JPS61231843A - Power feeding of artificial satellite - Google Patents

Power feeding of artificial satellite

Info

Publication number
JPS61231843A
JPS61231843A JP60072068A JP7206885A JPS61231843A JP S61231843 A JPS61231843 A JP S61231843A JP 60072068 A JP60072068 A JP 60072068A JP 7206885 A JP7206885 A JP 7206885A JP S61231843 A JPS61231843 A JP S61231843A
Authority
JP
Japan
Prior art keywords
storage battery
voltage
power
current
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60072068A
Other languages
Japanese (ja)
Inventor
磯谷 厚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60072068A priority Critical patent/JPS61231843A/en
Publication of JPS61231843A publication Critical patent/JPS61231843A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • B64G1/428Power distribution and management

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、複数台の蓄電池を使用して、共通の電源バ
スラインに電力供給を行う人工衛星の給電方法に関する
ものでるる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a power supply method for an artificial satellite that uses a plurality of storage batteries to supply power to a common power bus line.

〔従来の技術〕[Conventional technology]

人工衛星では一般に日陰時に衛星負荷に電力供給する几
め、ニッケル・カドミウム(NiCd)蓄電池のような
2欠′成池である蓄電池が使用されている。通信衛星の
ように日照時1日陰時に拘らずほぼ同じ電力が使用され
る人工衛星においては。
Satellites commonly use batteries, such as nickel-cadmium (NiCd) batteries, to provide power to satellite loads during shaded conditions. In artificial satellites such as communication satellites, almost the same amount of power is used regardless of whether it is sunny or shaded.

蓄電池1台当たりの容量に限度があるため、一般に複数
台の蓄電池を並列使用して日陰時における要求電力を賄
っている。ま之、ミッション機器の電源入力条件を緩和
させる目的で日陰時においても電源バスラインの電圧(
バス電圧)を安定化させる方式が多くとられている。
Since there is a limit to the capacity of each storage battery, a plurality of storage batteries are generally used in parallel to cover the required power in the shade. However, in order to ease the power input conditions for mission equipment, the voltage of the power bus line (
Many methods are used to stabilize the bus voltage.

従来のこの種の人工衛星の給電方法の構成例を第2図に
示す。なお、説明の便宜上、蓄電池を2台使用する例を
示している。図において、 +1lfl衛星負荷に電力
を供給する電源バスライン、(2)はリターンライン1
(3jと(4)は1例えば、NiCdセルを使用した蓄
電池で、蓄電池(3)と蓄電池(41は、複数個の同数
のセルを直列接続した構成で、はぼ同じ特性を有してい
る。(5)と(6)はそれぞれ上記蓄電池(3)と蓄電
池(4)の放電経路に接続されたダイオードでろシ、蓄
電池の放電電流が相手方の蓄電池に流入しないように逆
流防止をしている。(7)は蓄電池(3)と(4)の放
電時に、蓄電池電圧を昇圧してバス電圧を安定化させる
昇圧(ブースト)コンバータ。
An example of the configuration of a conventional power feeding method for this type of artificial satellite is shown in FIG. Note that for convenience of explanation, an example in which two storage batteries are used is shown. In the figure, +1lfl is the power bus line that supplies power to the satellite load, (2) is the return line 1
(3j and (4) are 1, for example, storage batteries using NiCd cells, and storage battery (3) and storage battery (41) have a configuration in which multiple cells of the same number are connected in series and have almost the same characteristics. (5) and (6) are diodes connected to the discharge paths of the storage battery (3) and storage battery (4), respectively, to prevent backflow so that the discharge current of the storage battery does not flow into the other storage battery. (7) is a boost converter that boosts the storage battery voltage and stabilizes the bus voltage when the storage batteries (3) and (4) are discharged.

