to the flow rate Ql. H
The characteristic also shifts from the curve (Q-H)TI' to the curve (q-n),', thereby acting on point C. At this time, the pressure P,' indicated by the pressure gauge 7 becomes P,.=H, "10atQW".

本発明の末端圧力制御装置では、圧力計19の値PH=
)(、+ a、 Q”+ == P。
In the terminal pressure control device of the present invention, the value of the pressure gauge 19 PH=
)(, + a, Q”+ == P.

圧力計19の値は P2=H2+a、 Ql = P になるように制御するため、第2図の場合a+Qt=a
+Q’:″+ asQ’5=at Q:″でないので低
地側圧力調整弁8を閉方向にもっていき、低地側配管抵
抗の曲線R1を曲線R(に移動させ、圧力計19の値を
点りに移すと共に圧力計7の値も点A′になる心とがわ
かる。
The value of the pressure gauge 19 is controlled so that P2=H2+a, Ql=P, so in the case of Fig. 2, a+Qt=a
Since +Q':''+ asQ'5=at Q:'' is not true, move the lowland side pressure regulating valve 8 in the closing direction, move the lowland side piping resistance curve R1 to curve R(, and set the value of the pressure gauge 19 as a point. It can be seen that the value on the pressure gauge 7 also becomes point A' as the pressure is moved to the point A'.

よって2本発明の制御方法によれば簡単に低地側圧力と
高地側圧力は等しくなることがわかる。
Therefore, it can be seen that according to the control method of the present invention, the pressure on the lowland side and the pressure on the highland side are easily equalized.

又圧力Pの値は各揚水ポンプ2の台数決定および回転数
決定に使用される。
Further, the value of pressure P is used to determine the number and rotation speed of each water pump 2.

尚、回転数を変えても揚水ポンプ2のQ −H特性は揚
水ポンプ2の台数を変えたのと同じような動きをする。
Note that even if the rotation speed is changed, the Q-H characteristic of the water pump 2 behaves in the same way as when the number of water pumps 2 is changed.

従って上記実施例によれば低区側圧力設定値Paと圧力
H1,H2の値を適切にすることにより、簡単な演算で
その演算結果に基づき低区側圧力な一定に保つ為に低地
側調整弁8の開度制御すると共に、揚水ポンプ2の台数
決定及び回転数制御することにより正確に末端圧力制御
を行うことが出来る。
Therefore, according to the above embodiment, by optimizing the low area side pressure setting value Pa and the pressures H1 and H2, the low area side pressure can be adjusted based on the calculation results with a simple calculation to keep the low area side pressure constant. By controlling the opening degree of the valve 8, as well as determining the number of water pumps 2 and controlling the rotation speed, it is possible to accurately control the terminal pressure.

この為複雑な制御装置、計算機あるいは高価な流量検出
器を用いなくても構成が簡単でコストも安価である。
Therefore, the configuration is simple and the cost is low without using a complicated control device, computer, or expensive flow rate detector.

尚本発明は、上記実施例では流体を制御するものについ
て説明したがこのようなものに限定されることなくたと
えば気体の制御にも応用出来る。
Although the present invention has been described in the above embodiments for controlling fluid, it is not limited to this and can also be applied to, for example, controlling gas.

