JPS61231887A - Speed controller of motor - Google Patents

Speed controller of motor

Info

Publication number
JPS61231887A
JPS61231887A JP60070992A JP7099285A JPS61231887A JP S61231887 A JPS61231887 A JP S61231887A JP 60070992 A JP60070992 A JP 60070992A JP 7099285 A JP7099285 A JP 7099285A JP S61231887 A JPS61231887 A JP S61231887A
Authority
JP
Japan
Prior art keywords
speed
current
command
electric motor
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60070992A
Other languages
Japanese (ja)
Inventor
Tsutomu Omae
大前 力
Toshihiko Matsuda
敏彦 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60070992A priority Critical patent/JPS61231887A/en
Publication of JPS61231887A publication Critical patent/JPS61231887A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/2855Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

PURPOSE:To reduce the variation in the speed at a load abruptly varying time by calculating a load torque from the variation in a speed at the prescribed period and the integrated value of the torque generated in a motor in the period, and adding it to the torque command of the speed control calculating result. CONSTITUTION:A microcomputer 2 inputs the outputs of a speed command generator 1 at every prescribed period Ts and a counter 10 for counting the output of an encoder 7 to calculate an ASR of controlling the speed. The microcomputer 2 further inputs the value of a current detector 8 at every prescribed period Tc to perform a current control calculation ACR, thereby obtaining the first current command Ir1. The variation in the speed during the period Ts is subtracted from the value added with the current feedback value over the period Ts to obtain the second current command Ir2. The second current commands Ir1, Ir2 are added, and output of a gate pulse generator 3.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は電動機の速度をディジタル制御するに好適な制
御装置に係り、特に負荷急変時の制御応答を向上するに
好適な電動機の速度制御装置に関ニする。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a control device suitable for digitally controlling the speed of an electric motor, and particularly to a speed control device of an electric motor suitable for improving control response during sudden changes in load. get involved.

−〔発明の背景〕 圧延機駆動などに用いられる電動機の速度制御装置では
、負荷の急激な変化に対する速度変動をできるだけ小さ
くすることが望まれている。この点に対処する方法とし
て、電動機の速度と電流を用いて負荷トルク相当の推定
値を状態観測器で得て制御する方法が特開昭55−16
2894号公報に述べられている。この方法は、モデル
の速度と実際の速度の偏差から、負荷トルクの推定値を
徐々に推定しており、定常状態において比較的圧しい推
定値が得られるという良い効果がある。しかし、負荷が
振動成分をもっており、その振動周一が比公的早い場合
には、状態観測器に遅れがあるので制御系の安定をとる
のが難かしくなる。また、最近では速度制御回路として
マイクロピンピユータのようなディジタル演算回路を用
いることが多くなっており、この場合には閉ループによ
る状態観測器を用いると処理が複雑になる。
- [Background of the Invention] In speed control devices for electric motors used to drive rolling mills, it is desired to minimize speed fluctuations in response to rapid changes in load. As a method to deal with this problem, a method was proposed in JP-A-55-16 in which an estimated value equivalent to the load torque is obtained using a state observation device using the speed and current of the motor.
It is described in Publication No. 2894. This method gradually estimates the estimated value of the load torque from the deviation between the model speed and the actual speed, and has the advantage that a relatively accurate estimated value can be obtained in a steady state. However, if the load has a vibration component and the frequency of vibration is relatively fast, it becomes difficult to stabilize the control system because there is a delay in the state observer. Furthermore, recently, digital arithmetic circuits such as micropin computers have been increasingly used as speed control circuits, and in this case, using a closed-loop state observer would complicate processing.

〔発明の目的〕[Purpose of the invention]

)発明の目的は、電動機の速度をディジタル制御する場
合でも、負荷急変時の速度変動を出来るだけ小さくする
ような電動機の速度制御装置を提供するにある。
) An object of the invention is to provide a speed control device for an electric motor that minimizes speed fluctuations when the load suddenly changes even when the speed of the electric motor is digitally controlled.

