JPS6123074B2 - - Google Patents

Info

Publication number
JPS6123074B2
JPS6123074B2 JP3841379A JP3841379A JPS6123074B2 JP S6123074 B2 JPS6123074 B2 JP S6123074B2 JP 3841379 A JP3841379 A JP 3841379A JP 3841379 A JP3841379 A JP 3841379A JP S6123074 B2 JPS6123074 B2 JP S6123074B2
Authority
JP
Japan
Prior art keywords
corrosion
welding
stainless steel
alloy
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3841379A
Other languages
Japanese (ja)
Other versions
JPS55133897A (en
Inventor
Isamu Asakawa
Toshio Morimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP3841379A priority Critical patent/JPS55133897A/en
Publication of JPS55133897A publication Critical patent/JPS55133897A/en
Publication of JPS6123074B2 publication Critical patent/JPS6123074B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/004Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of a metal of the iron group

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は溶接部が苛性アルカリ溶液に対して優
れた耐食性を有するフエライト系ステンレス鋼と
Ni系金属との溶接方法に関する。 苛性アルカリ、例えばその代表的な苛性ソーダ
(NaOH)の製造方法は水銀問題により従来広く
採用されて来た水銀電解法から融膜電解法への転
換が急速に進められている。しかしこの融膜電解
法は水銀電解法と異なり、その製造工程におい
て、塩素酸ソーダ(NaClO3)や塩化ナトリウム
(NaCl)などの不純物がかなり混入しているた
め、従来の水銀電解法による苛性ソーダ溶液を取
扱う材料として用いられてきた金属Ni、Ni基合
金例えばInconel 600、あるいはSUS 316L等のオ
ーステナイト系高級ステンレス鋼は隔膜電解法の
装置材料として使用された場合、ある種の使用部
位、例えばNaOH水溶液の濃縮工程においては激
しい腐食を受け、またこれらの材料の不充分な耐
摩耗性が関与してエロージヨンも進行し、その寿
命を著しく短かくしている。 上述のような腐食及び摩耗のきびしい環境にも
耐えうる金属材料について、近年種々検討がなさ
れ、高Crフエライト系ステンレス鋼の良好な特
性を示すことが見出されている。この結果腐食あ
るいは摩耗問題を引き起している苛性アルカリ製
造装置においては、金属Ni、Ni基合金から高Cr
フエライト系ステンレス鋼に変換されつつある。
しかしその全面変換はコストがかさむため特に腐
食あるいは摩耗の激しい箇所のみ変換し、他は従
来の材料をそのまま使用すると経済的である。 この局部的な材料変更においては必然的に金属
Ni、Ni基合金と高Crフエライト系ステンレス鋼
との接合例えば溶接が伴なう。この場合少なくと
も溶接部の苛性アルカリ溶液に接触する側の溶接
表面では金属Ni、Ni基金属と同等程度の耐食性
が必要であるが、この異材溶接に際して、従来よ
り使われてきた金属Ni、Ni基合金又は高クロム
フエライト系ステンレス鋼等のいずれの溶加材を
用いても必要とする耐食性が得られず、そのため
苛性アルカリ環境で使用する場合には高クロムフ
エライト系ステンレス鋼と金属Ni、Ni基合金と
の異材溶接は全く行なわれなかつた。高クロムフ
エライト系ステンレス鋼と金属Ni、Ni基合金を
これらと同種の溶加材を用いて溶融溶接すると溶
接部は互いに金属が拡散し、新しい合金組成が生
成し、その部分の耐食性が悪くなる。 本発明者らは苛性アルカリ溶液に使用する場合
の高クロムフエライト系ステンレス鋼と金属Ni
あるいはNi70%以上のNi基合金(以下これらを
Ni系金属と云う)との溶融溶接で、所謂金属の
相互拡散を介した溶接部について鋭意検討した結
果、溶接部の組成が特定の範囲内にあることが、
優れた耐食性及び装置材料として充分な機械的性
質を賦与するために必須要件であるこをを見出し
た。 以下、本発明を詳しく説明する。 溶融溶接においては、溶接部は微視的な合金組
成が各成分によつて異なつた所謂変動域となる。
そこで先ずこの溶接部の変動域を微視的な面積単
位で腐食挙動を観察した結果、耐食性の面から
Cr25〜35%(%は重量基準、以下同じ)のフエ
ライト系ステンレス鋼とNi系金属との溶接部の
変動域の合金組成が添付図面第1図のA(Cr25
%、Fe75%)、Fe(Fe100%)、C(Ni70%、
Fe30%)、B(Cr30%、Fe30%、Ni40%)に囲
まれた範囲外にあることが必要であることがわか
つた。腐食はアルカリ溶液に接触する部分が問題
となるので、この溶接部においてもその合金組成
はアルカリ溶液に接する部分が上記要件を満足す
ればよい。例えば溶加材を使用する溶接では一般
に溶接部の裏面は両母材が直接接触し、溶着する
ので、その部分は上記の組成範囲外となることも
あるが、この場合は溶接部の裏面をアルカリ溶液
に接触しない側に使用すればよい。 次に溶接部の機械的性質と溶接割れ性の面から
検討し、さらに溶加材を使用して溶接する場合、
これらの材料の製作の難易性の面から検討した結
果、溶接部の組成は添付第1図のFe−Cr−Ni三
元合金組成図のE(Cr35%、Fe65%)、D
(Cr65%、Ni35%)、Cr(Cr100%)の範囲外が必
要であることが判明した。 即ち、本発明において溶接部の少なくとも苛性
アルカリ溶液に接触する部分の合金組成は上記の
範囲を除外した添付第1図のA,B,C,Ni
(Ni100%)、D,Eに囲まれた斜線部分の範囲内
であることが必要である。 本発明において、高クロムフエライト系ステン
レス鋼の組成はCr25〜35%の範囲である。Crが
25%未満では苛性アルカリ溶液に対して充分な耐
食性が得られず、また35%を越えると加工性、靭
性低下のため実用上の装置材料の製作が困難であ
る。このフエライト系ステンレス鋼に少量のMo
を含有させることもできる。Moの添加は鋼を硬
くするので耐摩耗性上は好ましいが、多量に加え
ると加工性が悪くなるので、5%以下が望まし
い。 また一般にフエライト系ステンレス鋼の加工性
等をよくするため、C、Nの固定化剤として知ら
れているNb、Ta、Ti及び脱硫、脱酸、脱窒効果
を有するCaあるいは希土類元素であるCe、La等
を少量添加してもよい。またフエライト系の構造
を失わない範囲で少量のNi、即ち約5%以下程
度のNiを含有させることもできる。残部はFe及
び不可避的不純物である。 Ni系金属は耐食性を充分高くするため金属Ni