〔発明の効果〕〔Effect of the invention〕

以上記述したように本発明は、複数台の揚水ポンプの吐
出側の圧力計を介して異なる揚程の需要家へ各吐出管か
ら流体を供給し、管路抵抗の低い吐出管に調整弁を設け
るとともにこの出口側に圧力計を設け、この圧力計の値
を調整弁により一定値に保ち、その一定値により揚水ポ
ンプ吐出圧力を各需要家の揚程で決定し、揚水ポンプ台
数及び回転数を制御することにより簡単な構成で各需要
家における送給圧力を等しくするように正確に制御、を
行うことが出来る末端圧力制御装置を提出することが出
来る。
As described above, the present invention supplies fluid from each discharge pipe to consumers with different pump heights via pressure gauges on the discharge side of a plurality of water pumps, and provides a regulating valve in the discharge pipe with low pipe resistance. At the same time, a pressure gauge is installed on the outlet side, and the value of this pressure gauge is kept at a constant value by a regulating valve.The discharge pressure of the pump is determined by the head of each customer based on this constant value, and the number of pumps and the rotation speed are controlled. By doing so, it is possible to provide a terminal pressure control device that can accurately control the supply pressure at each customer to equalize it with a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す末端圧力制御装置の構
成図、第2図は第1図の動作を示す説明図である。 1・・・ポンプ吸込槽、   2・・・揚水ポンプ3・
・・揚水ポンプ吐出弁、4・・・供給配管5・・・制御
装置、     6・・・流量計7・・・圧力計、  
    8・・・低地側圧力供給弁9・・・高地側供給
弁、10・・・低地側供給弁11・・・高地側圧力調整
弁、12・・・回転数制御部13・・・圧力制御部、1
4・・・圧力−回転数変換部」5・・・圧力分配部、1
6・・・圧力制御部17・・・演算部、       
18・・・末端圧力制御装置19・・・圧力計2,20
・・・回転数計代理人 弁理士 則 近 憲 佑(ほか
1名)第1図
FIG. 1 is a configuration diagram of a terminal pressure control device showing one embodiment of the present invention, and FIG. 2 is an explanatory diagram showing the operation of FIG. 1. 1... Pump suction tank, 2... Lifting pump 3.
... Lifting pump discharge valve, 4 ... Supply piping 5 ... Control device, 6 ... Flow meter 7 ... Pressure gauge,
8...Lowland side pressure supply valve 9...Highland side supply valve 10...Lowland side supply valve 11...Highland side pressure regulating valve 12...Rotation speed control section 13...Pressure control Part 1
4...Pressure-speed converter" 5...Pressure distribution part, 1
6... Pressure control section 17... Calculation section,
18... Terminal pressure control device 19... Pressure gauges 2, 20
...Revolution counter agent Patent attorney Noriyuki Chika (and 1 other person) Figure 1

Claims (1)

【特許請求の範囲】[Claims] 互に所要揚程の異なる高地側及び低地側の地区に揚水す
べく並列に接続された揚水ポンプと、これらの揚水ポン
プにそれぞれ直列に接続された揚水ポンプ吐出弁と、こ
れらの揚水ポンプ吐出弁の吐出側を合流して送水する供
給配管と、この供給配管から分岐された低地側の送水圧
力を調整する低圧側圧力調整弁と、この低圧側圧力調整
弁によって調整された低地側の送水圧力を計測する第1
の圧力計と、前記低圧側圧力調整弁によって圧力調整さ
れた送水を低地側に分散して供給する低地側供給弁と、
前記低圧側圧力調整弁の揚水ポンプ側から分岐して取り
出された高地側の送水を分散して供給する高地側供給弁
とからなる末端圧力制御装置に於て、前記供給配管部の
送水圧力を計測する第2の圧力計と、前記第1の圧力計
からの圧力信号及び予め整定された圧力目標値から偏差
を検出して前記低圧側圧力調整弁に圧力偏差信号を出力
する圧力制御部と、前記揚水ポンプに付属した回転数計
から出力された回転数及び予め整定された回転数目標値
から偏差を検出して前記揚水ポンプに回転数偏差信号を
出力する回転数制御部と、予め入力されている前記揚水
ポンプの流量−揚程特性及び前記供給配管の配管抵抗特
性から前記圧力目標値及び送水圧力目標値を出力する演
算部と、この演算部からの送水圧力目標値及び前記第2
の圧力計からの供給配管圧力信号とによって送水圧力偏
差信号を出力する圧力制御部と、この圧力制御部からの
送水圧力偏差信号及び予め整定された前記揚水ポンプの
流量−揚程特性から圧力分配値を出力する圧力分配部と
、この圧力分配部からの圧力分配値を前記回転数偏差信
号に変換する圧力−回転数変換部とを具備してなる末端
圧力制御装置。
Lifting pumps connected in parallel to pump water to highland and lowland areas with different required lifting heads, lifting pump discharge valves connected in series to each of these pumps, and these pump discharge valves. A supply pipe that joins the discharge side and sends water, a low-pressure side pressure regulation valve that branches off from this supply pipe and adjusts the water supply pressure on the lowland side, and a water supply pressure on the lowland side that is adjusted by this low-pressure side pressure regulation valve. First thing to measure
a pressure gauge, and a lowland side supply valve that distributes and supplies water whose pressure is regulated by the low pressure side pressure regulating valve to the lowland side;
In a terminal pressure control device comprising a highland side supply valve that branches off from the water pump side of the low pressure side pressure regulating valve and supplies water to the highland side taken out in a distributed manner, the water supply pressure of the supply piping section is controlled. a second pressure gauge to measure; a pressure control unit that detects a deviation from the pressure signal from the first pressure gauge and a preset pressure target value and outputs a pressure deviation signal to the low pressure side pressure regulating valve; , a rotation speed control unit that detects a deviation from the rotation speed output from a rotation speed meter attached to the lift pump and a rotation speed target value set in advance and outputs a rotation speed deviation signal to the lift pump; a calculation unit that outputs the pressure target value and the water supply pressure target value from the flow rate-head characteristic of the water pump and the piping resistance characteristic of the supply piping;
a pressure control unit that outputs a water supply pressure deviation signal based on the supply piping pressure signal from the pressure gauge; and a pressure distribution value based on the water supply pressure deviation signal from the pressure control unit and the preset flow rate-head characteristic of the water pump. A terminal pressure control device comprising: a pressure distribution section that outputs a pressure distribution value; and a pressure-speed conversion section that converts a pressure distribution value from the pressure distribution section into the rotation speed deviation signal.
JP14333784A 1984-07-12 1984-07-12 Terminal pressure controller Pending JPS6123223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14333784A JPS6123223A (en) 1984-07-12 1984-07-12 Terminal pressure controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14333784A JPS6123223A (en) 1984-07-12 1984-07-12 Terminal pressure controller