〔発明の概要〕[Summary of the invention]

マイクロコンピュータを用いた電動機の速度制御装置で
は、一定周期毎に電動機の速度を検出し、速度制御演算
を行う。本発明はこの一定周期毎の速度検出に着目し、
前の周期での検出値との変化分及びその周期内における
電動機発生トルクの積分値とから負荷トルクを演算し、
その値を速度制御演算結果の第1のトルク場合に加えて
電動機のトルクを制御するようにしたものであ7・、こ
のようにすると、最新の負荷トルクを各周期毎に演算で
きるので、負荷急変時にも応答よく制御できる。
A motor speed control device using a microcomputer detects the speed of the motor at regular intervals and performs speed control calculations. The present invention focuses on this speed detection at regular intervals,
Calculate the load torque from the change from the detected value in the previous cycle and the integral value of the motor generated torque within that cycle,
This value is used to control the motor torque in addition to the first torque of the speed control calculation result7. In this way, the latest load torque can be calculated for each cycle, so the load It can be controlled with good response even in sudden changes.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図により説明する。第1
図は直流電動機の速度制御装置に本発明を適用した例で
ある。第1図の実施例は速度指令発生回路1.マイクロ
コンピュータ2.ゲートパルス発生回路3.交流電源4
.サイリスタ変換器5、直流電動機6.エンコーダ7、
電流検出器8゜A/D変換器9.カウンタ10から構成
される。
An embodiment of the present invention will be described below with reference to FIG. 1st
The figure shows an example in which the present invention is applied to a speed control device for a DC motor. The embodiment shown in FIG. 1 is a speed command generation circuit 1. Microcomputer 2. Gate pulse generation circuit 3. AC power supply 4
.. Thyristor converter 5, DC motor 6. encoder 7,
Current detector 8° A/D converter 9. It is composed of a counter 10.

マイクロコンピュータ2は第2図に示した周期T、毎に
速度指令発生回路1とカウンタ10の値を取り込み速度
制御演算ASRを行い、また、周期T。毎に電流検出器
8の出力をA/D変換器9でディジタル値に変換しその
値をフィードバック信号とした電流制御演算ACRを実
行する。電流制御演算ACHの結果は、ゲートパルス発
生回路3へ設定される。ゲートパルス発生回路3は設定
された位相でパルスを発生し、サイリスタ変換器5を動
作させ、直流電動機6を回転させる。その結果、電動機
6と機械的に結合しているエンコーダ7から電動機の速
度に比例した肩波数のパルス列が発生される。このエン
コーダ7の出力パルスをカウンタ10で計数するので、
その計数値が即ち電動機の回転位置を示すことになる。
The microcomputer 2 takes in the values of the speed command generation circuit 1 and the counter 10 every cycle T shown in FIG. 2 and performs speed control calculation ASR. At each time, the output of the current detector 8 is converted into a digital value by the A/D converter 9, and current control calculation ACR is executed using the value as a feedback signal. The result of the current control calculation ACH is set to the gate pulse generation circuit 3. The gate pulse generation circuit 3 generates a pulse with a set phase, operates the thyristor converter 5, and rotates the DC motor 6. As a result, an encoder 7 mechanically coupled to the electric motor 6 generates a pulse train with a shoulder wave number proportional to the speed of the electric motor. Since the output pulses of the encoder 7 are counted by the counter 10,
The counted value indicates the rotational position of the electric motor.

このような第1図の実施例における本発明の特徴は速度
制御演算ASR及び電流制御演算ACHにあり、以下筒
3,4図のフローチャートにより、その特徴を説明する
The features of the present invention in the embodiment shown in FIG. 1 are the speed control calculation ASR and the current control calculation ACH, and these characteristics will be explained below with reference to flowcharts shown in cylinders 3 and 4.

マイクロコンピュータ2はT8周期毎に第3図の処理A
SRを実行する。最初に、ステップ20で速度指令発生
回路1の出力rti、(i)を入力する。
The microcomputer 2 performs processing A in FIG. 3 every T8 cycle.
Execute SR. First, in step 20, the output rti, (i) of the speed command generation circuit 1 is input.

