JPS61231109A - Method for operating blast furnace - Google Patents

Method for operating blast furnace

Info

Publication number
JPS61231109A
JPS61231109A JP7135785A JP7135785A JPS61231109A JP S61231109 A JPS61231109 A JP S61231109A JP 7135785 A JP7135785 A JP 7135785A JP 7135785 A JP7135785 A JP 7135785A JP S61231109 A JPS61231109 A JP S61231109A
Authority
JP
Japan
Prior art keywords
hot metal
blast furnace
pulverized coal
concentration
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7135785A
Other languages
Japanese (ja)
Inventor
Kiyoshi Shibata
清 柴田
Yukimasa Kushima
九島 行正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7135785A priority Critical patent/JPS61231109A/en
Publication of JPS61231109A publication Critical patent/JPS61231109A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To prevent a drop in the temp. of molten pig iron and a rise in the concn. CONSTITUTION:When a blast furnace is operated, pulverized coal and iron oxides are blown into the furnace from separate blast.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、微粉炭とともに焼結鉱粉、ペレットフィード
等の酸化鉄類を送風羽口から高炉内へ吹き込み、溶銑中
のSi濃度を減少させる高炉操業方法の改良に関し、特
に溶銑中のS11度を上昇させることな(、Si濃度を
減少させることができる高炉操業方法を提供するもので
ある。
Detailed Description of the Invention (Field of Industrial Application) The present invention reduces the Si concentration in hot metal by blowing iron oxides such as sintered ore powder and pellet feed into a blast furnace together with pulverized coal through a blast tuyere. In particular, the present invention provides a blast furnace operating method that can reduce the Si concentration without increasing the S11 degree in hot metal.

(従来の技術〕 高炉・転炉法による鉄鋼製造プロセスにおいて、高炉に
よシ生産する溶銑は、転炉工程での副原料原単位の低減
、あるいは鉄歩留りの向上のために、SiおよびSの濃
度が低いことおよび温度が高いことが望ましい。
(Prior art) In the steel manufacturing process using the blast furnace/converter method, the hot metal produced in the blast furnace contains Si and S in order to reduce the basic unit of auxiliary raw materials in the converter process or improve the iron yield. Low concentrations and high temperatures are desirable.

高炉においては、燃料としての高価な塊コークスの使用
量を低減するために、重油、タール等の送風羽口からの
吹き込みが行われていたが、近年の石油価格の上昇によ
って、重油と塊コークスの価格差が逆転し、重油等の補
助燃料を全く使用しないオールコークス操業が一般的と
なった。
In blast furnaces, in order to reduce the amount of expensive lump coke used as fuel, heavy oil, tar, etc. were injected through the blast tuyeres, but due to the rise in oil prices in recent years, heavy oil and lump coke The price difference has reversed, and all-coke operation, which does not use any auxiliary fuel such as heavy oil, has become commonplace.

しかしオールコークス操業では、重油吹き込み時に比べ
羽口先の燃焼温度が上昇し、また投入水素量が減少する
熱流比が上昇するといった原因によってスリップ回数が
増加する等操業が不安定となシやすい、そこで微粉炭を
送風羽目から吹き込む(以下微粉炭吹き込み操業法とい
う)ことが最近室われるようになってきた、微粉炭は塊
コークスに比べ揮発分に富み、水素含有量も多いことか
ら微粉炭吹き込み操業ではオールコークス操業におこり
がちな操業の不安定さを回避することができる。
However, in all-coke operation, the combustion temperature at the tip of the tuyere increases compared to when heavy oil is injected, and the heat flow ratio increases, which reduces the amount of hydrogen input, which tends to cause operational instability such as an increase in the number of slips. Recently, the method of blowing pulverized coal through the blasting surface (hereinafter referred to as pulverized coal blowing operation method) has become popular.Pulverized coal has a higher volatile content than lump coke and has a higher hydrogen content. In this way, the instability of operation that tends to occur in all-coke operations can be avoided.

しかしこの方法によれば、石炭が直接高温の燃焼帯に供
給されるために石炭中の灰分中の8102が還元されて
SiOガスとなl)、SiOガスが炉下部で更に還元さ
れてSiとなシ、溶銑中に吸収される。
However, according to this method, since the coal is directly supplied to the high-temperature combustion zone, the 8102 in the ash in the coal is reduced to SiO gas), and the SiO gas is further reduced to Si in the lower part of the furnace. However, it is absorbed into the hot metal.

