JPS6123212B2 - - Google Patents

Info

Publication number
JPS6123212B2
JPS6123212B2 JP52126029A JP12602977A JPS6123212B2 JP S6123212 B2 JPS6123212 B2 JP S6123212B2 JP 52126029 A JP52126029 A JP 52126029A JP 12602977 A JP12602977 A JP 12602977A JP S6123212 B2 JPS6123212 B2 JP S6123212B2
Authority
JP
Japan
Prior art keywords
weight
monomer
polymerization
stage
monomer mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52126029A
Other languages
Japanese (ja)
Other versions
JPS5458794A (en
Inventor
Hiroyasu Furukawa
Shoichi Matsumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP12602977A priority Critical patent/JPS5458794A/en
Publication of JPS5458794A publication Critical patent/JPS5458794A/en
Publication of JPS6123212B2 publication Critical patent/JPS6123212B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、残存単量体の極めて少ない高度のガ
ス遮断性を有する耐衝撃性高ニトリル系樹脂の工
業的に有利な製造方法に関する。 高割合のアクリロニトリル単位を含有する所謂
ニトリル樹脂は、優れたガス遮断性を有し食品、
医薬品、その他の分野で有用な包装材料として認
められている。特にゴムによつて補強されたアク
リロニトリルと芳香族ビニル化合物との共重合体
樹脂は、高い熱変形温度を有し、包装材料として
使用する時、熱充填、加熱殺菌が可能となり、更
にその有用性を増す。しかしながら包装材料とし
て使用するとき、その材料の安全、衛生性は極め
て重要である。特に材料中に残存するアクリロニ
トリル単量体は化学物質として反応性に富むこと
から内容物に移行した場合、その毒性が問題とな
る。従つて材料中に残存するアクリロニトリルは
厳しく規制する必要がある。このため通常では乳
化重合法によつて得た樹脂ラテツクスを減圧スト
リツピングしたり、あるいは樹脂粉末を洗浄した
りする方法に頼らざるを得ず、製造に於ける生産
性、経済性を著るしく低下させてしまうという問
題があつた。 アクリロニトリルと芳香族ビニル化合物の共重
合体製造に於ては両者のラジカル重合性の著しい
相違により、通常のラジカル重合方法では重合初
期と後期とで、生成する重合体の組成割合が異な
るため、得られた樹脂は不均質となり耐衝撃性や
熱安定性が低下させる。これはアクリロニトリル
と芳香族ビニル化合物を通常の方法で仕込み重合
を行つた場合、重合初期に於ては反応性に富む芳
香族ビニルが、仕込み組成より高い割合で含有す
る共重合体が得られ、一方重合後期に於ては、ポ
リアクリロニトリルが生成してくるためである。
このためアクリロニトリルと芳香族ビニル化合物
の高度に均一な組成を有する共重合体あるいはゴ
ム補強共重合体の製造方法に関し種々の提案がな
されている。例えば特公昭46−33574号はジエン
系ゴムの存在下でアクリロニトリルと芳香族ビニ
ル化合物の共重合を行うに当り還流温度を一定に
保つような速度で反応性に富む芳香族ビニル化合
物を添加し重合を行う方法、特公昭48−16347号
では重合系の単量体組成を重合の進行と併行して
ガスクロマトグラフによつて追跡し、組成を一定
に保つよう単量体を追加してあまり高くない収率
で均一組成の共重合体を得る方法、あるいは特公
昭49−1950号には反応速度の高い芳香族ビニル化
合物を重合発熱に応じて添加してゆく方法などの
記載がある。上記提案された方法に於てはいづれ
も予め所期の組成の共重合体が得られるように単
量体組成を調整して仕込み重合の進行を追跡しつ
つ重合系内の単量体組成を一定に保つように単量
体の一部を添加する事により、高度に均一な組成
を有する共重合体を得ている。しかしながらこれ
らの方法では、初期に重合系に大量な単量体が仕
込まれるため、重合発熱の除去が困難となる事、
重合の進行程度を常に追跡しなければならない
事、また進行に応じ単量体の添加を調整しなけれ
ばならない事、更に95%以上の高い重合体転化率
を達成しようとすると、単量体添加速度の調整は
一層困難となり共重合体の均一性が失なわれる事
などの問題があり、工業的規模で高い転化率で製
造するには重合操作や設備が複雑にならざるを得
ないという問題があつた。 本発明者らはこれらの問題点を解決し、安全、
衛生性の面でも信頼性のある該ニトリル樹脂を工
業的に有利に製造する方法に関し鋭意検討した結
果、最終的に95%以上の転化率にまで重合率を高
めるならば、特別な操作を施さずに公知の乾燥方
法により製品樹脂中の残存単量体を著しく軽減で
きることを見出しすでに特許出願に到つた。(特
願昭51−141475号)、(特公昭57−39252号参照)、
もし95%以下であると、特別な操作、例えばスト
リツピングなどのような経費を伴なう方法によら
ねば残存単量体を軽減することが出来ない。 又このような著しく高い転化率で反応を終了す
る方法に関しても従来は90%以上の転化率にあげ
ようとすると好ましからざるポリアクリロニトリ
ルが生成するといつた事実から、どうしても90%
以上の転化率は工業的に無理であり、そのため経
済的に負担の多い連続重合方法などが最近になり
考案されているにすぎない(特開昭51−56894、
及び特開昭51−92886)。 しかしながら、特願昭51−141475号においても
ボリマー製造工程上重大な問題が残つた。すなわ
ち、ポリマーラテツクスが極めて不安定であるこ
と及び大量のスケールが重合機中で発生すること
であつた。 然して本発明者らは引続きこれらの問題解決に
あたつた結果、少くとも第1段重合においてアル
キルアクリレートあるいはアルキルメタアクリレ
ートを添加することによりラテツクスが安定化
し、又、スケール発生も著しく抑えられポリマー
製造上何ら支障ないことが見出されたのである。 本発明による方法では先の特願昭51−141475号
(特公昭57−39252号参照)同様、残存単量体を著
しく少なくすることができると同時にパツチ方法
で著しく高い転化率で、ポリマー製造上何ら問題
なくなお且つ優れた耐衝撃性を保持した樹脂を、
前記の特公昭46−33574号あるいは特公昭48−
16347号に記載されたような重合性に富む単量体