以下、(i)はi番目のサンプリング時点を意味する。Hereinafter, (i) means the i-th sampling point.

次に、カウンタ10の値P (i)を取り込む、カウン
タ10の値P (i)はエンコーダ7の出力パルスを計
数しているので、その計数値は回転位置を示す。そこで
、現時点での検出値P (i)と前回の検出値P(i−
1)とを用い、次式により速度帰還量N、(i)を計算
する。
Next, the value P (i) of the counter 10 is taken in. Since the value P (i) of the counter 10 counts the output pulses of the encoder 7, the counted value indicates the rotational position. Therefore, the current detected value P(i) and the previous detected value P(i−
1), the velocity feedback amount N, (i) is calculated by the following equation.

N、(i)=(P(i)−P(i−1))/T、・・・
(1)次に、速度指令N、(i)と速度帰還量N、(i
)とを用い速度制御演算を行って、第1の電流指令Ll
(i)を計算する。速度制御演算に例えば比例補償を用
い、そのゲインをに、とすると次式により第1の電流指
令I、1(i)が求まる。
N, (i)=(P(i)-P(i-1))/T,...
(1) Next, the speed command N, (i) and the speed feedback amount N, (i
) is used to perform speed control calculation, and the first current command Ll
(i) Calculate. If, for example, proportional compensation is used in the speed control calculation and its gain is , then the first current command I, 1(i) can be found by the following equation.

l−1ax ) = Ka(N−(x )−Nt(x 
))  ・・・(2)この第1の電流指令Ul、□(i
)は、速度の偏差を零とするような電流(直流機ではト
ルクに比例する)を電動機へ流す役目をもっている。即
ち、電動機を加減速させるためのトルクを発生する。
l-1ax) = Ka(N-(x)-Nt(x
)) ...(2) This first current command Ul, □(i
) has the role of flowing a current (proportional to torque in a DC machine) to the motor that makes the speed deviation zero. That is, it generates torque for accelerating and decelerating the electric motor.

これに対して、ステップ28では次式により、第2の電
流指令L2(i)を計算する。
On the other hand, in step 28, the second current command L2(i) is calculated using the following equation.

l−1b)=S(iy J)  Kf(Nr(i)Nt
(i  1))・・・(3)ここで、S (iy J)
は後述するように電流制御演算ACRで求めた値であり
、ACHの実行周期T。毎に検出された電流帰還量工、
(i、j)をASRの周期16間にわたって加算した値
であり、電動機が前の周期で発生したトルクに比例する
l-1b)=S(iy J) Kf(Nr(i)Nt
(i 1))...(3) Here, S (iy J)
is a value obtained by the current control calculation ACR as described later, and is the execution period T of ACH. Current feedback amount detected every time,
(i, j) over 16 cycles of ASR and is proportional to the torque generated by the motor in the previous cycle.

(3)式の第2項はT1間における速度の変化分に係数
に「を乗算したものであり、電動機の加減速に要したト
ルクを意味する。この結果から、第2の電流指令工、2
(i)は電動機が発生したトルクから加減速に要したト
ルクを減じたものとなり、負荷トルクに比例した値とな
る。
The second term in equation (3) is the speed change during T1 multiplied by a coefficient, and means the torque required to accelerate or decelerate the motor.From this result, the second current command 2
(i) is the torque generated by the electric motor minus the torque required for acceleration/deceleration, and is a value proportional to the load torque.

このようにして得られた第1,2の電流指令Ire (
i) t L3 (i)を加算して、電流指令I、(i
) を得る。
The first and second current commands Ire (
i) By adding t L3 (i), the current command I, (i
) get.

I、(i):I、1(i)+Iri (i)  ・・・
(4)そして、ステップ32で電流制御演算のための前
処理としてj=1とするとともに、ステップ34で次回
の速度制御演算のために、今回のP(i)。
I, (i): I, 1 (i) + Iri (i) ...
(4) Then, in step 32, j is set to 1 as preprocessing for the current control calculation, and in step 34, the current P(i) is set for the next speed control calculation.