(8)は電源バスライン(1)のバス電圧を検知し、基
準バス電圧と比較し、その誤差電圧を昇圧コンバータ(
7)に出力するバス電圧制御回路でおる。昇圧コンバー
タ(7)では、バス電圧制御回路(8)からの誤差信号
に応じて、出力電圧が一定になるように制御される。蓄
電池(3;と蓄電池(4)からの各放電電流はそれぞれ
ダイオード(5)と(6)を通り、結合点Aで合流して
昇圧コンバータ(7)に入力される。結合点Aと蓄電池
(3)及び蓄電池(4)との間の経路インピーダンスは
、蓄電池(3)と蓄電池(4)の出力バランスをとるた
めにほぼ等しくなっている。
(8) detects the bus voltage of the power supply bus line (1), compares it with the reference bus voltage, and converts the error voltage to the boost converter (
7) is a bus voltage control circuit that outputs to. In the boost converter (7), the output voltage is controlled to be constant according to the error signal from the bus voltage control circuit (8). Each discharge current from the storage battery (3; The path impedance between the storage battery (3) and the storage battery (4) is approximately equal in order to balance the outputs of the storage battery (3) and the storage battery (4).

従来の方法では上記のように構成され、蓄電池(3)と
蓄電池(4)からは、はぼ等しい放電電流を出力し、そ
れぞれダイオード(5)と(6)を経由して結合点Aで
合流して、昇圧コンバータ(7)に入力される。
In the conventional method, the configuration is as described above, and the storage battery (3) and the storage battery (4) output approximately equal discharge currents, which meet at the connection point A via the diodes (5) and (6), respectively. Then, it is input to the boost converter (7).

昇圧コンバータ(7)への入力電圧は、蓄電池(3)と
蓄電池(4)の蓄電池−圧が放電時間とともに下降する
が、昇圧コンバータ(7) U 、入力電圧とバス電圧
の差分の電圧(ブースト電圧〕を発生させ、入力電圧に
ブーストを圧を上積させた出力電圧を出力している。−
万、昇圧コンバータ(7)の出力電圧は。
The input voltage to the boost converter (7) is the voltage of the difference between the input voltage and the bus voltage (boost It generates a voltage] and outputs an output voltage by adding a boost to the input voltage.
10,000, what is the output voltage of the boost converter (7)?

バス電圧制御回路(8)により、常に基準バス安定化電
圧に等しくなるよりに閉ループ制御をされているため、
蓄電池(3)と蓄電池(4)からの放電電力は、昇圧コ
ンバータ(7)で一定の安定化バス電圧になるように電
圧変換されて共通な電源バスライン(1)に供給される
Since the bus voltage control circuit (8) performs closed loop control so that it is always equal to the reference bus stabilization voltage,
Discharged power from the storage battery (3) and the storage battery (4) is voltage-converted by a boost converter (7) to a constant stabilized bus voltage, and then supplied to a common power supply bus line (1).

〔発明が解決しよつとする問題点〕[Problems that the invention seeks to solve]

しかるに、上記のような従来の構成では、正常なときは
、蓄電池(31と蓄電池(4)から、はぼ等しい放電々
流が流れているが、一旦一方の蓄電池のセルの特性の変
化、あるいはセルの短絡故障を起こすと放電々流に大き
なアンバランスを生じるという欠点がめった。
However, in the conventional configuration as described above, under normal conditions, approximately equal discharge currents flow from the storage battery (31) and the storage battery (4), but once there is a change in the cell characteristics of one of the storage batteries, or The drawback is that short-circuit failures in the cells often cause a large imbalance in the discharge current.

例えば蓄電池(4)で1セルの短絡故障が生じたとする
と蓄電池(4)の端子電圧は、蓄電池(3)の端子電圧
よフも、1セル分に相当する電圧だけ低くなるため、結
合点Aで同一の電圧となるためには、蓄電池(3)から
の放電々流は増大し、その分だけ蓄電池(4)からの放
電々流は減少し、放電々流のアンバランスを生じること
となる。
For example, if a short-circuit failure occurs in one cell of the storage battery (4), the terminal voltage of the storage battery (4) will be lower than the terminal voltage of the storage battery (3) by the voltage equivalent to one cell, so the connection point A In order for the voltage to be the same, the current from the storage battery (3) increases, and the current from the storage battery (4) decreases by that amount, resulting in an imbalance in the current from the storage battery (4). .