を添加し、重合系中の単量体組成を一定に保つよ
うな操作上あるいは設備上の複雑さを伴う事な
く、単に重合系中の単量体量を低く保つことによ
り製造し得る方法を見出したものであり、経済性
の面からも工業的規模で実施する方法として重要
な意味を持つものである。本発明の方法は1,3
共役ジエン50重量%以上と、これと共重合可能な
少なくとも1種の単量体50重量%以下とからなる
ジエン系ゴムラテツクスの存在下で乳化重合法に
より (1) アクリロニトリル45乃至90重量%と少なくと
も1種の芳香族ビニル化合物30乃至8重量%及
び少くとも1種のアルキルアクリレートないし
アルキルメタアクリレート2乃至25重量%とか
らなる第1段目単量体混合物を、重合系中の単
量体混合物量が常に5重量%以下に保たれるよ
うな速度で連続的に添加しつつ重合を進行さ
せ、第1段単量体混合物添加終了後直ちに (2) アクリロニトリル0乃至50重量%と、少くと
も1種の芳香族ビニル化合物0乃至100重量%
及び少くとも1種アルキルアクリレートないし
アルキルメタアクリレート0乃至100重量%か
らなる第2段目単量体混合物5乃至25重量部
(第1段目単量体と第2段目単量体混合物との
全重量を100重量部として)を、重合系中の単
量体が5重量%を上回らないような速度で連続
的に添加し、第2段目添加終了時の転化率を90
%以上とし、更に最終的に95%以上の転化率で
重合を終了させ、実質的に樹脂中に5乃至25重
量%のジエン系ゴムを含ましめることにより、
目的とする残存単量体の極めて少ないニトリル
樹脂を工業的に有利に製造する事ができる。 ジエン系ゴムラテツクス存在下に第1段目単量
体混合物を連続的に添加するに当り、重合系中に
存在する単量体混合物量を重合系に対し常に5重
量%以下に保たれる速度を維持する事は、本願発
明の構成に於て極めて重要である。即ち常に重合
系中第1段目単量体混合物を連続的に添加する事
により、系内でのポリアクリロニトリルの生成を
防ぎながら重合することができる。 重合系中に存在する単量体混合物量は常に5重
量%以下に保ち、そのうちより低い量が好ましい
が、第1段単量体混合物添加終了時以後の単量体
は3重量%以下がより好ましい。又重合最終時の
単量体量は、1重量%以下がより好ましい。 ジエン系ゴムラテツクスは、50重量%以上の
1,3−ジエン単量体と、これと共重合可能な少
なくも1種の単量体とからなる乳化共重合ラテツ
クスである。1,3−ジエン単量体としてはブタ
ジエン、イソプレン、クロロプレンある。1,3
−ジエン単量体と共重合可能な単量体としては、
例えばスチレン、置換スチレン、α−メチルスチ
レン、置換α−メチルスチレン、アクリロニトリ
ル、メチル、エチル、プロピル、n−ブチルの如
きアルキル基を有するアルキルアクリレートある
いはアルキルメタクリレート等がある。ジビニル
ベンゼン、ポリエチレングリコールジメタクリレ
ートのような多官能性単量体を共重合し、ジエン
系ゴムに架橋構造を与えてもよい。ジエン系ゴム
の1,3−ジエン単量体含有量は50重量%以上で
なければならない。50重量%以下の場合、ゴムの
ガラス転移温度は高くなり、樹脂に対する補強効
果は低くなる。ジエン系ゴムラテツクスの平均粒
子径は透明性を必要な場合0.03乃至0.15μの範囲
が好ましいが、特に限定されない。 第1段目単量体のアクリロニトリル含有量は高
ければ樹脂のガス遮断性を高くする事ができる
が、加工性、熱安定性を低下させる。従つて45乃
至90重量%の範囲が適当である。芳香族ビニル化
合物としてはスチレン、置換スチレン、α−メチ
ルスチレン、置換α−メチルスチレンが挙げら
れ、アルキルアクリレートあるいはアルキルメタ
アクリレートとしてはメチル、エチル、プロピ
ル、ブチルの如き置換基を有するものが挙げられ
る。第1段目の重合終了時に於て重合系中に残存
する単量体は主に水中に溶解して存在する。第2
段目の単量体はこの残存単量体を更に減少させ、
高転化率を達成するために添加されるものであ
る。 第2段目の単量体混合物はアクリロニトリル0
乃至50重量%と芳香族ビニル0乃至100重量%及
び少くとも1種のアルキルアクリレートないしア
ルキルメタアクリレート0乃至100重量%からな
る。第2段目重合における単量体混合物添加終了
時の重合体転化率は90%以上にする必要がある。
また最終の転化率は95%以上とする必要がある。
特に97%以上の転化率のとき、製品中の残存単量
体の量を極めて微量とすることができる。 第2段目の単量体混合物は、第1段目単量体混
合物と第2段目単量体混合物の和を100重量部と
したとき5乃至25重量部の範囲にする必要があ
る。5重量部以下では95%以上の高転化率を達成
しようとするとき、水に溶解したアクリロニトリ
ルが重合し、ポリアクリロニトリルが生成するた
め重合系を不安定にする。一方25重量部以上の場
合芳香族ビニル化合物及び/又はアルキルアクリ
レートないしアルキルメタアクリレートに富む共
重合体が多く生成し、耐衝撃性が低下し好ましく
ない。 本方法に於て重合速度の調整は重要であるが重
合温度、重合開始剤の種類及び量を調整すること
によつて容易に調整できる。 重合に於て仕込まれるジエン系ゴムラテツクス
の量は耐衝撃性とガス遮断性のバランスにより決
定されるが、樹脂に5乃至25重量%含有されると
き良好な性質を与える。5重量%以下では耐衝撃
性が低下し、一方25重量%以上ではガス遮断性が
低下してしまう。重合は通常の乳化重合方法によ
つて行なわれ、水量は重合系中に仕込まれる全単
量体量を100重量部として、100重量部以上、好ま
しくは100乃至300重量部に範囲が重合熱の除去及
び経済性の面で有利である。 使用される乳化剤、重合開始剤などは、通常使
用されるものが用いられる。例えば、乳化剤とし
ては、ジアルキルスルホサクシネートソーダ塩、
アルキルベンゼンスルホン酸ソーダ、縮合ナフタ
リンスルホン酸ソーダなどがあげられる。重合開
始剤としては、ベンゾイルパーオキシド、クメン
ヒドロパーオキシド等の有機過酸化物やアゾビス
イソプチロニトリルのようなアゾ系開始剤あるい
は過硫酸塩などのものが挙げられる。 重合温度は特に制約はないが、工業的に実施す
る場合10℃乃至90℃の範囲で行うのが有利であ
る。 上記方法によつて得られた重合体は、無機塩あ
るいは酸によつて凝結させた後、所望であれば熱
処理をかけ、過水洗、乾燥して粉末状の樹脂を
得る。これらの工程の途中あるいは後に、顔料、
熱安定剤、滑剤のような添加物を配合することも
できる。 本発明の方法によつて得られる樹脂は、上記の
通常の後処理方法に於ても、樹脂中に残存する単
量体は極めて少ない。これは重合行程に於て系を
常に高い転化率に維持することにより重合体ラテ
ツクス粒子中の単量体は常に極めて少ない量とな
る。 本方法によつて得られたニトリル樹脂は、通常
の成形方法例えば押し出し成形、射出成形、吹込
み成形、カレンダー成形、圧縮成形などの方法に
よつて成形され、高度のガス遮断性を有する耐衝
撃性樹脂として包装材料、特に食品包装材料等と