従って重油吹き込み操業に比べ微粉炭吹き込み操業では
溶銑中の81濃度が上昇す、る。
Therefore, the 81 concentration in hot metal increases in pulverized coal injection operation compared to heavy oil injection operation.

この問題に対して、微粉炭とともに酸化鉄(鉄鉄石、焼
結鉱、高炉ダ′スト、焼結ダスト、転炉ダスト等)を送
風羽口から高炉内に吹き込み、溶銑中のSi濃度を低下
させる方法(以下、微粉炭・酸化鉄混合吹き込み操業法
という〕が、特公昭58−56721号公報で提案され
ている。この提案法によれば溶銑中のSiI2度は低下
するが、溶銑の温度も低下し、溶銑中のS濃度が上昇し
てしまい転炉工程での副原料原単位の低減、あるいは歩
留向上のため望まれる溶銑が得られないものであった。
To solve this problem, iron oxide (ironite, sintered ore, blast furnace dust, sinter dust, converter dust, etc.) is blown into the blast furnace through the blast tuyere along with pulverized coal to reduce the Si concentration in the hot metal. A method (hereinafter referred to as pulverized coal/iron oxide mixed blowing operation method) has been proposed in Japanese Patent Publication No. 58-56721.According to this proposed method, the SiI2 degree in the hot metal decreases, but the temperature of the hot metal decreases. As a result, the S concentration in the hot metal increased, making it impossible to obtain the desired hot metal for reducing the unit consumption of auxiliary raw materials in the converter process or improving yield.

例えば本出願人らが試験実施微粉炭吹き込み、微粉炭・
酸化鉄混合吹き込み操業の結果をあげると次ぎの通シで
ある。
For example, the applicant et al. carried out a test using pulverized coal blowing,
The results of the iron oxide mixed injection operation are as follows.

27本の送風羽口を有する高炉において、全送風羽口よ
シタールを吹き込む操業を行ったとき(比較例1)の溶
銑の温度は1512℃で、溶銑中のSi、S濃度は各々
0.42%、0.026%であった。
In a blast furnace having 27 blast tuyere, when an operation was carried out in which sitar was blown into all the blast tuyere (comparative example 1), the temperature of the hot metal was 1512°C, and the Si and S concentrations in the hot metal were each 0.42. %, 0.026%.

この高炉に微粉炭の吹き込み設備を設け、微粉炭を全羽
口よ、935に9/l−p吹き込んだとき(比較例2ン
、溶銑温度は1513℃、Siは0,45%、Sは0、
025%となった。さらに全羽口よシ微粉炭とともに焼
結鉱粉を17 kg/ t−p吹き込むと(従来例)溶
銑温度は1507℃で81は0.2296に低下したが
Sは0.081’%に上昇した。第1表は、上記結果を
まとめて示すものである。
This blast furnace was equipped with pulverized coal blowing equipment, and when pulverized coal was blown into all tuyeres at 9/l-p (Comparative Example 2, hot metal temperature was 1513°C, Si was 0.45%, S was 0,
It became 0.025%. Furthermore, when 17 kg/t-p of sintered ore powder is injected into all the tuyeres together with pulverized coal (conventional example), the hot metal temperature is 1507°C and 81 decreases to 0.2296, but S increases to 0.081'%. did. Table 1 summarizes the above results.

第  1  表 (発明が解決しようとする問題点) 本発明の目的は微粉炭・酸化鉄類の高炉内への吹き込み
法に改良を加えて、溶銑温度低下及び溶するものである
Table 1 (Problems to be Solved by the Invention) The object of the present invention is to improve the method of blowing pulverized coal and iron oxides into a blast furnace, thereby lowering the temperature of hot metal and melting it.

(問題点を解決するための手段) 本発明の要旨は、微粉炭と酸化鉄類を各々独立した送風
羽口から高炉内に吹き込むことを特徴とする高炉操業方
法にある。
(Means for Solving the Problems) The gist of the present invention resides in a blast furnace operating method characterized in that pulverized coal and iron oxides are blown into a blast furnace through independent blowing tuyeres.

ここで酸化鉄類とはペレットフィード等の鉄鉱石粉、ミ
ルスケール、マンガン鉱石粉、自溶性焼結鉱粉のような
酸化鉄と塩基性物質の複合化合物、もしくは鉄鉱石粉、
ミルスケールと石灰石等の塩基性物質との混合物、もし
くは高炉・焼結機・転炉で発生するダストである。
Here, iron oxides include iron ore powder such as pellet feed, mill scale, manganese ore powder, a complex compound of iron oxide and basic substances such as self-soluble sintered ore powder, or iron ore powder,
It is a mixture of mill scale and basic substances such as limestone, or dust generated in blast furnaces, sintering machines, and converters.

