JP2003501557A - Welding alloy and article used for welding, welded article, and method for producing welded article - Google Patents

Welding alloy and article used for welding, welded article, and method for producing welded article

Info

Publication number
JP2003501557A
JP2003501557A JP2001503027A JP2001503027A JP2003501557A JP 2003501557 A JP2003501557 A JP 2003501557A JP 2001503027 A JP2001503027 A JP 2001503027A JP 2001503027 A JP2001503027 A JP 2001503027A JP 2003501557 A JP2003501557 A JP 2003501557A
Authority
JP
Japan
Prior art keywords
less
boron
zirconium
manganese
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001503027A
Other languages
Japanese (ja)
Other versions
JP4919564B2 (en
JP2003501557A5 (en
Inventor
カイザー,サミュエル,ディー.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huntington Alloys Corp
Original Assignee
Inco Alloys International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/328,602 external-priority patent/US6242113B1/en
Application filed by Inco Alloys International Inc filed Critical Inco Alloys International Inc
Publication of JP2003501557A publication Critical patent/JP2003501557A/en
Publication of JP2003501557A5 publication Critical patent/JP2003501557A5/ja
Application granted granted Critical
Publication of JP4919564B2 publication Critical patent/JP4919564B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • B23K35/304Ni as the principal constituent with Cr as the next major constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

(57)【要約】 溶着物の製造に使用するためのニッケルクロム鉄合金。該合金は、重量%で、約27〜31.5のクロム、約7〜11の鉄、約0.005〜0.05の炭素、約1.0以下のマンガン(好ましくは0.30〜0.95のマンガン)、約0.60〜0.95のニオビウム、0.50未満のケイ素(好ましくは0.10〜0.30のケイ素)、0.01〜0.35のチタン、0.01〜0.25のアルミニウム、0.20未満の銅、1.0未満のタングステン、1.0未満のモリブデン、0.12未満のコバルト、0.10未満のタンタル、約0.10以下のジルコニウム(好ましくは0.002〜0.10のジルコニウム)、約0.01以下の硫黄、約0.01以下のホウ素(好ましくは0.001〜0.01のホウ素)、約0.02以下のリン、残余のニッケルおよび付随的な不純物で構成される。   (57) [Summary] Nickel-chromium iron alloy for use in the production of weldments. The alloy comprises, by weight, about 27-31.5 chromium, about 7-11 iron, about 0.005-0.05 carbon, about 1.0 or less manganese (preferably 0.30-0.95 manganese), about 0.60-0.95 niobium. Less than 0.50 silicon (preferably 0.10-0.30 silicon), 0.01-0.35 titanium, 0.01-0.25 aluminum, less than 0.20 copper, less than 1.0 tungsten, less than 1.0 molybdenum, less than 0.12 cobalt, less than 0.10 Tantalum, about 0.10 or less zirconium (preferably 0.002-0.10 zirconium), about 0.01 or less sulfur, about 0.01 or less boron (preferably 0.001-0.01 boron), about 0.02 or less phosphorus, residual nickel and Composed of various impurities.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】発明の分野 本発明は、ニッケルクロム鉄溶接合金、溶接物の製造に使用するための該合金
から作られた物品、ならびに溶接物および該溶接物の製造方法に関するものであ
る。
FIELD OF THE INVENTION The present invention relates to nickel-chromium-iron welding alloys, articles made from such alloys for use in the manufacture of weldments, as well as weldments and methods of making the weldments.

【0002】従来技術の簡単な説明 原子力発電に使用される装置を含めた、さまざまな溶接応用例において、溶接
物はいろいろな割れ現象に対する抵抗を備えることが要求される。こうした割れ
には、応力腐食割れのみならず、熱間割れ、冷間割れおよびルート割れが含まれ
る。
[0002] including the apparatus used in the brief description nuclear power of the prior art, in various welding applications, weldments are required to include resistance to various cracking phenomenon. Such cracks include hot corrosion, cold cracking and root cracking as well as stress corrosion cracking.

【0003】 商業用および軍事用の原子力発電は20世紀後半に登場するようになった。この
期間中に、産業界では、14〜15%のCrを含有する第一世代のNiCrFe合金が、30%
のオーダーでより高濃度のCrを含有する合金に取って代わった。この変化は、核
純水(nuclear pure water)中での応力腐食割れを、上記量のクロムを含有するこ
のタイプの合金で回避することが可能である、との発見に基づいていた。これら
の合金は20〜25年間にわたって使用されてきた。
[0003] Commercial and military nuclear power generation began to emerge in the second half of the 20th century. During this period, the industry has seen 30% of first-generation NiCrFe alloys containing 14-15% Cr.
Replaced with alloys containing higher concentrations of Cr. This change was based on the finding that stress corrosion cracking in nuclear pure water can be avoided with alloys of this type containing the above amounts of chromium. These alloys have been used for 20-25 years.