又はNi70%以上のNi合金である。Ni合金の残部
は主としてCr及びFeからなる。この系の合金に
は例えばNi76%、Cr16%、Fe7%のInconel
Alloy600がある。 本発明の溶接方法は上記したフエライト系ステ
ンレス鋼とニツケル系金属との少なくともアルカ
リ溶液に接触する部分における溶接部の合金組成
が、添化図面で先に特定した範囲内に入るように
溶接するものである。 本発明は上記二つの母材を特定の溶加材を介し
て溶接するもので溶接部の1方の側のみアルカリ
溶接に接触する場合に使用可能である。 次に本発明の溶接方法について図面を参考にし
て具体的に説明する。第2図はフエライト系ステ
ンレス鋼1とNi系金属2とが溶接された場合を
示す。3はその溶着部である。第2図において溶
着部の微視的変動域の各組成を第1図のA,B,
C,Ni,D,Eで囲まれた範囲(斜線部分)に
入るようにするには、溶加材の組成を第1図の
B,J(Ni66.7%、Cr33.3%)、D,I(Ni18.8
%、Cr51.2%、Fe30%)に囲まれた範囲とする
必要がある。この場合、溶加材の加工性、表面溶
着部の組成変動域を確実にA,B,C,Ni,
C,Eの範囲におさめることからFeの含有量は
あまり高くない方がよいので、好ましくは溶加材
の組成は第1図のD,F(Cr59.5%、Ni30.5%、
Fe10%)、G(Cr35%、Ni55%、Fe10%)、H
(Cr35%、Ni65%)に囲まれた範囲である。この
溶着部の下面は直接フエライト系ステンレス鋼1
とニツケル系金属2とが溶着し、微視的な部分で
は第1図のA,B,C,Feで囲まれた組成の一
部が現われるので使用に際してはこの部分の側は
アルカリ溶液に接触しないようにする。 実験例 溶接部の合金組成と腐食性及び加工性を調べる
ため同一組成の母材と溶加材を用い、これらの組
成を種々変えてタングステンイナートガス溶接を
行なつた。この溶接部分を試験片とし、148℃で
50%NaOH−5%NaCl溶液中に、500時間浸漬し
て重量の減少を測定した。また別に溶接部の靭性
を調べるため溶接母材のU字曲げ試験(溶接部が
U字形になるように曲げる)を行なつてその割れ
性を観察した。これらの結果を表1に示す。
The present invention uses ferritic stainless steel in which the welded part has excellent corrosion resistance against caustic alkaline solutions.
Concerning welding methods with Ni-based metals. Due to the problem of mercury, the method for producing caustic alkalis, such as caustic soda (NaOH), which is a typical example, is rapidly changing from the conventionally widely used mercury electrolysis method to the melted film electrolysis method. However, this melting film electrolysis method differs from the mercury electrolysis method in that the manufacturing process involves a considerable amount of impurities such as sodium chlorate (NaClO 3 ) and sodium chloride (NaCl). Metallic Ni, Ni-based alloys such as Inconel 600, or austenitic high-grade stainless steels such as SUS 316L, which have been used as materials for handling diaphragm electrolysis, can be used in certain areas, such as NaOH aqueous solutions. During the concentration process, these materials undergo severe corrosion, and due to the insufficient wear resistance of these materials, erosion also progresses, significantly shortening their service life. In recent years, various studies have been conducted on metal materials that can withstand the above-mentioned severe corrosion and abrasion environments, and it has been found that high Cr ferritic stainless steel exhibits good properties. As a result, in caustic alkali manufacturing equipment that causes corrosion or wear problems, metals such as Ni and Ni-based alloys are
It is being converted to ferritic stainless steel.
However, since converting the entire structure is costly, it is more economical to convert only the parts that are particularly severely corroded or worn, and use conventional materials as is for the rest. In this local material change, metal