して有用な素材を提供するものである。 次に実施例により本発明の方法を示す。 実施例 1 A ジエン系ゴムラテツクスの製造 1,3−ブタジエン 77重量部 スチレン 23 〃 トリエチレングリコールジメタクリレート
1.2 〃 t−ドデシルメルカプタン 0.25 〃 半硬化牛脂ソーダ石鹸 2.0 〃 水添ロジン酸カリウム 1.0 〃 縮合ナフタレンスルホン酸ソーダ
0.2 〃 エチレンジアミン四酢酸2ナトリウム
0.002 〃 硫酸第1鉄・7水塩 0.001 〃 ホルムアルデヒド亜硫酸ソーダ縮合物
0.1 〃 パラメンタンヒドロパーオキシド
0.1 〃 脱イオン水 200 〃 以上の主副原料物質を耐圧密閉重合容器に仕込
み、酸素を除去して撹拌しつつ40℃にて10時間重
合に行なつた。この結果単量体の重合転化率は98
%であり、ラテツクスの粒子径は電子顕微鏡で測
定した結果0.06μであつた。 B ニトリル樹脂の製造 ジエン系ゴムラテツクス
14重量部(固形分として) GAFAC RE−610(乳化剤) 1.5重量部 エチレンジアミン4酢酸2ナトリウム
0.05 〃 脱イオン水 200 〃 過硫酸カリウム 0.15 〃 以上の物質を重合容器に仕込み窒素気流下で撹
拌しながら60℃に保ち、下記の第1段目単量体を
6時間にかけて連続的に添加した。 アクリロニトリル 6.05重量部 スチレン 15.8 〃 メチルメタアクリレート 4.7 〃 n−ドデシルメルカプタン 2.0 〃 第1段目の単量体添加終了後直ちに下記第2段
目単量体を1時間かけて連続的に添加した。尚第
1段目添加終了時の重合体転化率は87%であつ
た。 スチレン 4.0重量部 メチルメタアクリレート 1.0 〃 第2段目単量体の添加終了時の転化率は93.6%
であり、第2段目単量体添加終了後約1時間その
まま重合を継続した。最終的な重合転化率は97.5
%であつた。 重合終了後重合体ラテツクスは50℃以下に冷却
され、塩化カルシウムにて凝結後90℃の熱処理を
かけ、過、水洗を行ない、乾燥し粉末状の樹脂
を得た。 重合中の重合系の未反応単量体の変化は一定時
間毎にラテツクスサンプル数c.c.を抜きとり、乾燥
してラテツクスの固形分重量を測定し、計算によ
つて算出した。結果は表1の通りである。
The present invention relates to an industrially advantageous method for producing impact-resistant high nitrile resins with extremely low residual monomer content and high gas barrier properties. So-called nitrile resins containing a high proportion of acrylonitrile units have excellent gas barrier properties and are used in foods,
Recognized as a useful packaging material in pharmaceuticals and other fields. In particular, rubber-reinforced copolymer resins of acrylonitrile and aromatic vinyl compounds have a high heat distortion temperature, and when used as packaging materials, they can be heat-filled and heat-sterilized, making them even more useful. increase. However, when used as a packaging material, the safety and hygiene of the material are extremely important. In particular, since the acrylonitrile monomer remaining in the material is highly reactive as a chemical substance, its toxicity becomes a problem if it migrates to the contents. Therefore, acrylonitrile remaining in the material must be strictly regulated. For this reason, it is usually necessary to rely on methods such as stripping the resin latex obtained by emulsion polymerization under reduced pressure or washing the resin powder, which significantly reduces productivity and economic efficiency in manufacturing. I had a problem with letting it happen. In the production of copolymers of acrylonitrile and aromatic vinyl compounds, due to the marked difference in radical polymerizability between the two, in ordinary radical polymerization methods, the composition ratio of the polymer produced differs between the early and late stages of polymerization, resulting in The resulting resin becomes non-uniform and has reduced impact resistance and thermal stability. This is because when acrylonitrile and an aromatic vinyl compound are charged and polymerized using a conventional method, a copolymer containing highly reactive aromatic vinyl in a higher proportion than the charged composition is obtained at the initial stage of polymerization. On the other hand, in the late stage of polymerization, polyacrylonitrile is produced.