【0004】 原子力発電プラント内で大方の溶接および溶接部品を必要とする原子力発電装
置での具体的な応用例は、核蒸気発生器(nuclear steam generator)の製造であ
る。この蒸気発生装置は本質的には大きな管・シェル型熱交換器であり、原子炉
一次冷却媒からの二次水から水蒸気を発生させるものである。この蒸気発生器の
重要な構成部材は管板(tubesheet)である。それは、往々にして直径が15〜20フ
ィートで、板厚が1フィート以上もあり、そして通常は高力の低合金鋼から鍛造
されるが、良好な成形性を有しかつ核純水中で応力腐食割れに抵抗できるNiCrFe
合金で溶接被覆する必要がある。管板の寸法が原因で、溶着物は被覆中にかなり
の残留応力を受ける。さらに、溶着金属オーバーレイは数千の蒸気発生細管を受
け入れる場所にドリルで穴をあけた後に、再溶接可能でなければならない。ヘリ
ウム漏れタイト溶接部を作るために、これらの管はオーバーレイ溶着物にシール
溶接されねばならない。これらの溶接部は特別に高品質でなければならないし、
30〜50年の寿命を高い予測精度で提供しなければならない。さらに、オーバーレ
イ溶着物と溶接蒸気発生管はどちらも、割れに対する優れた抵抗性を備えなけれ
ばならない。この要件は、「凝固割れ」とも呼ばれる熱間割れおよび応力腐食割
れに対する抵抗に関して、既存の大部分の30%Cr溶接物により充足されている。
A particular application in nuclear power plants that require most welding and welded parts in nuclear power plants is the manufacture of nuclear steam generators. This steam generator is essentially a large tube / shell heat exchanger, and generates steam from secondary water from the reactor primary cooling medium. An important component of this steam generator is the tubesheet. It is often 15 to 20 feet in diameter, has a thickness of more than 1 foot, and is usually forged from high strength low alloy steels, but with good formability and in pure water. NiCrFe can resist stress corrosion cracking
Must be weld coated with alloy. Due to the size of the tubesheet, the weld deposit experiences significant residual stress during coating. In addition, the deposited metal overlay must be reweldable after drilling holes to receive thousands of steam generating capillaries. These tubes must be seal welded to the overlay weld to create a helium leak tight weld. These welds must be of exceptional quality and
It must provide a lifetime of 30 to 50 years with high prediction accuracy. In addition, both the overlay deposit and the weld steam generator tube must have good resistance to cracking. This requirement is met by most existing 30% Cr welds in terms of resistance to hot and stress corrosion cracking, also called "solidification cracking".

【0005】 熱間割れ抵抗と応力腐食割れ抵抗に加えて、管と管板の溶接ではルート割れ抵
抗が要求される。管−管板溶接は、管の周囲の溶着オーバーレイ材料のリングと
ともに管端部を融解して(溶加材を使用してまたは使用しないで)、管壁と管板
の穴との空間をシールすることにより行なわれる。管と管板の接合の溶接交差部
で、これらの溶接に割れが入る傾向がある。溶接部の根元(root)で発生する割れ
であるので、このタイプの割れは「ルート割れ」と言われる。既存の30%Cr溶接
合金はルート割れに対する抵抗性が無い。
In addition to hot cracking resistance and stress corrosion cracking resistance, root cracking resistance is required in the welding of pipes and tube sheets. Tube-tube sheet welding fuses the tube end (with or without filler material) with a ring of weld overlay material around the tube to seal the space between the tube wall and the tube sheet hole. It is done by doing. At the weld intersection of the tube-to-tube sheet joint, these welds tend to crack. This type of crack is called a "root crack" because it is a crack that occurs at the root of the weld. The existing 30% Cr weld alloy is not resistant to root cracking.

【0006】 遭遇する可能性のある第3のタイプの割れは冷間割れであり、これは「延性デ
ィップ割れ(ductility dip cracking)」としても知られている。この割れは溶接
凝固が完了した後の凝固状態でのみ発生する。凝固後、低温での溶接合金の体積
収縮の結果として、収縮応力が発達し始める。同時に、凝固が完了すると、数百
度の温度期間にわたり延性が急速に回復し、続いて一時的な延性低下が急激に起
こり、そして再びゆっくりとした延性の回復が室温に達するまで継続する。合金
がこの鋭い延性低下を示す時に、冷却の残留応力が十分に大きければ、固体状態
での割れが生じる可能性がある。これは、一般に用いられる温度で該応力に抵抗
するのに十分な強度または延性を備えていない微細組織構造の部分から生じる。
現在入手できる市販の30%Cr溶接合金は冷間割れに十分な抵抗力を備えていない
A third type of crack that may be encountered is cold cracking, also known as "ductility dip cracking". This crack occurs only in the solidified state after welding solidification is completed. After solidification, shrinkage stress begins to develop as a result of the volumetric shrinkage of the weld alloy at low temperatures. At the same time, when the solidification is complete, the ductility rapidly recovers over a temperature range of hundreds of degrees, followed by a sudden temporary decrease in ductility, and then again a slow recovery of ductility until room temperature is reached. When the alloy exhibits this sharp reduction in ductility, cracking in the solid state can occur if the residual stress of cooling is large enough. This results from portions of the microstructure that are not sufficiently strong or ductile to withstand the stresses at the temperatures commonly used.
Currently available commercial 30% Cr weld alloys do not have sufficient resistance to cold cracking.

【0007】発明の目的 本発明の目的は、熱間割れ、冷間割れ、ルート割れおよび応力腐食割れに対す
る抵抗に加えて、所望の強度と腐食抵抗を備えたニッケルクロム鉄溶接合金、な
らびに該合金から作られる溶接物を提供することである。 本発明の更なる目的は、特に原子力発電で使用される装置の組立に使用するの
に適したニッケルクロム鉄型の溶接合金を提供することである。
OBJECTS OF THE INVENTION It is an object of the present invention to provide nickel chrome iron weld alloys having desired strength and corrosion resistance in addition to resistance to hot cracking, cold cracking, root cracking and stress corrosion cracking, as well as said alloys. Is to provide weldments made from. A further object of the invention is to provide a nickel-chromium-iron-type weld alloy, which is particularly suitable for use in the assembly of equipment used in nuclear power generation.