このような放電々流のアンバランスがおると蓄電池の性
能劣化と寿命を縮めるという欠点があった。
Such an imbalance in the discharge current has the drawback of deteriorating the performance and shortening the life of the storage battery.

また、従来の構成では、逆流防止用ダイオード(5)及
び(6)が使用されているが、要求電力の増大化に伴い
使用される蓄電池の容量が大きくなって。
Further, in the conventional configuration, backflow prevention diodes (5) and (6) are used, but as the required power increases, the capacity of the storage battery used increases.

ダイオード(5)及び(6)を流れる放電電流が犬きぐ
なるとダイオード(5ン及び(6)の電圧ドロップによ
って生じる電力損失も増大するという欠点もめった。
Another drawback is that when the discharge current flowing through the diodes (5) and (6) increases, the power loss caused by the voltage drop in the diodes (5) and (6) also increases.

この発明はかかる欠点を改善する目的でなされたもので
、蓄電池毎に昇圧コンバータを独立させて専用的に設け
、各蓄電池からの放電々流が等しくなるように制御する
ことにより、蓄電池の端子電圧がお互い相違しても放電
々流のバランスを維持するとともにダイオードでの電力
損失を除去することができる人工衛星の給電方法である
This invention was made with the purpose of improving this drawback, and by separately providing a step-up converter for each storage battery and controlling it so that the discharge current from each storage battery is equal, the terminal voltage of the storage battery is This is a power supply method for an artificial satellite that can maintain the balance of discharge currents even if they are different from each other, and eliminate power loss in diodes.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る人工衛星の給電方法では蓄電池からブー
ストコンバータに接続し、蓄電池からの放電々流を検出
するとともにこの放電々流のアンバランスが生じないよ
うに電流制御回路により。
In the power supply method for an artificial satellite according to the present invention, a storage battery is connected to a boost converter, a current of discharge from the storage battery is detected, and a current control circuit is used to prevent the imbalance of this current of discharge.

ブーストコンバータを制御するものである。It controls the boost converter.

〔作用〕[Effect]

この発明においては、蓄電池からの放電々流が。 In this invention, the discharge current from the storage battery.

蓄電池の端子電圧の特性の変化あるいはセルの短絡故障
による蓄電池の端子電圧の変動が生じても。
Even if the terminal voltage of the storage battery fluctuates due to a change in the characteristics of the terminal voltage of the storage battery or a short-circuit failure of the cell.

複数個の蓄電池からの放電々流のバランスを保つことが
可能となる。
It becomes possible to maintain the balance of discharge currents from a plurality of storage batteries.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示す構成図である。(1
1〜(8)は第2図の構成と全く同一のものである。
FIG. 1 is a block diagram showing an embodiment of the present invention. (1
1 to (8) are exactly the same as the configuration shown in FIG.

(9)は蓄電池(3)に専用的に設けられた昇圧コンバ
ータ、α1は同じく蓄電池(4)に接続された昇圧コン
バークである。昇圧コンバータ(9)及びα[Iは同一
の一定バス電圧を得るために、同一のバス電圧制御回路
(8)によって出力電圧制御が行われる。([11は蓄
電池(3)の放電電流を検出する電流検出器、α2は同
じく蓄電池(4)の放電々流を検出する電流検出器であ
る。α3は上記電流検出器αυと←3からの出力信号を
比較し、蓄電池(3)と(4)の放電々流を等しくする
ように昇圧コンバータ(9)と(IGを制御する電流制
御回路である。蓄電池(3)と蓄電池(41は各々昇圧
コンバータ(9)と昇圧コンバータα〔に直接に接続さ
れるために、従来方式で使用されるダイオード(5)と
(6)は除去される。
(9) is a boost converter provided exclusively for the storage battery (3), and α1 is a boost converter also connected to the storage battery (4). The output voltages of the boost converter (9) and α[I are controlled by the same bus voltage control circuit (8) in order to obtain the same constant bus voltage. ([11 is a current detector that detects the discharge current of the storage battery (3), and α2 is a current detector that also detects the discharge current of the storage battery (4). α3 is the current detector that detects the discharge current of the storage battery (4). This is a current control circuit that compares the output signals and controls the boost converter (9) and (IG) so as to equalize the discharge currents of the storage batteries (3) and (4). Due to the direct connection to the boost converter (9) and the boost converter α, the diodes (5) and (6) used in the conventional scheme are eliminated.