Publications (1)

Publication Number Publication Date
JPS6123223A true JPS6123223A (en) 1986-01-31

Family

ID=15336433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14333784A Pending JPS6123223A (en) 1984-07-12 1984-07-12 Terminal pressure controller

Country Status (1)

Country Link
JP (1) JPS6123223A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08105629A (en) * 1995-10-18 1996-04-23 Rinnai Corp Cooking device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08105629A (en) * 1995-10-18 1996-04-23 Rinnai Corp Cooking device

Similar Documents

Publication Publication Date Title
JP5564043B2 (en) Method for controlling the gas flow rate between multiple gas streams
US8951019B2 (en) Multiple gas turbine forwarding system
EP0769624B1 (en) Method and apparatus for load balancing among multiple compressors
US4464720A (en) Centrifugal compressor surge control system
RU2084704C1 (en) Method for adjustment of compressor station
RU2168071C2 (en) Method of measuring distance between working point of turbo-compressor and its surging boundary (versions) and device for determination of position of working point of turbo-compressor relative to its surging boundary (versions)
US6234759B1 (en) Method for regulating a fluid pressure
CN111412132A (en) Control method of water feed pump system and water feed pump system
JPH01285698A (en) Adjusting method avoiding surge of turbocompressor by blow-off
JPS6123223A (en) Terminal pressure controller
JP3183383B2 (en) Water supply control method in multi-story water supply piping system
JPH0612116B2 (en) Variable speed water supply device
JP3793885B2 (en) Estimated constant pressure controller for pump
JP2000154562A (en) Control of feed water amount in multistory water supply piping system and controller therefor
JPS6138300A (en) Liquefied gas vaporizer
JP5194969B2 (en) Fluid dispensing device
US4271673A (en) Steam turbine plant
JPH0324591B2 (en)
JPS58179706A (en) Flow controller for feedwater
JPS6149519B2 (en)
JPS5965319A (en) Control method for fluid pressure
JP2765021B2 (en) Water distribution control method
JPS6384751A (en) Method for detecting clogging of spray nozzle for continuous casting
CN116378167A (en) Circulation loop converging and merging system among multiple buildings in park and control method thereof
JPS58221414A (en) Constant controlling method of supposed terminal pressure of piping network