【0008】発明の概要 本発明によると、溶着物の製造に使用されるニッケルクロム鉄合金が提供され
る。この合金は、重量%で、約27〜31.5のクロム、約7〜11の鉄、約0.005〜0.05
の炭素、約1.0以下のマンガン(好ましくは0.30〜0.95のマンガン)、約0.60〜0
.95のニオビウム、0.50未満のケイ素(好ましくは0.10〜0.30のケイ素)、0.01
〜0.35のチタン、0.01〜0.25のアルミニウム、0.20未満の銅、1.0未満のタング
ステン、1.0未満のモリブデン、0.12未満のコバルト、0.10未満のタンタル、約0
.10以下のジルコニウム(好ましくは0.002〜0.10のジルコニウム)、0.01未満の
硫黄、約0.01以下のホウ素(好ましくは0.001〜0.01のホウ素)、約0.02未満の
リン、残余のニッケルおよび付随的な不純物で構成される。
[0008] According to the Summary of the Invention invention, the nickel-chromium-iron alloys used in the manufacture of a weld deposit is provided. This alloy, by weight percent, is about 27-31.5 chromium, about 7-11 iron, about 0.005-0.05.
Carbon, about 1.0 or less manganese (preferably 0.30 to 0.95 manganese), about 0.60 to 0
0.95 niobium, less than 0.50 silicon (preferably 0.10 to 0.30 silicon), 0.01
~ 0.35 titanium, 0.01-0.25 aluminum, less than 0.20 copper, less than 1.0 tungsten, less than 1.0 molybdenum, less than 0.12 cobalt, less than 0.10 tantalum, about 0
Less than .10 zirconium (preferably 0.002-0.10 zirconium), less than 0.01 sulfur, less than about 0.01 boron (preferably 0.001-0.01 boron), less than about 0.02 phosphorus, residual nickel and incidental impurities. Composed.

【0009】 前記合金は、クロムの含有量を考慮すると、十分な応力腐食割れ抵抗を示すと
考えられる。合金の形態は溶着物、溶接用電極、溶着オーバーレイ、または合金
基体を含む溶接物(例えば本発明合金のオーバーレイを有する鋼)の形でありう
る。この合金は、サブマージアーク溶接またはエレクトロスラグ溶接により行わ
れる溶接を含めた、溶着物の製造に使われるフラックス被覆電極の形の溶着物ま
たは溶接物を製造する方法において使用し得る。さらに、該合金は溶接物を製造
するための物品として使用することができ、該物品は線材、帯材、板材、棒材、
電極、予備合金粉、または元素粉の形態でありうる。
The alloy is considered to exhibit sufficient stress corrosion cracking resistance in consideration of the chromium content. The alloy morphology can be in the form of a weldment, welding electrode, weld overlay, or weldment containing an alloy substrate (eg, steel having an overlay of the alloy of the invention). This alloy may be used in a method of making a deposit or weldment in the form of a flux coated electrode used in the manufacture of a deposit, including welding performed by submerged arc welding or electroslag welding. Further, the alloy can be used as an article for producing a weldment, the article comprising wire, strip, plate, bar,
It can be in the form of electrodes, prealloyed powder, or elemental powder.

【0010】好適な実施形態の説明 本発明に従うNiCrFe溶接合金は、優れた応力腐食割れに対する抵抗に加えて適
切な腐食抵抗を備えるのに十分なクロムを含むとともに、微量元素のみならず二
次的化学成分のかなり厳格な制御がなされている。さらに、該合金は凝固割れ、
ルート割れ、また再加熱条件下での冷間割れに抵抗しなければならない。 凝固割れに対する抵抗を付与するためには、合金はその合金成分元素に対して
十分な可溶性をもち、かつ狭い液相線と固相線の温度範囲をもつべきである。同
様に、低レベルの硫黄、リン、および他の低融点元素を低レベルで含有し、また
合金中で低融点相を形成する元素を最小レベルで含有すべきである。
Description of the Preferred Embodiments A NiCrFe weld alloy according to the present invention contains sufficient chromium to provide adequate corrosion resistance in addition to excellent resistance to stress corrosion cracking, as well as secondary elements as well as secondary elements. There is fairly strict control of the chemical composition. Further, the alloy has solidification cracks,
It must resist root cracking and cold cracking under reheat conditions. To impart resistance to solidification cracking, the alloy should be sufficiently soluble in its alloying constituent elements and have a narrow temperature range between the liquidus and solidus. Similarly, it should contain low levels of sulfur, phosphorus, and other low melting elements, and minimal levels of elements that form low melting phases in the alloy.