It involves joining, for example, welding, Ni or Ni-based alloys to high Cr ferritic stainless steel. In this case, at least the welding surface on the side of the weld that comes into contact with the caustic solution must have corrosion resistance equivalent to that of metallic Ni or Ni-based metals. The required corrosion resistance cannot be obtained by using filler metals such as alloys or high chromium ferritic stainless steel, so when used in caustic environments, high chromium ferritic stainless steel and metallic Ni or Ni-based No dissimilar metal welding with alloys was performed. When high chromium ferritic stainless steel and metal Ni or Ni-based alloy are fusion welded using the same type of filler metal, the metals will diffuse into each other in the weld, creating a new alloy composition, and the corrosion resistance of that part will deteriorate. . The present inventors have investigated high chromium ferritic stainless steel and metallic Ni when used in caustic solutions.
Or a Ni-based alloy containing 70% or more Ni (hereinafter referred to as these)
As a result of intensive study of the weld zone through so-called interdiffusion of metals in fusion welding with Ni-based metals, we found that the composition of the weld zone is within a specific range.
It has been found that this is an essential requirement for imparting excellent corrosion resistance and sufficient mechanical properties as a device material. The present invention will be explained in detail below. In fusion welding, the weld zone has a so-called variable range in which the microscopic alloy composition differs depending on each component.
Therefore, we first observed the corrosion behavior in the fluctuation range of this welded part in microscopic area units, and found that from the perspective of corrosion resistance.
A (Cr25
%, Fe75%), Fe (Fe100%), C (Ni70%,
It was found that it is necessary to be outside the range surrounded by B (30% Cr, 30% Fe, 40% Ni). Since corrosion is a problem in the parts that come into contact with the alkaline solution, the alloy composition of this welded part only needs to satisfy the above requirements in the parts that come into contact with the alkaline solution. For example, in welding using filler metal, the back side of the weld is generally in direct contact with the two base metals and welded together, so that part may fall outside the above composition range. It can be used on the side that does not come into contact with the alkaline solution. Next, we will consider the mechanical properties of the weld and weld cracking, and if welding using filler metal,
As a result of considering the difficulty of manufacturing these materials, the composition of the welded part was determined to be E (35% Cr, 65% Fe) and D in the Fe-Cr-Ni ternary alloy composition diagram in attached Figure 1.
(Cr65%, Ni35%) and Cr (Cr100%) were found to be outside the range. That is, in the present invention, the alloy composition of at least the part of the welded part that comes into contact with the caustic alkaline solution is A, B, C, Ni in the attached Figure 1 excluding the above range.
(Ni 100%), must be within the shaded area surrounded by D and E. In the present invention, the composition of the high chromium ferritic stainless steel is in the range of 25 to 35% Cr. Cr
If it is less than 25%, sufficient corrosion resistance against caustic alkaline solutions cannot be obtained, and if it exceeds 35%, workability and toughness deteriorate, making it difficult to produce practical equipment materials. A small amount of Mo is added to this ferritic stainless steel.