For this reason, various proposals have been made regarding methods for producing copolymers of acrylonitrile and aromatic vinyl compounds having highly uniform compositions or rubber-reinforced copolymers. For example, Japanese Patent Publication No. 46-33574 discloses that when copolymerizing acrylonitrile and an aromatic vinyl compound in the presence of a diene rubber, a highly reactive aromatic vinyl compound is added at a rate that keeps the reflux temperature constant. In Japanese Patent Publication No. 48-16347, the monomer composition of the polymerization system is tracked using a gas chromatograph as the polymerization progresses, and monomers are added to keep the composition constant so that the composition is not too high. There is a method for obtaining a copolymer with a uniform composition in a high yield, or a method for adding an aromatic vinyl compound having a high reaction rate in accordance with the heat of polymerization in Japanese Patent Publication No. 49-1950. In all of the above proposed methods, the monomer composition is adjusted in advance so as to obtain a copolymer with the desired composition, and the monomer composition in the polymerization system is adjusted while monitoring the progress of the charging polymerization. By adding a portion of the monomer to keep it constant, a copolymer with a highly uniform composition is obtained. However, in these methods, a large amount of monomer is initially introduced into the polymerization system, making it difficult to remove the polymerization heat.
The degree of polymerization progress must be constantly monitored, the addition of monomer must be adjusted according to the progress, and monomer addition must be adjusted in order to achieve a high polymer conversion rate of 95% or more. There are problems such as the difficulty in adjusting the speed and the loss of uniformity of the copolymer, and the problem that the polymerization operation and equipment must be complicated to produce at a high conversion rate on an industrial scale. It was hot. The present inventors solved these problems and achieved safety and
As a result of intensive study on an industrially advantageous method for manufacturing this nitrile resin, which is reliable in terms of hygiene, we found that if we were to increase the polymerization rate to a conversion rate of 95% or higher, special operations would have to be carried out. They discovered that residual monomers in product resins can be significantly reduced by a known drying method, and have already filed a patent application. (Japanese Patent Application No. 51-141475), (Refer to Japanese Patent Application No. 57-39252)
If it is less than 95%, the residual monomer cannot be reduced without special operations, such as stripping or other expensive methods. In addition, regarding the method of finishing the reaction at such a significantly high conversion rate, conventionally it was said that attempting to raise the conversion rate to 90% or higher would result in the formation of undesirable polyacrylonitrile.
A conversion rate higher than that is industrially impossible, and therefore economically burdensome continuous polymerization methods have only recently been devised (Japanese Patent Laid-Open No. 51-56894,
and Japanese Patent Publication No. 51-92886). However, even in Japanese Patent Application No. 51-141475, serious problems remained in the polymer production process. That is, the polymer latex was extremely unstable and a large amount of scale was generated in the polymerization machine. However, the present inventors continued to solve these problems, and as a result, by adding alkyl acrylate or alkyl methacrylate at least in the first stage polymerization, the latex was stabilized, scale generation was significantly suppressed, and polymer production was improved. It was found that there was no problem. Similar to the previous Japanese Patent Application No. 51-141475 (see Japanese Patent Publication No. 57-39252), the method according to the present invention can significantly reduce the amount of residual monomer, and at the same time achieve a significantly high conversion rate using the patch method, which is useful for polymer production. A resin that has no problems and has excellent impact resistance.
The above-mentioned Special Publication No. 33574 or Special Publication No. 1973-
Simply add a highly polymerizable monomer as described in No. 16347 to the polymerization system without any operational or equipment complexity such as keeping the monomer composition constant in the polymerization system. The authors have discovered a method that can be produced by keeping the amount of monomers low, and this method has important significance as a method that can be implemented on an industrial scale from an economic standpoint. The method of the present invention is 1,3
(1) 45 to 90% by weight of acrylonitrile in the presence of a diene rubber latex consisting of 50% by weight or more of a conjugated diene and 50% by weight or less of at least one monomer copolymerizable with the diene rubber latex; A first stage monomer mixture consisting of 30 to 8% by weight of one type of aromatic vinyl compound and 2 to 25% by weight of at least one type of alkyl acrylate or alkyl methacrylate is added to the monomer mixture in the polymerization system. The polymerization is allowed to proceed while continuously adding at a rate such that the amount is always kept below 5% by weight, and immediately after the addition of the first stage monomer mixture, (2) 0 to 50% by weight of acrylonitrile is added at least. 0 to 100% by weight of one type of aromatic vinyl compound
and 5 to 25 parts by weight of a second stage monomer mixture consisting of 0 to 100% by weight of at least one alkyl acrylate or alkyl methacrylate (the mixture of the first stage monomer and the second stage monomer) (with a total weight of 100 parts by weight) was added continuously at a rate such that the monomer in the polymerization system did not exceed 5% by weight, and the conversion rate at the end of the second stage addition was 90%.