【0011】 冷間割れに対する抵抗は粒界における高温強度と延性を増加することで制御さ
れる。これを達成するには、本発明の範囲に従ってニオビウムとジルコニウムと
ホウ素を注意深く組み合わせる。ニオビウムは、固体状態で粒界強度に寄与しな
がら二次相の形成を避けるように制限することが要求される。また、応力腐食割
れに対する抵抗性のためにはニオビウムが必要とされる。ホウ素は粒界強度に寄
与しまた熱間延性を改良するけれども、本発明に従うレベルよりも高レベルでは
熱間割れ抵抗に有害である。ジルコニウムは粒界における固体状態強度と延性を
改良し、また粒界における酸化抵抗を向上させる。本発明に従ったレベルよりも
高レベルでは、ジルコニウムは熱間割れの原因となる。ホウ素とジルコニウムが
本発明に従うよりも低レベルで存在する場合は、比較的低い冷間割れ抵抗となる
。ホウ素単独の添加では、冷間割れ抵抗の改良が非常にわずかであるようだが、
本発明に従ったレベルのジルコニウムと連携したホウ素は冷間割れを実質的に排
除する。
Resistance to cold cracking is controlled by increasing high temperature strength and ductility at grain boundaries. To achieve this, niobium, zirconium and boron are carefully combined according to the scope of the invention. Niobium is required to be limited so as to contribute to the grain boundary strength in the solid state while avoiding the formation of secondary phases. Also, niobium is required for resistance to stress corrosion cracking. Although boron contributes to grain boundary strength and improves hot ductility, it is detrimental to hot crack resistance at levels higher than those according to the invention. Zirconium improves solid state strength and ductility at grain boundaries and also improves oxidation resistance at grain boundaries. At levels higher than according to the invention, zirconium causes hot cracking. When boron and zirconium are present at lower levels than according to the present invention, there will be relatively low cold crack resistance. The addition of boron alone seems to have very little improvement in cold crack resistance,
Boron in conjunction with levels of zirconium in accordance with the present invention substantially eliminates cold cracking.

【0012】 本発明に従ってルート割れに対する抵抗を達成しうるけれども、溶接物製造設
計者の制御を越えるような、溶接すべき物品間の隙間、清浄度および溶接中の相
対運動などの接合条件が変化するので、保証はできない。本発明の合金には、所
望の冶金学的特性を達成するために、制御されたニオビウム、ケイ素、ホウ素、
ジルコニウムおよびマンガンと連携した低レベルのアルミニウムとチタンが要求
される。こうした要求は熱間割れ、冷間割れおよび応力腐食割れに対する抵抗を
最適に維持しながら充足させることが可能である。アルミニウムとチタンはルー
ト割れ抵抗のために可能な限り低く維持すべきであるが、少量のチタンでも応力
腐食割れ抵抗には有益である。ケイ素は0.50%以下に維持される場合はルート割
れ抵抗にとって特に有害というわけではない。他の理由のためにケイ素を0.30%
より低くすることが好ましいため、これは許容レベルである。非常に低レベルの
硫黄を作り出すAOD融解法の出現により、多量のマンガン添加は必要でない。実
際、7%以上のマンガンレベルでは、1000°F以上の温度にさらした場合に冶金
学的不安定性がもたらされる。過去においては、1%〜5%のマンガン添加が熱間
割れおよびルート割れの両方に抵抗するために必要であると考えられていた。本
発明では、熱間割れ抵抗のためにマンガンを1.0%以下、好ましくは約0.80%に
維持することが必要である。しかし同時に、他の成分との釣合いのため、マンガ
ンは1.0%未満でルート割れを回避するのに十分である。
Although resistance to root cracking may be achieved in accordance with the present invention, joining conditions such as gaps between articles to be welded, cleanliness, and relative motion during welding are beyond the control of the weldment manufacturing designer. As such, we cannot guarantee it. The alloys of the present invention include controlled niobium, silicon, boron, in order to achieve the desired metallurgical properties.
Low levels of aluminum and titanium associated with zirconium and manganese are required. These requirements can be met while optimally maintaining resistance to hot, cold and stress corrosion cracking. Aluminum and titanium should be kept as low as possible for root crack resistance, but even small amounts of titanium are beneficial for stress corrosion crack resistance. Silicon is not particularly detrimental to root crack resistance if it is maintained below 0.50%. 0.30% silicon for other reasons
This is an acceptable level as lower is preferred. With the advent of AOD melting processes that produce very low levels of sulfur, large additions of manganese are not necessary. In fact, manganese levels above 7% lead to metallurgical instability when exposed to temperatures above 1000 ° F. In the past, it was thought that 1% to 5% manganese addition was necessary to resist both hot and root cracking. The present invention requires maintaining manganese at 1.0% or less, preferably about 0.80%, for hot cracking resistance. But at the same time, due to the balance with other components, manganese less than 1.0% is sufficient to avoid root cracking.

【0013】 表1の合金はすべて、原子力発電に使用される装置の製造を含めた溶接用途に
要求される強度と腐食抵抗を示す。表1に示した割れ試験の結果は、本発明によ
るNiCrFe溶接合金組成物がこのタイプの従来の合金よりも向上した割れ抵抗を付
加的に提供することを実証している。これには、応力腐食割れ抵抗のみならず、
熱間割れ抵抗、冷間割れ抵抗およびルート割れ抵抗が組合せで含まれる。
The alloys of Table 1 all exhibit the strength and corrosion resistance required for welding applications, including the manufacture of equipment used for nuclear power generation. The results of the crack test shown in Table 1 demonstrate that the NiCrFe weld alloy composition according to the present invention additionally provides improved crack resistance over conventional alloys of this type. This includes not only stress corrosion cracking resistance,
A combination of hot cracking resistance, cold cracking resistance and root cracking resistance is included.