It is also possible to contain. Addition of Mo hardens the steel, so it is preferable in terms of wear resistance, but if added in a large amount, workability deteriorates, so it is preferably 5% or less. Additionally, in order to generally improve the workability of ferritic stainless steel, Nb, Ta, and Ti, which are known as fixing agents for C and N, and Ca, which has desulfurization, deoxidation, and denitrification effects, or Ce, which is a rare earth element, are added. , La, etc. may be added in small amounts. It is also possible to contain a small amount of Ni, ie, about 5% or less Ni, as long as the ferrite structure is not lost. The remainder is Fe and unavoidable impurities. Ni-based metals are made of metal Ni in order to have sufficiently high corrosion resistance.
Or a Ni alloy containing 70% or more Ni. The remainder of the Ni alloy consists primarily of Cr and Fe. This type of alloy includes, for example, Inconel containing 76% Ni, 16% Cr, and 7% Fe.
There is Alloy600. The welding method of the present invention involves welding the above-mentioned ferritic stainless steel and nickel metal such that the alloy composition of the welded part, at least in the part that comes into contact with the alkaline solution, falls within the range specified earlier in the accompanying drawing. It is. The present invention welds the above-mentioned two base materials through a specific filler metal, and can be used when only one side of the weld is in contact with alkaline welding. Next, the welding method of the present invention will be specifically explained with reference to the drawings. FIG. 2 shows a case where ferritic stainless steel 1 and Ni-based metal 2 are welded. 3 is the welded part. In Figure 2, each composition in the microscopic fluctuation range of the weld is shown as A, B in Figure 1,
In order to fit within the range (hatched area) surrounded by C, Ni, D, and E, change the composition of the filler metal to B, J (66.7% Ni, 33.3% Cr), and D in Figure 1. ,I(Ni18.8
%, Cr51.2%, Fe30%). In this case, the workability of the filler metal and the composition variation range of the surface weld part should be adjusted to A, B, C, Ni,
Since the Fe content should not be too high in order to keep it within the range of C and E, the composition of the filler metal is preferably D and F in Figure 1 (59.5% Cr, 30.5% Ni,
Fe10%), G (Cr35%, Ni55%, Fe10%), H
(35% Cr, 65% Ni). The bottom surface of this weld is made of ferritic stainless steel 1.
and nickel-based metal 2 are welded together, and a part of the composition surrounded by A, B, C, and Fe in Figure 1 appears in the microscopic part, so when using this part, the side of this part should be in contact with the alkaline solution. Try not to. Experimental example In order to investigate the alloy composition, corrosion resistance, and workability of the weld zone, tungsten inert gas welding was performed using base metal and filler metal of the same composition and varying these compositions. This welded part was used as a test piece, and it was heated to 148℃.
The weight loss was measured after immersion in a 50% NaOH-5% NaCl solution for 500 hours. Separately, in order to examine the toughness of the welded part, a U-shaped bending test (the welded part was bent into a U-shape) was conducted on the welded base material, and its crackability was observed. These results are shown in Table 1.