N、(i )を記憶しておく。これらの値は、次のAS
Rを実行する周期では(1)式又は(3)式のP (i
−1) 、 N、(i−1)になる。   ′電流制御
演算ACRの処理は速度制御演算ASRより短かい周期
T。(第2図参照)で実行され、その内容を第4図のフ
ローチャートに示す。
N, (i) is memorized. These values are the following AS
In the cycle in which R is executed, P (i
-1), N, (i-1). 'The process of current control calculation ACR has a cycle T shorter than that of speed control calculation ASR. (See FIG. 2), and its contents are shown in the flowchart of FIG.

最初にステップ36で、j=1の判断を行う。First, in step 36, it is determined that j=1.

j=1のときは速度制御演算ASRを実行した直後であ
り、S (l r j−1)をOとする。なお、このj
は速度制御の演算周期T、内に電流制御を行った回数を
意味している。
When j=1, it is immediately after executing the speed control calculation ASR, and S (l r j-1) is set to O. Furthermore, this j
means the number of times current control is performed within the calculation period T of speed control.

次に、ステップ40では電流検出器8.’A/D変換器
9を介して電流帰還量In(xt j)を入力する。こ
の電流帰還量Iz(iyj)と、速度制御処理ASRで
求めた電流指令I 、(i )とを用い、ステップ42
で電流制御演算を行い、点弧位相α(i、j)を計算す
る。電流制御演算として例えば比例補償を用い、その比
例定数をKaとすると、点弧位相α(i、j)は次式で
求められる。
Next, in step 40, the current detector 8. 'Input the current feedback amount In(xt j) via the A/D converter 9. Using this current feedback amount Iz (iyj) and the current commands I, (i) obtained by the speed control process ASR, step 42
A current control calculation is performed at , and the ignition phase α(i, j) is calculated. If, for example, proportional compensation is used as the current control calculation and the proportional constant is Ka, then the ignition phase α(i, j) is determined by the following equation.

α(it j)=180−Kc+(’I、(i)−If
(it 、i))・・・(5)更に、ステップ44では
次式の演算を行い、電流帰還量rt(xt J)を加算
していく。
α(it j)=180-Kc+('I,(i)-If
(it, i)) (5) Furthermore, in step 44, the following equation is calculated and the current feedback amount rt(xt J) is added.

5(it j)=KaIt(iy j)+s(i、 j
−1)・・・(6)ステップ46ではステップ42で得
られた点弧位相αCip J)をゲートパルス発生回路
3へ設定する。そして、ステップ48でjを1だけ増加
して、処理を終了する。
5(it j)=KaIt(iy j)+s(i, j
-1)...(6) In step 46, the firing phase αCip J) obtained in step 42 is set to the gate pulse generation circuit 3. Then, in step 48, j is incremented by 1, and the process ends.

このような、速度制御処理ASRと電流制御処理ACR
との2つの処理をマイクロコンピュータ2は実行してい
くことで、直流電動機6に流す電流、及び速度を制御す
る。
Such speed control processing ASR and current control processing ACR
By executing these two processes, the microcomputer 2 controls the current flowing through the DC motor 6 and its speed.

以上述べたように第1図の実施例によると、速度制御処
理ASRを行う周期毎に、(3)式を用いて負荷トルク
相当の電流指令x、z(i)を得ることが可能となり、
かつその値を電流制御系の指令としているので、負荷が
急変したときの速度変動を迅速に補償できる効果がある
。又、マイクロコンピュータ2が通常の速度制御、電流
制御を行うのに必要な検出値のカウンタ10とA/D変
換器9の出力のみを用いて負荷トルク相当の電流を検出
できるので、ハードウェアの増加なく簡単に構成できる
As described above, according to the embodiment shown in FIG. 1, it is possible to obtain the current commands x, z(i) corresponding to the load torque using equation (3) every cycle when the speed control process ASR is performed.
Moreover, since this value is used as a command for the current control system, it is possible to quickly compensate for speed fluctuations when the load suddenly changes. In addition, since the microcomputer 2 can detect the current equivalent to the load torque using only the detected value counter 10 and the output of the A/D converter 9, which are necessary for normal speed control and current control, the hardware Can be easily configured without any increase.