微粉炭と酸化鉄類を各々独立した送風羽口がら高炉内に
吹き込むに際して、微粉炭を高炉内に吹き込む羽口(以
下微粉炭吹き込み羽口という)と酸化鉄類を高炉内に吹
き込む羽口(以下酸化鉄吹き込み羽口という)の配列は
自由であシ例えば1本おきに全周に均等に配列しても、
又出銑孔近くに酸化鉄吹き込み羽口を集中するように配
列してもよい。
When blowing pulverized coal and iron oxides into the blast furnace through independent blowing tuyeres, the tuyeres (hereinafter referred to as pulverized coal blowing tuyeres) blow the pulverized coal into the blast furnace, and the tuyeres (hereinafter referred to as pulverized coal blowing tuyeres) blow the iron oxides into the blast furnace. The arrangement of the iron oxide blowing tuyeres (hereinafter referred to as iron oxide blowing tuyeres) is free; for example, even if every other tuyere is arranged evenly around the entire circumference,
Alternatively, the iron oxide blowing tuyeres may be arranged so as to be concentrated near the tap hole.

以下本発明について詳細に説明する。The present invention will be explained in detail below.

本発明者等は、前記微粉炭とともに酸化鉄を送風羽口か
ら高炉内へ吹き込むと、溶銑温度が低下し、S濃度が上
昇する理由について、本発明者等による酸化鉄を送風羽
口から高炉内へ吹き込み溶銑中のSi濃度を低下させる
試験操業並びに、この試験操業前後に行った基礎実験に
基づき次の通りであると考えている。
The present inventors investigated the reason why the hot metal temperature decreases and the S concentration increases when iron oxide is blown into the blast furnace from the blast tuyeres together with the pulverized coal. Based on a test operation to reduce the Si concentration in hot metal by blowing into the hot metal, and basic experiments conducted before and after this test operation, we believe that the following is true.

即ち基礎実験として内径90mm、長さ1.5mの黒鉛
るつぼ内に長さ400mmのコークス充填層を設け、外
部加熱により1550℃に昇温後、0030%。
That is, as a basic experiment, a coke packed bed with a length of 400 mm was provided in a graphite crucible with an inner diameter of 90 mm and a length of 1.5 m, and after being heated to 1550° C. by external heating, the temperature was 0.030%.

N270%のガスを下方より流しながら、上部より溶銑
とスラグを同時に滴下させる実験を行った。
An experiment was conducted in which hot metal and slag were simultaneously dropped from the top while flowing 70% N2 gas from below.

その結果第2表に示す様にスラグ中のFeOとMnOの
濃度が低い場合にはコークス充填層を通過した溶銑中の
Si濃度の上昇がみられるのに対し、スラグ中のFeO
もしくはMnOの濃度が高くなるとコークス充填層を通
過した溶銑中のSiI1度が低下し、同時にCOガスの
発生が観測され、スラグ中のFed。
As a result, as shown in Table 2, when the concentrations of FeO and MnO in the slag are low, an increase in the Si concentration in the hot metal that has passed through the coke packed bed is observed, whereas
Alternatively, when the concentration of MnO increases, the SiI1 degree in the hot metal that has passed through the coke packed bed decreases, and at the same time, the generation of CO gas is observed, and the Fed in the slag.

Mn Oによる脱Si効果が確認された。The Si removal effect of MnO was confirmed.

第  2  表 ところで高炉内でのSi移行に関わる主な反応は次ぎの
ようなものである。
Table 2 By the way, the main reactions involved in Si transfer in the blast furnace are as follows.