【表】 × 曲げ試験にて割れが生じたもの
実施例 1 板厚2mmの高純度30%Cr−2%Mo−残Fe合金
鋼と合金Niを第2図の方法でタングステンイナ
ートガス溶接(以下TIG溶接と云う)を行なつた
後、30mm×20mmの試験片(溶接線方向の長さ20
mm)を切り出し、温度148℃で50%NaOH−5%
NaCl溶液中に500時間浸漬試験をして、重量の変
化の測定及び溶接部の表面観察を行なつた。溶加
材は41%Cr−2%Fe−残Niである。なお比較例
として、同一方法で但し、溶加材に金属Niを用
いて溶接したものを試験した。 その結果腐食減量はそれぞれ0.023g/m2・hr、
0.18g/m2・hrであり、表面観察結果本発明のもの
については表面は全く腐食の形跡がみられなかつ
たが、裏面にわずかな局部腐食がみられた。一方
比較例の試料については表面の30%Cr−2%Mo
−残Fe合金側の溶着部及び裏面の溶着部のかな
りの部分に腐食の跡がみられた。なお、用いた母
材の腐食減量は同一腐食条件において、30%Cr
−2%Mo−残Fe合金及び金属Niはそれぞれ0.021
g/m2・hr、0.019g/m2・hrである。 実施例 2 第3図に示すように板厚6mmの合金Niの板7
に穴(32.0mm径)をあけ、外径31.8mm、厚さ1.6mm
の30%Cr−2%Mo−残Feの管8をとりつけ、50
%Cr−6%Fe−残Ni溶加材を用いてTIG溶接に
より完全にシール溶接して、実施例1と同一の腐
食条件で耐食性の試験を行なつた後、切断して表
面溶接部近傍の腐食状況を観察した。その結果溶
着部表面側において全く腐食の形跡はみられなか
つた。 実施例 3 板厚2mmの高純度30%Cr−2%Mo−残Fe合金
鋼とNi76%、Cr16%、Fe7%のNi合金を第2図の
方法でTIG溶接を行なつた後、30mm×20mmの試験
片(溶接線方向の長さ20mm)を切り出し、温度
148℃で50%NaOH−5%NaCl溶液中に500時間浸
漬試験をして、重量の変化の測定及び溶接部の表
面観察を行なつた。(実施例1と同じ方法)溶加
材は35%Cr−25%Fe−残Niである。なお比較例
として、同一方法で、但し、溶加材に金属Niを
用いて溶接したものを試験した。 その結果腐食減量はそれぞれ0.022g/m2・hr、
0.14g/m2・hrであり、表面観察結果は本発明のも
のについては表面は全く腐食の形跡がみられなか
つたが、裏面にわずかな局部腐食がみられた。一
方比較例の試料については表面の30%Cr−2%
Mo−残Fe合金側の溶着部及び裏面の溶着部のか
なりの部分に腐食の跡がみられた。 実施例 4〜6 板厚2mmの高純度30%Cr−2%Mo−残Fe合金
鋼と金属Niを第2図の方法でTIG溶接を行なつた
後、実施例3と同一の方法の試験を行なつた。溶
加材は(イ)60%Cr−40%Ni合金、(ロ)50%Cr−35%
Ni−15%Fe、(ハ)45%Cr−30%Ni−25%Feであ
る。なお比較例として、同一方法で、但し、溶加
材に70%Cr−30%Ni合金を用いて溶接したもの
を試験した。 その結果、腐食減量はそれぞれ(イ)0.017g/m2・h
r、(ロ)0.018g/m2・hr、(ハ)0.020g/m2・hr、0.019
g/
m2・hrであり、表面観察結果は双方ともに表面及
び裏面ともに全く局部的な腐食の形跡はみられな
かつた。しかし溶接部のU字曲げ試験(溶接部が
試験片の中心にくるように切り出した30mm×100
mmの試験片を、溶接部がU字形の底部として、U
字形に曲げる)を行なつたところ、本発明による
試験片にはいずれも異状が認められなかつたが比
較例の溶接部には割れが認められた。
[Table] × Example of cracking in bending test 1 High purity 30% Cr-2% Mo-residue Fe alloy steel with a thickness of 2 mm and alloy Ni were tungsten inert gas welded (hereinafter referred to as TIG) using the method shown in Figure 2. After welding), a 30mm x 20mm test piece (length 20mm in the welding line direction) was
mm) and cut out 50% NaOH-5% at a temperature of 148℃.
A 500-hour immersion test was conducted in a NaCl solution, and changes in weight were measured and the surface of the welded part was observed. The filler metal was 41% Cr-2% Fe-remaining Ni. As a comparative example, welding was performed using the same method but using Ni metal as the filler metal. As a result, the corrosion weight loss was 0.023g/m 2 hr, respectively.
0.18 g/m 2 ·hr, and as a result of surface observation, no evidence of corrosion was observed on the surface of the product of the present invention, but slight localized corrosion was observed on the back surface. On the other hand, for the sample of comparative example, 30%Cr-2%Mo on the surface
- Traces of corrosion were seen in a considerable part of the welded part on the residual Fe alloy side and the welded part on the back side. The corrosion loss of the base material used was 30%Cr under the same corrosion conditions.
-2%Mo-Remaining Fe alloy and metallic Ni are each 0.021
g/m 2 ·hr, 0.019g/m 2 ·hr. Example 2 As shown in Fig. 3, an alloy Ni plate 7 with a plate thickness of 6 mm was prepared.
Drill a hole (32.0mm diameter), outer diameter 31.8mm, thickness 1.6mm
Attach a tube 8 of 30% Cr-2% Mo-remaining Fe, and
%Cr-6%Fe-residue Ni filler metal was completely sealed by TIG welding, and after conducting a corrosion resistance test under the same corrosion conditions as in Example 1, it was cut and the area near the surface weld was The corrosion status was observed. As a result, no evidence of corrosion was observed on the surface side of the weld. Example 3 After performing TIG welding on a 2 mm thick high purity 30% Cr-2% Mo-residue Fe alloy steel and a Ni alloy containing 76% Ni, 16% Cr and 7% Fe using the method shown in Figure 2, a 30mm× A 20 mm test piece (length 20 mm in the welding line direction) was cut out, and the temperature