更に、1回のASR処理周期毎の検出では、少しの誤差
でも大きく影響するので、その影響を少なくするために
回数の検出値の平均を取ることも本実施例の応用で簡単
にできる。例えば、ASRの3周期分に相当する時間で
第2の電流指令を求めるには、(3)式の後に次式の計
算を行い、I rz−+(1)を求め、その値と第1の
電流指令I、1(i)との和で電流指令IJi)を求め
ればよい。
Furthermore, in detection for each ASR processing cycle, even a small error has a large influence, so in order to reduce the influence, it is also possible to easily average the detected values of the number of times by applying this embodiment. For example, to obtain the second current command in a time corresponding to three cycles of ASR, calculate the following equation after equation (3) to obtain Irz-+(1), and combine that value with the first The current command IJi) may be calculated by the sum of the current command I, 1(i).

1rzjx)=  (工ri(i z>+xtzCx 
 1)+I、□(i)〕・・・(7)工、(i)=工、
、(i)+x、!、(i)・・・(8)このようにする
と、1回の演算で少し誤差が生じても悪い影響を与える
ことはない。また、フィードバックを取って平均化する
方法よりも少ない回数(短かい時間)で負荷相当の電流
を推定できるので、負荷が急変したときの速度変動を迅
速に補償できる効果を有する。更に、その演算にはマイ
クロコンピュータ2が制御演算に使用している検出値の
みを用いて実行できるので、ハードウェアの増加なく簡
単に構成できる。
1rzzx) = (工ri(i z>+xtzCx
1) +I, □(i)]...(7) Engineering, (i) = Engineering,
,(i)+x,! , (i)...(8) In this way, even if a small error occurs in one calculation, it will not have a negative effect. Furthermore, since the current corresponding to the load can be estimated in fewer times (shorter time) than in the method of taking feedback and averaging, it has the effect of quickly compensating for speed fluctuations when the load suddenly changes. Furthermore, since the calculation can be performed using only the detected values used by the microcomputer 2 for control calculations, the configuration can be simplified without increasing hardware.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、マイクロコンピュ
ータなどのディジタル演算処理装置で電動機の速度制御
を行うのに用いる速度及び電流の検出値のみを用いて、
しかも速度制御周期毎に負荷を推定し、その値を負荷指
令として与えることができるので、負荷急変時の速度変
動を小さくできる。
As explained above, according to the present invention, only the detected values of the speed and current used to control the speed of the electric motor with a digital processing device such as a microcomputer are used.
Furthermore, since the load can be estimated for each speed control cycle and the estimated value can be given as a load command, speed fluctuations when the load suddenly changes can be reduced.

なお、上述の実施例は直流電動機を用いた場合について
説明したが、電動機の負荷トルクを推定し、その値をト
ルク指令として加えることは交流電動機を用いた場合も
同様に可能である。
In addition, although the above-mentioned embodiment explained the case where a DC motor is used, it is possible to estimate the load torque of the electric motor and add that value as a torque command in the same way when an AC motor is used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック構成I ′ 図、第2図は第1図のマイクロコンピュータ2の動
作を示すタイムチャート、第3,4図は第1図のマイク
ロコンピュータ2の処理内容を示すフローチャートであ
る。 2・・・マイクロコンピュータ、9・・・A/D変換器
。 10・・・カウンタ、7・・・エンコーダ。
FIG. 1 is a block configuration I' diagram showing one embodiment of the present invention, FIG. 2 is a time chart showing the operation of the microcomputer 2 shown in FIG. 1, and FIGS. It is a flowchart which shows the processing content. 2...Microcomputer, 9...A/D converter. 10...Counter, 7...Encoder.