5i02(S)+O=SiO(g)+OO(g)   
聞・曲  (1)SiO2(t)十〇 = SiO(g
)+OO(g)  曲・曲  (2)SiO(g)+0
=船+Co (g)    ・・・・・・・・・  (
3)Si +2 (MO)=Si02 (t)+M  
・・・・川・・  (4)8i0(g)+MO= 5i
Oz(t) 十M    曲内・・  (5)(M :
 Fe、 Mn ) コークス灰分中の5io2、あるいは溶融滴下スラグ中
の5iOz(t)がコークス中のCと第+11.(21
式のように反応し、SiO(g)を発生させ、このSi
O(g)が溶融滴下メタル中の9と第(3)式のように
反応してSiがメタル中に入る。スラグ中のFed、 
MnO濃度が高いとき、溶融メタルと溶融スラグが接触
すれば第(4)式の反応でメタル中の犯が酸化されるほ
か、ガス中のSiO(g)が第(5)式の反応によって
酸化されるため、第(3)式による加珪が少なくなる。
5i02(S)+O=SiO(g)+OO(g)
Listen/Song (1) SiO2(t) 10 = SiO(g
)+OO(g) Song/Song (2) SiO(g)+0
= Ship + Co (g) ・・・・・・・・・ (
3) Si +2 (MO) = Si02 (t) + M
...River... (4)8i0(g)+MO=5i
Oz(t) 10M In the song... (5) (M:
Fe, Mn) 5io2 in the coke ash or 5iOz(t) in the molten dripping slag is the +11. (21
Reacts as shown in the formula, generates SiO(g), and this Si
O(g) reacts with 9 in the molten dropped metal as shown in equation (3), and Si enters the metal. Fed in slag,
When the MnO concentration is high, if the molten metal and molten slag come into contact, not only will the metal in the metal be oxidized by the reaction of equation (4), but also the SiO(g) in the gas will be oxidized by the reaction of equation (5). As a result, the amount of distortion caused by equation (3) is reduced.

吹止後の高炉内調査結果、および操業中の高炉内から採
取したメタル・スラグ成分の調査結果から高炉内でメタ
ル中にSiが入る(加珪)のは主として羽口レベルから
上の場所でアシ、羽口レベルから下の方では第(3)式
による加珪反応よシは第(4)式によるSi酸化(脱珪
)反応の方が多いことが判明している。
Based on the results of the investigation inside the blast furnace after the blow-off and the investigation results of the metal and slag components collected from the inside of the blast furnace during operation, it was found that Si enters the metal in the blast furnace mainly in the area above the tuyere level. It has been found that below the reed and tuyere level, the Si oxidation (desiliconization) reaction according to Equation (4) is more common than the siliconization reaction according to Equation (3).

羽口部から酸化鉄を吹き込むことの効果は炉内において
第+41 、 (51式による脱珪反応を増加させて、
溶銑中Si @度を低下させることにある。
The effect of injecting iron oxide from the tuyere part is +41 in the furnace, (increasing the desiliconization reaction according to formula 51,
The purpose is to reduce the Si content in hot metal.

実験結果によれば、吹き込んだ酸化鉄の一部は固体Cあ
るいはメタル中のCと第+61 、 +71式の直接還
元反応を起こし第+41. +51式と(61、(71
式との反応の起こる割合によって吹き込んだ酸化鉄の脱
Si効率が支配される。
According to the experimental results, a part of the injected iron oxide causes a direct reduction reaction of the +61st and +71 formulas with solid C or C in the metal, resulting in a +41. +51 formula and (61, (71
The Si removal efficiency of the injected iron oxide is controlled by the rate at which the reaction with the formula occurs.

MO十〇(S)= Co(g)十M   ・・・・・・
・・・・・・ (6)MO+  O=OO(g)+M 
  ・・・・・・・・・・・・ (7)(M : Fe
、 Mn ) 第+41. (51式の反応が発熱反応であるのに対し
、第(6)、+7j式の直接還元反応は大きな吸熱を伴
う。
MO 10 (S) = Co (g) 1 M ・・・・・・
・・・・・・ (6) MO+ O=OO(g)+M
・・・・・・・・・・・・ (7) (M: Fe
, Mn) No. +41. (While the reaction of formula 51 is an exothermic reaction, the direct reduction reactions of formulas (6) and +7j involve a large endotherm.

本発明者らによる酸化鉄の吹込操業期間における休風時
の羽口付近レースウェイコークスサンプルによれば粒度
の細かいコークス粉が多いときほど吹込酸化鉄の脱Si
効率が悪いという結果が得られた。これは炭素質の粒度
が細かいほど比表面積が大きくなり、吹込酸化鉄が第(
6)式の直接還元反応によって消費される割合が大きく
なるためと考えられる。また同様のコークスサンプルに
よれば微粉炭吹き込みによってレースウェイ付近の炭素
質微粉の増加が観測された。
According to the raceway coke samples near the tuyere during wind cessation during the iron oxide injection operation period by the present inventors, the more finely sized coke powder there is, the more the blown iron oxide is deSied.
The result was that the efficiency was poor. This is because the finer the particle size of the carbonaceous material, the larger the specific surface area, and the blown iron oxide is
This is thought to be because the proportion consumed by the direct reduction reaction of formula 6) increases. Also, according to similar coke samples, an increase in carbonaceous fine powder near the raceway was observed due to pulverized coal injection.