A 500-hour immersion test was conducted in a 50% NaOH-5% NaCl solution at 148°C, and changes in weight were measured and the surface of the welded part was observed. (Same method as in Example 1) The filler metal was 35% Cr-25% Fe-remaining Ni. As a comparative example, welding was conducted using the same method except that Ni metal was used as the filler metal. As a result, the corrosion weight loss was 0.022g/ m2・hr, respectively.
0.14 g/m 2 ·hr, and the surface observation results showed that there was no evidence of corrosion at all on the surface of the product of the present invention, but slight localized corrosion was observed on the back surface. On the other hand, for the comparative sample, the surface was 30%Cr-2%
Traces of corrosion were seen on the welded area on the Mo-residue Fe alloy side and in a considerable part of the welded area on the back side. Examples 4 to 6 After performing TIG welding on high-purity 30% Cr-2% Mo-residue Fe alloy steel with a plate thickness of 2 mm and metallic Ni using the method shown in Fig. 2, tests were conducted using the same method as in Example 3. I did this. Filler metal is (a) 60% Cr-40% Ni alloy, (b) 50% Cr-35%
Ni-15% Fe, (c) 45% Cr-30% Ni-25% Fe. As a comparative example, welding was conducted using the same method but using a 70% Cr-30% Ni alloy as the filler metal. As a result, the corrosion weight loss was (a) 0.017 g/m 2 h
r, (b) 0.018g/m 2・hr, (c) 0.020g/m 2・hr, 0.019
g/
m 2 ·hr, and the surface observation results showed that there was no evidence of localized corrosion on both the front and back surfaces. However, in a U-bending test of the welded part (a 30 mm x 100
mm test piece, the welded part is the U-shaped bottom.
When the test specimens according to the present invention were bent into a letter shape, no abnormalities were observed in any of the test specimens according to the present invention, but cracks were observed in the welded portions of the comparative examples.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCr−Ni−Fe三元合金組成図である。
第2図は30%Cr−2%Moフエライト系ステンレ
ス鋼と金属Niとを溶接した状態を示す図であ
る。第3図は金属Ni板にフエライト系ステンレ
ス管を溶接した状態を示す図である。図において
1……フエライト系ステンレス鋼、2……ニツケ
ル系金属、3……溶着部、7……金属ニツケル
板、8……フエライト系ステンレス管。
FIG. 1 is a ternary alloy composition diagram of Cr-Ni-Fe.
FIG. 2 is a diagram showing a state in which 30% Cr-2% Mo ferritic stainless steel and metal Ni are welded. FIG. 3 is a diagram showing a state in which a ferrite stainless steel pipe is welded to a metal Ni plate. In the figure, 1... ferritic stainless steel, 2... nickel metal, 3... welded part, 7... metal nickel plate, 8... ferritic stainless steel pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 Cr25〜35%のフエライト系ステンレス鋼と
Ni70%以上のNi系金属とを、添付第1図のB
(Cr30%、Fe30%、Ni40%)、J(Ni66.7%、
Cr33.3%)、D(Cr65%、Ni35%)、I(Ni18.8
%、Cr51.2%、Fe30%)に囲まれた組成の溶加
材を用いて溶接することを特徴とする溶接部が苛
性アルカリ溶液に対して優れた耐食性を有するフ
エライト系ステンレス鋼とNi系金属との溶接方
法。
1 Ferritic stainless steel with Cr25-35%
B of attached Figure 1 with Ni-based metal containing 70% or more of Ni.
(Cr30%, Fe30%, Ni40%), J (Ni66.7%,
Cr33.3%), D (Cr65%, Ni35%), I (Ni18.8
%, Cr51.2%, Fe30%) Ferritic stainless steel and Ni-based welded parts have excellent corrosion resistance against caustic solutions. Method of welding with metal.
JP3841379A 1979-04-02 1979-04-02 Bonding member for caustic alkali solution resistance of ferrite-base stainless steel and nickel-base metal Granted JPS55133897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3841379A JPS55133897A (en) 1979-04-02 1979-04-02 Bonding member for caustic alkali solution resistance of ferrite-base stainless steel and nickel-base metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3841379A JPS55133897A (en) 1979-04-02 1979-04-02 Bonding member for caustic alkali solution resistance of ferrite-base stainless steel and nickel-base metal