この発明においては、蓄電池(3)及び蓄電池(4)か
らの放電々流IBATI及びIBAT2は、それぞれ電
流検出器aυ及び電流検出器α2により検出され電流制
御回路αjによりそれぞれの放電々流が等しくなるよう
に制御される。このため蓄電池(3)又は(4)におい
て特性の変動又は蓄電池でセルの短絡故障が生じ、端子
電圧の差が生じた場合でもたえず放電々流のバランスは
大きく崩nることなく、蓄電池の放電々気量のバランス
を保つことが出来る。
In this invention, the discharge currents IBATI and IBAT2 from the storage battery (3) and the storage battery (4) are detected by the current detector aυ and the current detector α2, respectively, and the discharge currents are made equal by the current control circuit αj. controlled as follows. Therefore, even if the characteristics of the storage battery (3) or (4) change or a cell short-circuit failure occurs in the storage battery, and a difference in terminal voltage occurs, the balance of the discharge current will not be significantly disrupted, and the storage battery will discharge. It is possible to maintain a balance of energy.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、各蓄電池に専用のコン
バータを独立させて設け、かつ、蓄電池の出力電流を等
しく制御することによp、複数の蓄電池を並列使用して
、ある蓄電池でセルの短絡故障を生じても、正常な蓄電
池の放電々流に影響を与えず、各蓄電池の放電々流のバ
ランスを大きく崩さないようにするという効果がある。
As explained above, this invention provides a dedicated converter for each storage battery independently, and controls the output current of the storage batteries equally, so that a plurality of storage batteries can be used in parallel, and a cell can be short-circuited in a certain storage battery. Even if a failure occurs, it does not affect the discharge currents of normal storage batteries, and has the effect of not significantly disrupting the balance of discharge currents of each storage battery.

また、蓄電池出力は、専用のコンバータと直結されるた
め、ダイオードを用いて蓄電池出力を合流させ共用のコ
ンバータを使用する従来の構成と比べ、ダイオードによ
る電力損失が無くなり、蓄電池の放電々力を効率よく有
効に供給できるという利点がある。
In addition, since the storage battery output is directly connected to a dedicated converter, compared to the conventional configuration in which the storage battery output is combined using a diode and a shared converter is used, there is no power loss due to the diode, and the discharging power of the storage battery is efficiently used. It has the advantage of being able to be supplied efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明による一実施例の概略構成図、第2
図は、従来の複数台の蓄電池を並列に使用した人工衛星
の給電方法の曲型的な概略構成図である。 図中(1)は電源バスライン、(2)はリターンライン
。 (3)は蓄電池、(4)は蓄電池、(8)はバス電圧制
御回路。 (9)は昇圧コンバータ、 (lCtは昇圧コンバータ
、(lυは電流検出器、(I3は電流検出器、α口は電
流制御回路である。 なお、各図中同一符号は、同一または相当部分を示す。
FIG. 1 is a schematic configuration diagram of an embodiment according to the present invention, and FIG.
The figure is a curved schematic diagram of a conventional power supply method for an artificial satellite using a plurality of storage batteries in parallel. In the figure, (1) is the power bus line, and (2) is the return line. (3) is a storage battery, (4) is a storage battery, and (8) is a bus voltage control circuit. (9) is a boost converter, (lCt is a boost converter, (lυ is a current detector, (I3 is a current detector, and α port is a current control circuit. The same reference numerals in each figure indicate the same or equivalent parts. show.