従って酸化鉄と同時に送風羽口から微粉炭を吹き込むと
レースウェイ内およびその付近の炭素質微粉が増加して
、吹き込んだ酸化鉄が第(6)式の反応を起こす割合が
多くなり、酸化鉄の脱S1効率が低下するだけでなく、
溶鉄温度が低下し、そのため溶銑中のミ濃度の上昇をひ
きおこすものである。
Therefore, if pulverized coal is injected from the blast tuyere at the same time as iron oxide, the amount of carbonaceous fine powder in and around the raceway will increase, and the proportion of the injected iron oxide to undergo the reaction of equation (6) will increase. Not only does the S1 removal efficiency of
The temperature of the molten iron decreases, which causes an increase in the concentration of metal in the hot metal.

前に述べた加熱コークス充填層に溶銑とスラグを滴下さ
せる実験において、同一の溶銑・スラグ組成に対し、微
粉を含むコークスを充填した実験を行った結果、第3表
に示す如く微粉を含まない場合に対し、溶銑の81濃度
の低下中が減少し、c。
In the experiment in which hot metal and slag were dropped into the heated coke-packed bed described above, we conducted an experiment in which the same hot metal and slag composition was filled with coke containing fine powder, and as shown in Table 3, it did not contain fine powder. For the case, the 81 concentration of hot metal decreases while c.

ガスの発生量が増加し、脱Si効率が低下することが確
認された。
It was confirmed that the amount of gas generated increased and the Si removal efficiency decreased.

第  3  表 そこで本発明者らは、酸化鉄と微粉炭とを各々°独立し
た送風羽口よシ吹き込む方法を着想した。
Table 3 Therefore, the present inventors came up with a method of blowing iron oxide and pulverized coal through independent tuyeres.

そしてこの方法を実炉でも実施したところ溶銑温度低下
及び溶銑中のS濃度上昇なり、Si濃度を低下できた。
When this method was implemented in an actual furnace, the temperature of the hot metal was lowered, the S concentration in the hot metal increased, and the Si concentration could be reduced.

基礎実験結果をもとに、この効果の発現メカニズムは、
次ぎのように考えられる。酸化鉄と微粉炭を各々独立し
た送風羽口から高炉内へ吹き込むことによって、吹き込
んだ酸化鉄が粒度の細かい炭素質固体とレースウェイ内
およびその近傍で共存しないため、酸化鉄が固体炭素質
との第(6)式の直接還元反応によって消費される割合
が低減され、酸化鉄の脱Si効率が向上し、溶銑温度の
低下、S濃度の上昇が防止できる。
Based on basic experimental results, the mechanism by which this effect occurs is as follows.
It can be thought of as follows. By blowing iron oxide and pulverized coal into the blast furnace through independent blast tuyeres, the blown iron oxide does not coexist with fine-grained carbonaceous solids in or near the raceway, so that iron oxide is mixed with solid carbonaceous solids. The proportion consumed by the direct reduction reaction of formula (6) is reduced, the efficiency of removing Si from iron oxide is improved, and a decrease in hot metal temperature and an increase in S concentration can be prevented.

(実施例〕 次ぎに本発明の実施例について説明する。(Example〕 Next, examples of the present invention will be described.

27本の送風羽口を有する高炉において、27本の送風
羽口のうち、1本おきの14本の羽口よシ微粉炭を85
h/l−p吹き込み、残シ13本の送風羽口よシ焼結鉱
粉を171w/l−p吹き込んだ(実施例1)。
In a blast furnace with 27 blast tuyeres, 85 pulverized coal is poured into every other 14 tuyere out of the 27 blast tuyeres.
h/l-p blowing, and 171 w/l-p of sintered ore powder was blown through the remaining 13 blowing tuyeres (Example 1).