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP26752684A Division JPS60180692A (en) 1984-12-20 1984-12-20 Welding method of ferritic stainless steel and nickel metal

Publications (2)

Publication Number Publication Date
JPS55133897A JPS55133897A (en) 1980-10-18
JPS6123074B2 true JPS6123074B2 (en) 1986-06-04

Family

ID=12524609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3841379A Granted JPS55133897A (en) 1979-04-02 1979-04-02 Bonding member for caustic alkali solution resistance of ferrite-base stainless steel and nickel-base metal

Country Status (1)

Country Link
JP (1) JPS55133897A (en)

Also Published As

Publication number Publication date
JPS55133897A (en) 1980-10-18

Similar Documents

Publication Publication Date Title
EP0051979B1 (en) Nickel-base welding alloy
CN101979210B (en) Method for generating a weld deposit
JP2010500178A (en) Weld alloys and products for use in welding, weldments, and methods of manufacturing weldments
WO2001010591A1 (en) Martensite stainless steel welded steel pipe
US6042782A (en) Welding material for stainless steels
EP0867256B1 (en) Welding material for stainless steels
CN109570824B (en) Sulfuric acid corrosion resistant pure austenitic stainless steel welding rod with high nickel and copper content and low thermal crack sensitivity and preparation method thereof
JP4959099B2 (en) Method for producing heat exchanger and brazing material composition useful therefor
JP2005529752A (en) Iron-chromium-based brazing material
KR20000047839A (en) Welding electrode made of a nickel-based alloy and the corresponding alloy
WO1998022255A1 (en) Wire for welding high-chromium steel
ITMI962136A1 (en) COATED ELECTRODE OF THE LOW HYDROGEN TYPE FOR ARC WELDING OF HIGH RESISTANCE CR-MO STEELS
Walker Duplex and high alloy stainless steels–corrosion resistance and weldability
KR20180034646A (en) Wire for submerged arc welding
US3070875A (en) Novel brazing alloy and structures produced therewith
NO304299B1 (en) Method of arc welding a tube and electrode coated with high cellulose type
JPH08267248A (en) Method for butt welding of clad pipe
JP4724685B2 (en) High temperature corrosion resistant Ni-base alloy welded structure and heat exchanger
JPS6123074B2 (en)
JPS622920B2 (en)
JP2000015447A (en) Welding method of martensitic stainless steel
JPH07214374A (en) High ni alloy welding wire
JP2003501557A (en) Welding alloy and article used for welding, welded article, and method for producing welded article
US3524765A (en) Welding rod for welding steel containing 9% ni
Kelly Stainless steels