% or more, and furthermore, by finally completing the polymerization at a conversion rate of 95% or more, and substantially including 5 to 25% by weight of diene rubber in the resin,
The desired nitrile resin with extremely low residual monomer content can be advantageously produced industrially. When continuously adding the first-stage monomer mixture in the presence of diene rubber latex, the rate is such that the amount of the monomer mixture present in the polymerization system is always kept at 5% by weight or less based on the polymerization system. This is extremely important in the structure of the present invention. That is, by constantly adding the first-stage monomer mixture to the polymerization system, polymerization can be carried out while preventing the formation of polyacrylonitrile within the system. The amount of the monomer mixture present in the polymerization system is always kept at 5% by weight or less, the lower of which is preferred, but the amount of monomer after the addition of the first stage monomer mixture is preferably 3% by weight or less. preferable. Further, the monomer amount at the final stage of polymerization is more preferably 1% by weight or less. Diene rubber latex is an emulsion copolymerization latex consisting of 50% by weight or more of 1,3-diene monomer and at least one monomer copolymerizable with this. Examples of 1,3-diene monomers include butadiene, isoprene, and chloroprene. 1,3
- Monomers copolymerizable with diene monomers include:
Examples include styrene, substituted styrene, α-methylstyrene, substituted α-methylstyrene, acrylonitrile, alkyl acrylates or alkyl methacrylates having alkyl groups such as methyl, ethyl, propyl, and n-butyl. A crosslinked structure may be imparted to the diene rubber by copolymerizing a polyfunctional monomer such as divinylbenzene or polyethylene glycol dimethacrylate. The 1,3-diene monomer content of the diene rubber must be 50% by weight or more. When it is less than 50% by weight, the glass transition temperature of the rubber becomes high and the reinforcing effect on the resin becomes low. The average particle diameter of the diene rubber latex is preferably in the range of 0.03 to 0.15 μm if transparency is required, but is not particularly limited. If the acrylonitrile content of the first stage monomer is high, the gas barrier properties of the resin can be increased, but processability and thermal stability are reduced. Therefore, a range of 45 to 90% by weight is appropriate. Examples of aromatic vinyl compounds include styrene, substituted styrene, α-methylstyrene, and substituted α-methylstyrene, and examples of alkyl acrylates and alkyl methacrylates include those having substituents such as methyl, ethyl, propyl, and butyl. . The monomers remaining in the polymerization system at the end of the first stage polymerization mainly exist dissolved in water. Second
The monomer in the step further reduces this residual monomer,
It is added to achieve a high conversion rate. The second stage monomer mixture is acrylonitrile 0
50% to 50% by weight, 0 to 100% by weight of aromatic vinyl, and 0 to 100% by weight of at least one alkyl acrylate or alkyl methacrylate. The polymer conversion rate at the end of the addition of the monomer mixture in the second stage polymerization must be 90% or more.
In addition, the final conversion rate must be 95% or more.
Especially when the conversion rate is 97% or more, the amount of residual monomer in the product can be made extremely small. The second stage monomer mixture needs to be in the range of 5 to 25 parts by weight when the sum of the first stage monomer mixture and the second stage monomer mixture is 100 parts by weight. If the amount is less than 5 parts by weight, when attempting to achieve a high conversion rate of 95% or more, the acrylonitrile dissolved in water will polymerize to produce polyacrylonitrile, making the polymerization system unstable. On the other hand, if the amount is 25 parts by weight or more, a large amount of a copolymer rich in aromatic vinyl compounds and/or alkyl acrylates or alkyl methacrylates will be produced, resulting in a decrease in impact resistance, which is not preferable. Adjustment of the polymerization rate is important in this method, but it can be easily adjusted by adjusting the polymerization temperature and the type and amount of the polymerization initiator. The amount of diene rubber latex added during polymerization is determined by the balance between impact resistance and gas barrier properties, but good properties are imparted when the resin contains 5 to 25% by weight. If it is less than 5% by weight, the impact resistance will decrease, while if it is more than 25% by weight, the gas barrier properties will decrease. Polymerization is carried out by a conventional emulsion polymerization method, and the amount of water is 100 parts by weight or more, preferably 100 to 300 parts by weight, based on 100 parts by weight of the total amount of monomers charged in the polymerization system. It is advantageous in terms of removal and economy. Emulsifiers, polymerization initiators, and the like that are commonly used are used. For example, emulsifiers include dialkyl sulfosuccinate soda salts,
Examples include sodium alkylbenzenesulfonate and sodium condensed naphthalenesulfonate. Examples of the polymerization initiator include organic peroxides such as benzoyl peroxide and cumene hydroperoxide, azo initiators such as azobisisoputyronitrile, and persulfates. There are no particular restrictions on the polymerization temperature, but in industrial implementation it is advantageous to carry out the polymerization in the range of 10°C to 90°C. The polymer obtained by the above method is coagulated with an inorganic salt or acid, then subjected to heat treatment if desired, washed with water, and dried to obtain a powdered resin. During or after these steps, pigments,
Additives such as heat stabilizers and lubricants can also be blended. The resin obtained by the method of the present invention has very little monomer remaining in the resin even after the above-mentioned conventional post-treatment method. This is because the system is constantly maintained at a high conversion rate during the polymerization process, so that the amount of monomer in the polymer latex particles is always extremely small. The nitrile resin obtained by this method can be molded by conventional molding methods such as extrusion molding, injection molding, blow molding, calendar molding, compression molding, etc., and has high gas barrier properties and impact resistance. The present invention provides a material useful as a plastic resin for packaging materials, especially food packaging materials. The following examples illustrate the method of the invention. Example 1 A Production of diene rubber latex 1,3-butadiene 77 parts by weight Styrene 23 Triethylene glycol dimethacrylate
1.2 〃 t-dodecyl mercaptan 0.25 〃 Semi-hardened beef tallow soda soap 2.0 〃 Hydrogenated potassium rosinate 1.0 〃 Condensed sodium naphthalene sulfonate
0.2 〃 Ethylenediaminetetraacetic acid disodium
0.002 〃 Ferrous sulfate heptahydrate 0.001 〃 Formaldehyde sodium sulfite condensate
0.1 〃 Paramenthane hydroperoxide
0.1 〃 Deionized water 200 〃 The above main and auxiliary raw materials were charged into a pressure-tight sealed polymerization vessel, and polymerization was carried out at 40°C for 10 hours while stirring and removing oxygen. As a result, the polymerization conversion rate of the monomer was 98
%, and the particle size of the latex was 0.06μ as measured by an electron microscope. B Production of nitrile resin Diene rubber latex
14 parts by weight (as solid content) GAFAC RE-610 (emulsifier) 1.5 parts by weight Disodium ethylenediaminetetraacetate
0.05 〃 Deionized water 200 〃 Potassium persulfate 0.15 〃 The above substances were placed in a polymerization container and kept at 60°C while stirring under a nitrogen stream, and the following first stage monomer was continuously added over 6 hours. . Acrylonitrile 6.05 parts by weight Styrene 15.8 Methyl methacrylate 4.7 N-dodecyl mercaptan 2.0 Immediately after the addition of the first stage monomers, the following second stage monomers were continuously added over one hour. The polymer conversion rate at the end of the first stage addition was 87%. Styrene 4.0 parts by weight Methyl methacrylate 1.0 〃 Conversion rate at the end of second stage monomer addition was 93.6%
The polymerization was continued for about 1 hour after the second stage monomer addition was completed. Final polymerization conversion rate is 97.5
It was %. After completion of polymerization, the polymer latex was cooled to below 50°C, coagulated with calcium chloride, heat-treated at 90°C, filtered, washed with water, and dried to obtain a powdered resin. Changes in unreacted monomers in the polymerization system during polymerization were calculated by taking several cc of latex samples at regular intervals, drying them, and measuring the solid weight of the latex. The results are shown in Table 1.