【0014】 表1からわかるように、サンプル融解番号1124、1125および1127は全タイプの
割れが無く、したがって本発明の範囲内の合金を構成する。これらの各サンプル
は低ケイ素かつ要求される量のホウ素とジルコニウムを含有している。サンプル
1128は、ホウ素とジルコニウムが本発明の範囲内であっても、許容できない高ケ
イ素含有量であるために、冷間割れとルート割れの両方を示した。
As can be seen from Table 1, sample melting numbers 1124, 1125 and 1127 are free of all types of cracks and thus constitute alloys within the scope of the invention. Each of these samples contains low silicon and the required amounts of boron and zirconium. sample
1128 showed both cold and root cracking due to the unacceptably high silicon content of boron and zirconium even within the scope of the present invention.

【0015】 本発明の他の実施形態については、ここに開示した本発明の詳細な説明と実施
を考察することで、当業者には明らかであろう。上記の説明および実施例は単な
る例示として見なされるもので、本発明の真の範囲と精神は特許請求の範囲に示
されるものである。
Other embodiments of this invention will be apparent to those of skill in the art upon consideration of the detailed description and practice of the invention disclosed herein. The above description and examples are considered merely exemplary, and the true scope and spirit of the invention is set forth in the following claims.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B23K 35/30 B23K 35/30 320X 330 330K // B23K 103:02 103:02 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B23K 35/30 B23K 35/30 320X 330 330K // B23K 103: 02 103: 02