このときの溶銑温度は1510℃、Si濃度は0.18
%、S濃度は0.025%となった。また焼結鉱粉の替
シにブラジル系のペレットフィードを171w/l−p
吹き込んだ(実施例2)ときは溶銑温度が1509℃、
St濃度0.20%、S濃度0.027%、更にペレッ
トフィードと石灰石粉との混合物(ペレットフィード1
7kf/l−p、石灰石7kg八−p)を吹き込んだ(
実施例3)ところ、溶銑温度が1509℃、Si濃度0
.18%、S濃度は0.024%となった。これらの実
施結果を、先に述べた比較例、従来例とともに第4表に
示す。
The hot metal temperature at this time was 1510℃, and the Si concentration was 0.18.
%, the S concentration was 0.025%. In addition, 171w/l-p of Brazilian pellet feed was used as a replacement for sintered ore powder.
When blowing (Example 2), the hot metal temperature was 1509°C,
St concentration 0.20%, S concentration 0.027%, and a mixture of pellet feed and limestone powder (pellet feed 1
7kf/l-p, limestone 7kg8-p) was blown into (
Example 3) However, the hot metal temperature was 1509°C and the Si concentration was 0.
.. 18%, and the S concentration was 0.024%. These results are shown in Table 4 together with the comparative example and conventional example described above.

第  4  表 (発明の効果〕 以上述べてきたように本発明によれば微粉炭と酸化鉄類
を同一の送風羽口よシ混合して吹き込む方法に比べ、同
一の酸化鉄量の吹き込みにょシ、よシ低いSi濃度でし
かも温度が高<、S濃度の低い溶銑が得られ鉄鋼製造コ
ストの低減に寄与するところ大である。
Table 4 (Effects of the Invention) As described above, according to the present invention, compared to a method in which pulverized coal and iron oxides are mixed and blown into the same blowing tuyeres, the same amount of iron oxides can be blown into the same amount of iron oxides. It is possible to obtain hot metal with a low Si concentration and a high temperature, and a low S concentration, which greatly contributes to reducing steel manufacturing costs.

Claims (1)

【特許請求の範囲】[Claims] 微粉炭と酸化鉄類を各々独立した送風羽口から高炉内に
吹き込むことを特徴とする高炉操業方法。
A blast furnace operating method characterized by blowing pulverized coal and iron oxides into the blast furnace through independent blast tuyeres.
JP7135785A 1985-04-04 1985-04-04 Method for operating blast furnace Pending JPS61231109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7135785A JPS61231109A (en) 1985-04-04 1985-04-04 Method for operating blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7135785A JPS61231109A (en) 1985-04-04 1985-04-04 Method for operating blast furnace

Publications (1)

Publication Number Publication Date
JPS61231109A true JPS61231109A (en) 1986-10-15

Family

ID=13458158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7135785A Pending JPS61231109A (en) 1985-04-04 1985-04-04 Method for operating blast furnace

Country Status (1)

Country Link
JP (1) JPS61231109A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63109108A (en) * 1986-10-28 1988-05-13 Nisshin Steel Co Ltd Method for operating blast furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63109108A (en) * 1986-10-28 1988-05-13 Nisshin Steel Co Ltd Method for operating blast furnace

Similar Documents

Publication Publication Date Title
US5611838A (en) Process for producing an iron melt
TW518366B (en) Method of producing molten iron in duplex furnaces and molten iron product manufactured thereby
US4124404A (en) Steel slag cement and method for manufacturing same
JP5297077B2 (en) Method for producing ferromolybdenum
US3912501A (en) Method for the production of iron and steel
US4526612A (en) Method of manufacturing ferrosilicon
US4756748A (en) Processes for the smelting reduction of smeltable materials
JPS6164807A (en) Melt reduction method of iron ore
JP2011246760A (en) Method of manufacturing ferromolybdenum, and ferromolybdenum
CA2659559C (en) A method for the commercial production of iron
JPS61231109A (en) Method for operating blast furnace
SU1069632A3 (en) Method for making ferromanganese or ferrosilicon-manganese
JPS6250544B2 (en)
JPS6036613A (en) Production of raw molten nickel-containing stainless steel
US5401464A (en) Solid state reaction of silicon or manganese oxides to carbides and their alloying with ferrous melts
JP2003147430A (en) Reducing agent for steelmaking, and steelmaking method
RU2186854C1 (en) Method of blast-furnace smelting
WO1997012066A1 (en) Chromium ore smelting reduction process
JP2666397B2 (en) Hot metal production method
JP2666396B2 (en) Hot metal production method
JPH0524961B2 (en)
US3640701A (en) Direct reduction of oxides
JPS5834109A (en) Blowing method for low si iron
JPS6232243B2 (en)
EA045165B1 (en) METHOD AND INSTALLATION FOR MELTING AGGLOMERATES