Claims (1)

【特許請求の範囲】[Claims] 1、電動機と、該電動機と機械的に結合されたディジタ
ル式位置検出器と、所定の一定周期毎に前記ディジタル
式位置検出器出力の変化量から前記電動機の速度を計算
する速度検出回路と、前記電動機が発生しているトルク
に相当する値を出力する電動機トルク検出回路と、前記
電動機トルク検出回路の出力をフィードバック信号とし
て電動機の発生するトルクを制御する電動機トルク制御
回路と、速度指令を出力する速度指令発生回路と、ディ
ジタル演算回路とを備え、前記ディジタル演算回路では
一定周期毎に前記速度指令発生回路と前記速度検出回路
との出力を用い第1の電動機トルク指令を計算するとと
もに、前記速度検出回路出力の前周期出力との変化分と
、前記電動機トルク検出回路出力の前周期内の積分値と
を用いて第2の電動機トルク指令を計算し、更に前記第
1、第2の電動機トルク指令の加算値を求め、その加算
値をもつて前記電動機トルク制御回路の指令とする電動
機の速度制御装置。
1. An electric motor, a digital position detector mechanically coupled to the electric motor, and a speed detection circuit that calculates the speed of the electric motor from the amount of change in the output of the digital position detector every predetermined constant cycle; an electric motor torque detection circuit that outputs a value corresponding to the torque generated by the electric motor; an electric motor torque control circuit that controls the torque generated by the electric motor using the output of the electric motor torque detection circuit as a feedback signal; and outputs a speed command. a speed command generation circuit and a digital calculation circuit, the digital calculation circuit calculates the first motor torque command using the outputs of the speed command generation circuit and the speed detection circuit at regular intervals; A second electric motor torque command is calculated using a change in the speed detection circuit output from the previous cycle output and an integral value of the motor torque detection circuit output within the previous cycle, and further the first and second electric motors are A speed control device for a motor that obtains an added value of a torque command and uses the added value as a command for the motor torque control circuit.
JP60070992A 1985-04-05 1985-04-05 Speed controller of motor Pending JPS61231887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60070992A JPS61231887A (en) 1985-04-05 1985-04-05 Speed controller of motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60070992A JPS61231887A (en) 1985-04-05 1985-04-05 Speed controller of motor

Publications (1)

Publication Number Publication Date
JPS61231887A true JPS61231887A (en) 1986-10-16

Family

ID=13447545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60070992A Pending JPS61231887A (en) 1985-04-05 1985-04-05 Speed controller of motor

Country Status (1)

Country Link
JP (1) JPS61231887A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001001556A1 (en) * 1999-06-28 2001-01-04 Valeo Electrical Systems, Inc. Optimum motor speed control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6249097B1 (en) 1997-11-21 2001-06-19 Valeo Electrical Systems, Inc. Optimum motor speed control system
WO2001001556A1 (en) * 1999-06-28 2001-01-04 Valeo Electrical Systems, Inc. Optimum motor speed control system

Similar Documents

Publication Publication Date Title
US8395345B2 (en) Valve control device
US7781996B2 (en) Speed control device for electric motor
US11056992B2 (en) Motor controller
JPH027276B2 (en)
JPH06284762A (en) Speed controller for motor
JPS61231887A (en) Speed controller of motor
EP0616417B1 (en) Method for control of ac motor
JPH0691482A (en) Feed control device
EP0597118A1 (en) Control method for synchronous motor
KR0163609B1 (en) Speed control apparatus of a motor
JPH0526773A (en) Electric inertia control device for power transmission system tester
JPH09149699A (en) Control device for ac motor
RU2092964C1 (en) Method and device for controlling stepping-motor drive
JPH02307384A (en) Motor speed controller
JPH0744862B2 (en) Electric motor speed controller
JP3357530B2 (en) Stop position control method and device
JP3206611B2 (en) Position Tracking Control Method for Position Synchronous Speed Control System
JP3337058B2 (en) Position control device
JP2997278B2 (en) Motor control device
JPH0767320B2 (en) Control gain adjustment method for vector control type induction motor drive
JPH0561554A (en) Positioning controller
JP3676435B2 (en) AC servo motor control method
JP2626173B2 (en) Speed fluctuation suppression control method for induction motor
JP2663387B2 (en) Stabilization feedback control method
JPH0667251B2 (en) Electric motor speed controller