Claims (1)

【特許請求の範囲】[Claims] 複数台の蓄電池を並列に使用して、電圧が安定化された
共通の電源バスラインに電力供給する人工衛星の給電方
法において、蓄電池電圧を所要の安定化バス電圧に変換
するコンバータを上記蓄電池の各々に独立させて専用的
に設けるとともに、各蓄電池の出力電流を検知、比較し
て各蓄電池からの出力電流が等しくなるように制御し、
上記各蓄電池からの放電々力を上記専用コンバータで所
要の安定化バス電圧に等しい出力電圧に変換して、共通
の電源バスラインに電力供給することを特徴とする人工
衛星の給電方法。
In a satellite power supply method that uses multiple storage batteries in parallel to supply power to a common voltage-stabilized power bus line, a converter that converts the storage battery voltage to the required stabilized bus voltage is connected to the storage battery. Each storage battery is provided independently and exclusively, and the output current of each storage battery is detected and compared to control the output current from each storage battery to be equal.
A power supply method for an artificial satellite, characterized in that the discharge power from each of the storage batteries is converted into an output voltage equal to a required stabilized bus voltage by the dedicated converter, and power is supplied to a common power supply bus line.
JP60072068A 1985-04-05 1985-04-05 Power feeding of artificial satellite Pending JPS61231843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60072068A JPS61231843A (en) 1985-04-05 1985-04-05 Power feeding of artificial satellite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60072068A JPS61231843A (en) 1985-04-05 1985-04-05 Power feeding of artificial satellite

Publications (1)

Publication Number Publication Date
JPS61231843A true JPS61231843A (en) 1986-10-16

Family

ID=13478711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60072068A Pending JPS61231843A (en) 1985-04-05 1985-04-05 Power feeding of artificial satellite

Country Status (1)

Country Link
JP (1) JPS61231843A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275942U (en) * 1988-11-28 1990-06-11
JP2021180077A (en) * 2020-05-11 2021-11-18 トヨタ自動車株式会社 Fuel cell system and method of controlling fuel cell system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275942U (en) * 1988-11-28 1990-06-11
JP2021180077A (en) * 2020-05-11 2021-11-18 トヨタ自動車株式会社 Fuel cell system and method of controlling fuel cell system

Similar Documents

Publication Publication Date Title
US7564149B2 (en) Sequentially-controlled solar array power system with maximum power tracking
US5160851A (en) Rechargeable back-up battery system including a number of battery cells having float voltage exceeding maximum load voltage
US4851756A (en) Primary-secondary hybrid battery
EP1990892B1 (en) Battery discharge current sharing in a tightly regulated power system
US8159187B2 (en) Charging circuit for secondary battery
US6795322B2 (en) Power supply with uninterruptible function
US6259234B1 (en) Converter module for an electrical power supply and a system including it
US6208039B1 (en) Apparatus to control multiple parallel batteries to share load current
US20090251100A1 (en) Stackable battery module
JPH03265013A (en) Power supply system for solar battery
JPH08237861A (en) Paralll charge controller, electric energy storage unit and charge controlling method
JP2002058170A (en) Uninterruptible power supply
JPS61231843A (en) Power feeding of artificial satellite
JPS60223439A (en) Power supply system of artificial satellite placing storage battery
JP3047945B2 (en) Power supply
JP2789778B2 (en) Power supply
JP3244592B2 (en) Battery charge control method
JPH0340062Y2 (en)
JP2001211549A (en) Control system for instantaneous incoming power
Lee et al. A Reconfigurable Series-Parallel Charger for Dual-Battery Applications with 89W 97.7% Efficiency in Direct Charging Mode
JPS59225415A (en) Power supply controller
RU2156534C2 (en) Off-line power supply system
JP6923121B2 (en) Power supply device
RU2211480C2 (en) Device for controlling solar-battery excess power
JPH0715892A (en) Control circuit for uninterruptible power supply equipment