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 溶着物の製造に使用するためのニッケルクロム鉄合金であっ
て、重量%で、約27〜31.5のクロム、約7〜11の鉄、約0.005〜0.05の炭素、約1.
0以下のマンガン、約0.60〜0.95のニオビウム、0.50未満のケイ素、0.01〜0.35
のチタン、0.01〜0.25のアルミニウム、0.20未満の銅、1.0未満のタングステン
、1.0未満のモリブデン、0.12未満のコバルト、0.10未満のタンタル、約0.10以
下のジルコニウム、0.01未満の硫黄、0.01未満のホウ素、0.02未満のリン、残余
のニッケルおよび付随的な不純物で構成される上記合金。
1. A nickel-chromium-iron alloy for use in the manufacture of deposits, in weight percent, about 27-31.5 chromium, about 7-11 iron, about 0.005-0.05 carbon, about 1.
Manganese 0 or less, about 0.60 to 0.95 niobium, less than 0.50 silicon, 0.01 to 0.35
Titanium, 0.01 to 0.25 aluminum, copper less than 0.20, tungsten less than 1.0, molybdenum less than 1.0, cobalt less than 0.12, tantalum less than 0.10, zirconium less than about 0.10, sulfur less than 0.01, boron less than 0.01, The above alloy consisting of less than 0.02 phosphorus, residual nickel and incidental impurities.
【請求項2】 0.30〜0.95のマンガン、0.002〜0.10のジルコニウム、0.001
〜0.01のホウ素、および0.10〜0.30のケイ素を含む、請求項1記載の合金。
2. Manganese of 0.30 to 0.95, zirconium of 0.002 to 0.10, 0.001
The alloy of claim 1 comprising .about.0.01 boron and 0.10 to 0.30 silicon.
【請求項3】 ニッケルクロム鉄溶着物であって、重量%で、約27〜31.5の
クロム、約7〜11の鉄、約0.005〜0.05の炭素、約1.0以下のマンガン、約0.60〜0
.95のニオビウム、0.50未満のケイ素、0.01〜0.35のチタン、0.01〜0.25のアル
ミニウム、0.20未満の銅、1.0未満のタングステン、1.0未満のモリブデン、0.12
未満のコバルト、0.10未満のタンタル、約0.10以下のジルコニウム、0.01未満の
硫黄、約0.01以下のホウ素、0.02未満のリン、残余のニッケルおよび付随的な不
純物で構成される上記溶着物。
3. A nickel chromium iron deposit, in weight percent, about 27 to 31.5 chromium, about 7 to 11 iron, about 0.005 to 0.05 carbon, about 1.0 or less manganese, about 0.60 to 0.
Niobium of .95, silicon of less than 0.50, titanium of 0.01 to 0.35, aluminum of 0.01 to 0.25, copper of less than 0.20, tungsten of less than 1.0, molybdenum of less than 1.0, 0.12
The above deposit comprising less than cobalt, less than 0.10 tantalum, less than about 0.10 zirconium, less than 0.01 sulfur, less than about 0.01 boron, less than 0.02 phosphorus, residual nickel and incidental impurities.
【請求項4】 0.30〜0.95のマンガン、0.002〜0.10のジルコニウム、0.001
〜0.01のホウ素、および0.10〜0.30のケイ素を含む、請求項3記載の溶着物。
4. Manganese of 0.30 to 0.95, zirconium of 0.002 to 0.10, 0.001
4. The deposit of claim 3 comprising .about.0.01 boron and 0.10 to 0.30 silicon.
【請求項5】 溶着物を製造する溶接用電極であって、該溶着物が、重量%
で、約27〜31.5のクロム、約7〜11の鉄、約0.005〜0.05の炭素、約1.0以下のマ
ンガン、約0.60〜0.95のニオビウム、0.50未満のケイ素、0.01〜0.35のチタン、
0.01〜0.25のアルミニウム、0.20未満の銅、1.0未満のタングステン、1.0未満の
モリブデン、0.12未満のコバルト、0.10未満のタンタル、約0.10以下のジルコニ
ウム、0.01未満の硫黄、約0.01以下のホウ素、0.02未満のリン、残余のニッケル
および付随的な不純物で構成される、上記溶接用電極。
5. A welding electrode for producing a weld deposit, wherein the weld deposit is% by weight.
, About 27-31.5 chromium, about 7-11 iron, about 0.005-0.05 carbon, about 1.0 or less manganese, about 0.60-0.95 niobium, less than 0.50 silicon, 0.01-0.35 titanium,
0.01-0.25 aluminum, less than 0.20 copper, less than 1.0 tungsten, less than 1.0 molybdenum, less than 0.12 cobalt, less than 0.10 tantalum, less than about 0.10 zirconium, less than 0.01 sulfur, less than about 0.01 boron, less than 0.02. The welding electrode as described above, which is composed of phosphorus, residual nickel and incidental impurities.
【請求項6】 0.30〜0.95のマンガン、0.002〜0.10のジルコニウム、0.001
〜0.01のホウ素、および0.10〜0.30のケイ素を含む溶着物を製造する、請求項5
記載の溶接用電極。
6. Manganese of 0.30 to 0.95, zirconium of 0.002 to 0.10, 0.001
6. A weld deposit is produced that contains .about.0.01 boron and 0.10 to 0.30 silicon.
The welding electrode described.
【請求項7】 フラックスカバーをもつニッケルクロム線で構成される、請
求項5または6記載の溶接用電極。
7. The welding electrode according to claim 5, which is composed of a nickel chromium wire having a flux cover.
【請求項8】 フラックスコアをもつニッケルクロム鉄シースで構成される
、請求項5または6記載の溶接用電極。
8. The welding electrode according to claim 5, comprising a nickel-chromium-iron sheath having a flux core.
【請求項9】 合金基体とその上の溶着物オーバーレイで構成される溶接物
であって、前記溶着物オーバーレイが、重量%で、約27〜31.5のクロム、約7〜1
1の鉄、約0.005〜0.05の炭素、約1.0以下のマンガン、約0.60〜0.95のニオビウ
ム、0.50未満のケイ素、0.01〜0.35のチタン、0.01〜0.25のアルミニウム、0.20
未満の銅、1.0未満のタングステン、1.0未満のモリブデン、0.12未満のコバルト
、0.10未満のタンタル、約0.10以下のジルコニウム、0.01未満の硫黄、約0.01以
下のホウ素、0.02未満のリン、残余のニッケルおよび付随的な不純物で構成され
る、上記溶接物。
9. A weldment comprising an alloy substrate and a deposit overlay thereon, wherein the deposit overlay is about 27-31.5 chromium by weight, about 7-1.
1 iron, about 0.005-0.05 carbon, about 1.0 or less manganese, about 0.60-0.95 niobium, less than 0.50 silicon, 0.01-0.35 titanium, 0.01-0.25 aluminum, 0.20
Copper less than 1.0, tungsten less than 1.0, molybdenum less than 1.0, cobalt less than 0.12, tantalum less than 0.10, zirconium less than about 0.10, sulfur less than 0.01, boron less than 0.01, phosphorus less than 0.02, residual nickel and The above-mentioned weldment composed of incidental impurities.
【請求項10】 0.30〜0.95のマンガン、0.002〜0.10のジルコニウム、0.0
01〜0.01のホウ素、および0.10〜0.30のケイ素を含む、請求項9記載の溶接物。
10. Manganese of 0.30 to 0.95, zirconium of 0.002 to 0.10, 0.0