【表】 (但し重量部はその時点の重合系総量100重量
部に対して) 乾燥した樹脂粉末中に含有される未反応アクリ
ロニトリルは8ppmであつた。この樹脂粉末を加
熱ロールにて混練し、後に圧縮成形して0.3mmの
厚みのシートと成し、その物性測定サンプルとし
た。平行光線透過率及び曇度(JIS−K6714)黄
色度(JIS−K7103)は積分球式光線透過率測定
装置及び測色色差計を用いて測定した結果、平行
光線透過率90.2%、曇度0.7%、そして黄色度は
7.8であつた。耐衝撃強度は、試験片を0.9mmの孔
を有する支持枠に自由に置き、500gの荷重をか
けた0.9mm径の鋼球を落下させ、この時破壊高さ
をデイクソン・モード法により統計処理し、平均
高さを出した。この試験の結果は、18.7cmであつ
た。ガス透過率(ASTM−D−1434)は20℃に
於て測定した結果0.31×10-11c.c..cm/cm2seccmHg
であつた。 実施例 2 第1段目単量体及び第2段目単量体の組成及び
添加時間を次に示す通りにしたとと、ジエン系ゴ
ムラテツクスを10重量部にし、又、n−ドデシル
メルカプタン2.0重量部を初期に一括に加えた以
外は、実施例1と同様の方法で重合を行い、樹脂
粉末を得た。 第1段目単量体 5時間連続添加 アクリロニトリル 63.4重量部 スチレン 16.6 〃 メチルメタアクリレート 5.0 〃 第2段目単量体 1時間連続添加 スチレン 4.0重量部 アクリロニトリル 1.0 〃 第1段目終了時の単量体の転化率は88.5%であ
つた。第2段目添加終了時の転化率は93.5%であ
り、最終の転化率は97.3%であつた。 重合中の未反応単量体量の経時変化を表2に、
物性を表3に示した。 比較例 1 第1段目単量体の添加時間を3時間とした以外
は実施例1と同様の方法で重合を行い、樹脂粉末
を得た。 重合中の未反応単量体量の経時変化を表2に物
性を表3に示した。 第1段目添加終了時の転化率は72.5%、最終の
転化率は93.5%であつた。但し重合2時間には、
系中の重合系に対し5重量%以上の未反応単量体
が残り、得られた生成物の透過率、耐衝撃性は低
く、製品樹脂中のアクリロニトリル単量体は
560ppmも存在していた。 比較例 2 実施例1に於ける第1段目の重合を6時間に亘
つて行ない、第1段目単量体添加終了後直ちにハ
イドロキノンを加えて重合を停止した。重合系中
の単量体量の経時変化は、実施例1と同様であ
り、また重合終了時の重合体転化率は85%であつ
た。 樹脂の性質は表3に示した通り、実施例1によ
つて得られた樹脂と変らないが、樹脂に含有され
るアクリロニトリルは860ppmと極めて高かつ
た。 比較例 3 実施例2に於ける第1段目重合をメチルメタア
クリレートを添加せず 第1段目単量体 5時間連続添加 アクリロニトリル 67.5重量部 スチレン 17.5 〃 にて 5時間に亘つて行ない 第2段目単量体 1時間連続添加 スチレン 4.0重量部 アクリロニトリル 1.0 〃 にて行なつ
た。 第2段目単量体添加終了時の転化率は93.6%で
あつたが多量のスケールが発生し、得られたラテ
ツクスも、添加終了後3時間目に於て重合系は安
定性を失ない凝結した。重合体未反応単量体の経
時変化及び物性は表2と表3に示したが、樹脂中
の残存単量体は430ppmと極めて多かつた。
[Table] (However, parts by weight are based on 100 parts by weight of the total polymerization system at that time) Unreacted acrylonitrile contained in the dried resin powder was 8 ppm. This resin powder was kneaded with a heating roll and then compression molded to form a sheet with a thickness of 0.3 mm, which was used as a sample for measuring the physical properties. Parallel light transmittance and haze (JIS-K6714) Yellowness (JIS-K7103) were measured using an integrating sphere light transmittance measuring device and a colorimeter, and the parallel light transmittance was 90.2% and haze was 0.7. %, and the yellowness is
It was 7.8. Impact resistance strength was measured by placing the test piece freely on a support frame with a 0.9 mm hole, dropping a 0.9 mm diameter steel ball with a load of 500 g, and calculating the fracture height using the Dickson mode method. and calculated the average height. The result of this test was 18.7 cm. Gas permeability (ASTM-D-1434) was measured at 20°C and was 0.31×10 -11 cc. cm/cm 2 seccmHg
It was hot. Example 2 The composition and addition time of the first stage monomer and second stage monomer were as shown below, the diene rubber latex was 10 parts by weight, and n-dodecyl mercaptan was 2.0 parts by weight. Polymerization was carried out in the same manner as in Example 1, except that 50% of the polymer was added in one batch at the beginning to obtain a resin powder. 1st stage monomer Continuous addition for 5 hours Acrylonitrile 63.4 parts by weight Styrene 16.6 〃 Methyl methacrylate 5.0 〃 2nd stage monomer Continuous addition for 1 hour Styrene 4.0 parts by weight Acrylonitrile 1.0 〃 Monotony at the end of 1st stage The conversion rate was 88.5%. The conversion rate at the end of the second stage addition was 93.5%, and the final conversion rate was 97.3%. Table 2 shows the change over time in the amount of unreacted monomer during polymerization.