The weldment of claim 9 comprising 01-0.01 boron and 0.10-0.30 silicon.
【請求項11】 核蒸気発生器の管板の形をしている、請求項9または10
記載の溶接物。
11. A nuclear steam generator in the form of a tube plate.
The weldment described.
【請求項12】 ニッケルクロム線またはニッケルクロム鉄線のフラックス
被覆電極を製造し、該電極を溶融して溶着物を製造することを含む溶着物の製造
方法であって、該溶着物が、重量%で、約27〜31.5のクロム、約7〜11の鉄、約0
.005〜0.05の炭素、約1.0以下のマンガン、約0.60〜0.95のニオビウム、0.50未
満のケイ素、0.01〜0.35のチタン、0.01〜0.25のアルミニウム、0.20未満の銅、
1.0未満のタングステン、1.0未満のモリブデン、0.12未満のコバルト、0.10未満
のタンタル、約0.10以下のジルコニウム、0.01未満の硫黄、約0.01以下のホウ素
、0.02未満のリン、残余のニッケルおよび付随的な不純物で構成される、上記方
法。
12. A method for producing a weld deposit, which comprises producing a flux-coated electrode of a nickel-chromium wire or a nickel-chromium iron wire, and melting the electrode to produce a weld deposit, wherein the weld deposit is% by weight. And about 27-31.5 chrome, about 7-11 iron, about 0
.005 to 0.05 carbon, about 1.0 or less manganese, about 0.60 to 0.95 niobium, less than 0.50 silicon, 0.01 to 0.35 titanium, 0.01 to 0.25 aluminum, less than 0.20 copper,
Tungsten less than 1.0, molybdenum less than 1.0, cobalt less than 0.12, tantalum less than 0.10, zirconium less than about 0.10, sulfur less than 0.01, boron less than 0.01, boron less than 0.02, residual nickel and incidental impurities. The method as described above, which comprises:
【請求項13】 0.30〜0.95のマンガン、0.002〜0.10のジルコニウム、0.0
01〜0.01のホウ素、および0.10〜0.30のケイ素を含む溶着物を製造するための、
請求項12記載の方法。
13. Manganese of 0.30 to 0.95, zirconium of 0.002 to 0.10, 0.0
For producing a deposit comprising 01-0.01 boron, and 0.10-0.30 silicon,
The method according to claim 12.
【請求項14】 前記電極の溶融がサブマージアーク溶接またはエレクトロ
スラグ溶接で実施される、請求項12または13記載の方法。
14. The method according to claim 12, wherein the melting of the electrode is performed by submerged arc welding or electroslag welding.
【請求項15】 ニッケルクロム鉄合金の電極を製造することを含む溶接物
の製造方法であって、該合金が、重量%で、約27〜31.5のクロム、約7〜11の鉄
、約0.005〜0.05の炭素、約1.0以下のマンガン、約0.60〜0.95のニオビウム、0.
50未満のケイ素、0.01〜0.35のチタン、0.01〜0.25のアルミニウム、0.20未満の
銅、1.0未満のタングステン、1.0未満のモリブデン、0.12未満のコバルト、0.10
未満のタンタル、約0.10以下のジルコニウム、0.01未満の硫黄、約0.01以下のホ
ウ素、0.02未満のリン、残余のニッケルおよび付随的な不純物で構成される、上
記方法。
15. A method of making a weldment comprising producing electrodes of a nickel chromium iron alloy, the alloy comprising, by weight percent, about 27-31.5 chromium, about 7-11 iron, about 0.005. ~ 0.05 carbon, about 1.0 or less manganese, about 0.60 to 0.95 niobium, 0.
Silicon less than 50, 0.01-0.35 titanium, 0.01-0.25 aluminum, less than 0.20 copper, less than 1.0 tungsten, less than 1.0 molybdenum, less than 0.12 cobalt, 0.10
Less than about 0.10 zirconium, less than about 0.01 sulfur, less than about 0.01 boron, less than 0.02 phosphorus, balance nickel and incidental impurities.
【請求項16】 0.30〜0.95のマンガン、0.002〜0.10のジルコニウム、0.0
01〜0.01のホウ素、および0.10〜0.30のケイ素を含む、請求項15記載の溶接物
の製造方法。
16. Manganese of 0.30 to 0.95, zirconium of 0.002 to 0.10, 0.0
The method for producing a welded product according to claim 15, comprising 01 to 0.01 boron and 0.10 to 0.30 silicon.
【請求項17】 溶接物の製造に使用するための物品であって、該物品が線
材、帯材、シース、棒材、電極、予め合金した粉末、または元素の粉末の形をし
ており、該物品は、重量%で、約27〜31.5のクロム、約7〜11の鉄、約0.005〜0.
05の炭素、約1.0以下のマンガン、約0.60〜0.95のニオビウム、0.50未満のケイ
素、0.01〜0.35のチタン、0.01〜0.25のアルミニウム、0.20未満の銅、1.0未満
のタングステン、1.0未満のモリブデン、0.12未満のコバルト、0.10未満のタン
タル、約0.10以下のジルコニウム、0.01未満の硫黄、約0.01以下のホウ素、0.02
未満のリン、残余のニッケルおよび付随的な不純物で構成される、上記物品。
17. An article for use in the manufacture of a weldment, the article being in the form of a wire, strip, sheath, bar, electrode, pre-alloyed powder or elemental powder, The article, by weight percent, is about 27-31.5 chromium, about 7-11 iron, about 0.005-0.
Carbon of 05, manganese of about 1.0 or less, niobium of about 0.60 to 0.95, silicon of less than 0.50, titanium of 0.01 to 0.35, aluminum of 0.01 to 0.25, copper of less than 0.20, tungsten of less than 1.0, molybdenum of less than 1.0, 0.12 Less than cobalt, less than 0.10 tantalum, less than about 0.10 zirconium, less than 0.01 sulfur, less than about 0.01 boron, 0.02
Such an article, comprising less than phosphorus, residual nickel and incidental impurities.
【請求項18】 0.30〜0.95のマンガン、0.002〜0.10のジルコニウム、0.0
01〜0.01のホウ素、および0.10〜0.30のケイ素を含む、請求項17記載の物品。
18. Manganese of 0.30 to 0.95, zirconium of 0.002 to 0.10, 0.0
18. An article according to claim 17 comprising 01-0.01 boron and 0.10-0.30 silicon.
JP2001503027A 1999-06-10 2000-05-03 Weld alloys and articles used for welding, welded articles, and methods of manufacturing welded articles Expired - Lifetime JP4919564B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/328,602 1999-06-10
US09/328,602 US6242113B1 (en) 1999-06-10 1999-06-10 Welding alloy and articles for use in welding, weldments and methods for producing weldments
PCT/US2000/011855 WO2000076718A1 (en) 1999-06-10 2000-05-03 Welding alloy and articles for use in welding, weldments and methods for producing weldments