The physical properties are shown in Table 3. Comparative Example 1 Polymerization was carried out in the same manner as in Example 1 except that the addition time of the first stage monomer was changed to 3 hours to obtain a resin powder. Table 2 shows the change over time in the amount of unreacted monomer during polymerization, and Table 3 shows the physical properties. The conversion rate at the end of the first stage addition was 72.5%, and the final conversion rate was 93.5%. However, at 2 hours of polymerization,
More than 5% by weight of unreacted monomer remains with respect to the polymerization system in the system, and the resulting product has low transmittance and impact resistance, and the acrylonitrile monomer in the product resin is
560ppm was also present. Comparative Example 2 The first stage polymerization in Example 1 was carried out for 6 hours, and immediately after the first stage monomer addition was completed, hydroquinone was added to stop the polymerization. The change over time in the amount of monomer in the polymerization system was the same as in Example 1, and the polymer conversion rate at the end of the polymerization was 85%. As shown in Table 3, the properties of the resin were the same as those obtained in Example 1, but the acrylonitrile content contained in the resin was extremely high at 860 ppm. Comparative Example 3 The first stage polymerization in Example 2 was carried out for 5 hours without adding methyl methacrylate, by continuously adding the first stage monomer for 5 hours, and using 67.5 parts by weight of acrylonitrile and 17.5 parts by weight of styrene. Stage monomer: Continuous addition for 1 hour Styrene: 4.0 parts by weight Acrylonitrile: 1.0%. The conversion rate at the end of the second stage monomer addition was 93.6%, but a large amount of scale was generated, and the polymerization system did not lose stability 3 hours after the end of the addition. Congealed. Changes over time and physical properties of unreacted monomers in the polymer are shown in Tables 2 and 3, and the residual monomers in the resin were extremely large at 430 ppm.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 1,3共役のジエン50重量%以上と、これと
共重合可能な少なくとも1種の単量体50重量%以
下とからなるジエン系ゴムラテツクスの存在下
で、乳化重合法により (1) アクリロニトリル45乃至90重量%と少なくと
も1種の芳香族ビニル化合物30乃至8重量%及
び少くとも1種のアルキルアクリレートないし
アルキルメタアクリレート2乃至25重量%とか
らなる第1段目単量体混合物95乃至75重量部
(第1段第2段単量体混合物合計100重量部とし
て)を、重合系中の単量体混合物量が重合系に
対し常に5重量%以下に保たれるような速度で
連続的に添加しつつ重合を進行させ、第1段目
単量体混合物添加終了後直ちに、 (2) アクリロニトリル0乃至50重量%と、少くと
も1種の芳香族ビニル化合物0乃至100重量%
及び少くとも1種のアルキルアクリレートない
しアルキルメタアクリレート0乃至100重量%
からなる第2段目単量体混合物5乃至25重量部
(第1段目単量体と第2段目単量体混合物との
全重量を100重量部として)を、重合系中の単
量体混合物量が5重量%を上回らないような速
度で連続的に添加し、第2段目添加終了時の転
化率を90%以上とし、更に最終的に95%以上の
転化率で重合を終了させ、実質的に樹脂中に5
乃至25重量%のジエン系ゴムを含有せしめるこ
とを特徴とする残存単量体の極めて少ない高度
のガス遮断性を有する耐衝撃性高ニトリル樹脂
の製法。 2 ジエン系ゴムの1,3ジエン単量体がブタジ
エン、イソプレン又はクロロプレンであり、これ
と共重合可能な単量体がスチレン、置換スチレ
ン、α−メチルスチレン、置換α−メチルスチレ
ン、アクリロニトリル、又はアルキルアクリレー
ト又はアルキルメタアクリレートのうちの1種又
は2種以上の単量体混合物である特許請求の範囲
第1項記載の高ニトリル樹脂の製法。 3 第1段目第2段目単量体混合物の芳香族ビニ
ル化合物がスチレン、置換スチレン、α−メチル
スチレン又は置換α−メチルスチレンの1種又は
2種以上の混合物である特許請求の範囲第1項記
載の高ニトリル樹脂の製法。 4 第1段目、第2段目単量体混合物のアルキル
アクリレートあるいは、アルキルメタアクリレー
トがメチル、エチル、プロピル、ブチル、置換基
であるものの1種又は2種以上の混合物である特
許請求の範囲第1項記載の高ニトリル樹脂の製
法。 5 最終重合転化率が95%以上である特許請求の
範囲第1項記載の高ニトリル樹脂の製法。 6 重合系中の残存単量体が重合系に対し、第1
段単量体混合物添加終了時以後は5重量%以下で
ある特許請求の範囲第1項記載の高ニトリル樹脂
の製法。 7 重合系中の残存単量体が重合系に対し、第2
段単量体混合物添加終了後、重合終了時、2重量
%以下である特許請求の範囲第1項記載の高ニト
リル樹脂の製法。
[Scope of Claims] 1 Emulsion polymerization method in the presence of a diene rubber latex consisting of 50% by weight or more of a 1,3-conjugated diene and 50% by weight or less of at least one monomer copolymerizable with the diene. (1) A first stage monomer consisting of 45 to 90% by weight of acrylonitrile, 30 to 8% by weight of at least one aromatic vinyl compound, and 2 to 25% by weight of at least one alkyl acrylate or alkyl methacrylate. 95 to 75 parts by weight of the monomer mixture (assuming a total of 100 parts by weight of the first and second stage monomer mixtures) in such a way that the amount of the monomer mixture in the polymerization system is always kept at 5% by weight or less based on the polymerization system. (2) 0 to 50% by weight of acrylonitrile and 0 to 100% by weight of at least one aromatic vinyl compound. weight%
and at least one alkyl acrylate or alkyl methacrylate 0 to 100% by weight
5 to 25 parts by weight of the second-stage monomer mixture (assuming the total weight of the first-stage monomer and second-stage monomer mixture is 100 parts by weight), The polymerization is continuously added at a rate such that the amount of the polymer mixture does not exceed 5% by weight, and the conversion rate at the end of the second stage addition is 90% or more, and finally the polymerization is completed at a conversion rate of 95% or more. 5 in the resin.
A method for producing a high impact resistant nitrile resin having extremely low residual monomer content and having a high degree of gas barrier property, characterized by containing from 25% by weight of diene rubber. 2 The 1,3 diene monomer of the diene rubber is butadiene, isoprene or chloroprene, and the monomer copolymerizable with this is styrene, substituted styrene, α-methylstyrene, substituted α-methylstyrene, acrylonitrile, or The method for producing a high nitrile resin according to claim 1, which is a monomer mixture of one or more of alkyl acrylates and alkyl methacrylates. 3. Claim No. 3, wherein the aromatic vinyl compound of the monomer mixture in the first stage and second stage is one or a mixture of two or more of styrene, substituted styrene, α-methylstyrene, or substituted α-methylstyrene. A method for producing a high nitrile resin according to item 1. 4 Claims in which the alkyl acrylate or alkyl methacrylate of the monomer mixture in the first and second stages is one or a mixture of two or more of methyl, ethyl, propyl, butyl, or substituents. A method for producing a high nitrile resin according to item 1. 5. The method for producing a high nitrile resin according to claim 1, wherein the final polymerization conversion rate is 95% or more. 6 Residual monomers in the polymerization system may cause the first
The method for producing a high nitrile resin according to claim 1, wherein the amount is 5% by weight or less after the addition of the step monomer mixture is completed. 7 Residual monomers in the polymerization system may cause secondary damage to the polymerization system.
2. The method for producing a high nitrile resin according to claim 1, wherein the amount is 2% by weight or less at the end of polymerization after addition of the stage monomer mixture.
JP12602977A 1977-10-19 1977-10-19 Preparation of high-nitrile resin Granted JPS5458794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12602977A JPS5458794A (en) 1977-10-19 1977-10-19 Preparation of high-nitrile resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12602977A JPS5458794A (en) 1977-10-19 1977-10-19 Preparation of high-nitrile resin

Publications (2)

Publication Number Publication Date
JPS5458794A JPS5458794A (en) 1979-05-11
JPS6123212B2 true JPS6123212B2 (en) 1986-06-04

Family

ID=14924919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12602977A Granted JPS5458794A (en) 1977-10-19 1977-10-19 Preparation of high-nitrile resin

Country Status (1)

Country Link
JP (1) JPS5458794A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4504605A (en) * 1982-12-20 1985-03-12 The Standard Oil Company Film-forming olefinic nitrile polymer latex and method of preparing same
US5618901A (en) * 1993-11-10 1997-04-08 The Standard Oil Company Process for making a high nitrile multipolymer prepared from acrylonitrile and olefinically unsaturated monomers
EP1184415A3 (en) * 2000-08-30 2003-08-06 JSR Corporation Conjugated diene-based rubber, oil extended rubber and rubber composition containing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106556A (en) * 1973-12-12 1974-10-09
JPS5243897A (en) * 1975-10-03 1977-04-06 Kanegafuchi Chem Ind Co Ltd Process for preparing transparent resin compositions having gas barrie r properties

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106556A (en) * 1973-12-12 1974-10-09
JPS5243897A (en) * 1975-10-03 1977-04-06 Kanegafuchi Chem Ind Co Ltd Process for preparing transparent resin compositions having gas barrie r properties

Also Published As

Publication number Publication date
JPS5458794A (en) 1979-05-11

Similar Documents

Publication Publication Date Title
KR101126016B1 (en) Method for preparing graft rubber latex having low residual monomer content
US2973337A (en) Process for the polymerization of unsaturated compounds, using a borazane catalyst
KR960002301B1 (en) Manufacture method of thermoplastic resin with excellent resistance to hcfc
US4415708A (en) Three stage graft polymerization process for preparing nitrile based resins
US3742092A (en) Methacrylonitrile polymerization process
US4478982A (en) High nitrile content based resin and method of producing the same
JPS6243450B2 (en)
JPS6123212B2 (en)
US2847404A (en) High stability latices
WO2002004559A1 (en) Transparent impact-resistant thermoplastic resin composition
US3803265A (en) Manufacture of impact-resistant methyl methacrylate polymers
US3179613A (en) Metal salts of oligomeric styrene polymer in olefinic emulsion polymerization process
KR101737183B1 (en) Method for preparing abs graft copolymer
JPS6214566B2 (en)
KR100360947B1 (en) Heat Resistant Thermoplastic Resin Composition and Process for Preparing thereof
US4079101A (en) Diolefin polymerization process in the presence of seed polymers
KR20170062792A (en) Method for preparing high temperature copolymer
US3058960A (en) Copolymers of 1, 1, 2, 3-tetrachlorobutadiene-1, 3
JPS58120623A (en) Preparation of thermoplastic resin
JPS6246564B2 (en)
US4322510A (en) Nitrile barrier resins and process for their manufacture
US3954683A (en) 1,2,2,2-Tetrachlorethyl acrylate and methacrylate polymers and copolymers
JPS6023693B2 (en) Method for producing impact resistant polystyrene composition
KR100468475B1 (en) Method of preparing thermoplastic nitrile resin
JP2023133957A (en) Acrylic multilayer structure polymer mixed powder and method for producing the same, and methacrylic resin composition and resin molding containing acrylic multilayer structure polymer mixed powder