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010109845A Division JP2010264510A (en) 1999-06-10 2010-05-12 Welding alloy and articles for use in welding, welded product and method for producing welded product

Publications (3)

Publication Number Publication Date
JP2003501557A true JP2003501557A (en) 2003-01-14
JP2003501557A5 JP2003501557A5 (en) 2006-03-23
JP4919564B2 JP4919564B2 (en) 2012-04-18

Family

ID=43361968

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2001503027A Expired - Lifetime JP4919564B2 (en) 1999-06-10 2000-05-03 Weld alloys and articles used for welding, welded articles, and methods of manufacturing welded articles
JP2010109845A Pending JP2010264510A (en) 1999-06-10 2010-05-12 Welding alloy and articles for use in welding, welded product and method for producing welded product

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2010109845A Pending JP2010264510A (en) 1999-06-10 2010-05-12 Welding alloy and articles for use in welding, welded product and method for producing welded product

Country Status (2)

Country Link
JP (2) JP4919564B2 (en)
KR (1) KR100739513B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7755001B2 (en) 2004-01-21 2010-07-13 Mitsubishi Heavy Industries, Ltd. High Cr Ni-based alloy filler material and welding rod for shielded metal arc welding
WO2012063503A1 (en) 2010-11-12 2012-05-18 株式会社神戸製鋼所 Ni-based alloy solid wire for welding
US9415460B2 (en) 2012-05-15 2016-08-16 Kobe Steel, Ltd. Ni-base alloy weld metal, strip electrode, and welding method
CN105945449A (en) * 2016-05-25 2016-09-21 厦门大学 Nickle-manganese base boron-free brazing filler metal
JP2018517565A (en) * 2015-06-19 2018-07-05 リンカーン グローバル,インコーポレイテッド Hybrid electroslag clad welding
US10675720B2 (en) 2011-02-01 2020-06-09 Mitsubishi Heavy Industries, Ltd. High Cr Ni-based alloy welding wire, shielded metal arc welding rod, and weld metal formed by shielded metal arc welding

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102645013B1 (en) * 2017-01-13 2024-03-06 에스케이이노베이션 주식회사 Welding metal for dissimilar base material joint and welding method using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US410309A (en) * 1889-09-03 Seth braggins
CA1000597A (en) * 1973-08-08 1976-11-30 Walter A. Petersen Welding electrode
CA1045958A (en) * 1974-06-10 1979-01-09 Walter A. Petersen Welding electrode
JPS61169192A (en) * 1985-01-22 1986-07-30 Kobe Steel Ltd Ni coated electrode
JPH01132731A (en) * 1988-05-20 1989-05-25 Nippon Yakin Kogyo Co Ltd Ni-base alloy excellent in mechanical strength as well as in intergranular corrosion resistance and stress corrosion cracking resistance in high heat-affected zone in weld zone
JPH093616A (en) * 1995-04-18 1997-01-07 Mitsubishi Materials Corp Powder mixture for thermal spraying

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7755001B2 (en) 2004-01-21 2010-07-13 Mitsubishi Heavy Industries, Ltd. High Cr Ni-based alloy filler material and welding rod for shielded metal arc welding
WO2012063503A1 (en) 2010-11-12 2012-05-18 株式会社神戸製鋼所 Ni-based alloy solid wire for welding
CN102463422A (en) * 2010-11-12 2012-05-23 株式会社神户制钢所 Ni base alloy solid wire for welding
US8343419B2 (en) 2010-11-12 2013-01-01 Kobe Steel, Ltd. Ni base alloy solid wire for welding
US10675720B2 (en) 2011-02-01 2020-06-09 Mitsubishi Heavy Industries, Ltd. High Cr Ni-based alloy welding wire, shielded metal arc welding rod, and weld metal formed by shielded metal arc welding
US9415460B2 (en) 2012-05-15 2016-08-16 Kobe Steel, Ltd. Ni-base alloy weld metal, strip electrode, and welding method
JP2018517565A (en) * 2015-06-19 2018-07-05 リンカーン グローバル,インコーポレイテッド Hybrid electroslag clad welding
US10766100B2 (en) 2015-06-19 2020-09-08 Lincoln Global, Inc. Hybrid electroslag cladding
CN105945449A (en) * 2016-05-25 2016-09-21 厦门大学 Nickle-manganese base boron-free brazing filler metal
CN105945449B (en) * 2016-05-25 2019-04-26 厦门大学 Nickel manganese base is without boron solder and preparation method thereof

Also Published As

Publication number Publication date
JP4919564B2 (en) 2012-04-18
KR100739513B1 (en) 2007-07-13
KR20010072405A (en) 2001-07-31
JP2010264510A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
CA2335894C (en) Welding alloy and articles for use in welding, weldments and methods for producing weldments
CA2660107C (en) Welding alloy and articles for use in welding, weldments and method for producing weldments
JP5253817B2 (en) Coated welding electrode with reduced ductility crack resistance and welds made therefrom
JP5270043B2 (en) Ni-based high Cr alloy welding wire, coated arc welding rod, and coated arc weld metal
US3181970A (en) Coated welding electrode
JP2010264510A (en) Welding alloy and articles for use in welding, welded product and method for producing welded product
WO2011123390A1 (en) Nickel -based alloy, welding consumable formed from the said alloy and use of the consumable in a welding process.
US4846885A (en) High molybdenum nickel-base alloy
US4750954A (en) High temperature nickel base alloy with improved stability
US6113849A (en) Nickel-based alloy and welding electrode made of nickel-based alloy
US3524765A (en) Welding rod for welding steel containing 9% ni
US3762913A (en) Alloy and method of welding structures including this alloy
Santella An overview of the welding of Ni 3 Al and Fe 3 Al alloys
Slaughter et al. Welding and brazing filler metals
KR20230098270A (en) Nickel-Based Alloys for Pipeline Tube Manufacturing
Santella An overview of the welding of Ni 3 Al and Fe 3 Al alloys
JPH0970688A (en) Coated arc welding electrode
JPH11320096A (en) Welding method of high cr ferritic steel and welding structure using such method
JPS59125278A (en) One-side welding method of stainless clad steel

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090803

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090810

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090904

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120131

R150 Certificate of patent or registration of utility model

Ref document number: 4919564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term