JPS61229494A - Low hydrogen type coated arc electrode - Google Patents

Low hydrogen type coated arc electrode

Info

Publication number
JPS61229494A
JPS61229494A JP6891985A JP6891985A JPS61229494A JP S61229494 A JPS61229494 A JP S61229494A JP 6891985 A JP6891985 A JP 6891985A JP 6891985 A JP6891985 A JP 6891985A JP S61229494 A JPS61229494 A JP S61229494A
Authority
JP
Japan
Prior art keywords
coating material
coating
titanium oxide
welding
coated arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6891985A
Other languages
Japanese (ja)
Other versions
JPH0457439B2 (en
Inventor
Takeshi Koshio
小塩 威
Tadao Usui
薄井 忠男
Masaru Mizogami
溝上 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6891985A priority Critical patent/JPS61229494A/en
Publication of JPS61229494A publication Critical patent/JPS61229494A/en
Publication of JPH0457439B2 publication Critical patent/JPH0457439B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To prevent welding defects such as pits and blow holes by incorporating a specific ratio of an org. material and a specific ratio of ultra-fine particulate titanium oxide which is specified in particle size and quantity into a coating material. CONSTITUTION:This low hydrogen type coated electrode is formed by adding a binder to the coating material contg. 0.2-5wt% ultra-fine particulate titanium oxide consisting of >=95wt%<1mu particle size and <=0.5wt% org. material and coating such material on the outside periphery of a steel core wire. Such arc welding electrode is highly resistant to the dislodgment of the coating material and obviates the generation of the welding defects such as pits and blowholes arising from the dislodgment of the coating material. The rate of mending is therefore decreased and the welding working efficiency is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は被覆剤の耐脱落性を向上させた低水素系被覆ア
ーク溶接棒に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a low hydrogen-based coated arc welding rod with improved resistance to shedding of the coating material.

(従来の技術) 一般に低水素系被覆アーク溶接棒の耐脱落性は。(Conventional technology) In general, the drop-off resistance of low-hydrogen coated arc welding rods is as follows.

塗装時に被覆剤の流動性を良好とする滑動剤の種類、被
覆剤の粒度構成、乾燥温度および固着剤濃度などによっ
て影響を受けることが多い。塗装時の被覆剤の流動性を
良好にするため、非低水素系波Wアーク溶接棒において
は、マイカ、カオリン。
It is often influenced by the type of slip agent that improves the fluidity of the coating during painting, the particle size structure of the coating, the drying temperature, and the concentration of the fixing agent. In order to improve the fluidity of the coating material during painting, mica and kaolin are used in non-low hydrogen type wave W arc welding rods.

タルクおよびベントナイトなど結晶水を多く含むものが
使用されているが、溶接金属中の水素量を増加させ低温
割れの原因となることから、低水素系被覆アーク溶接棒
には適用できないという問題点がある。従りて低水素系
被覆アーク溶接棒における被覆剤の流動性を改善するた
めに、滑り性を良好とし増粘性を上げるアルギン酸ソー
ダやCMCなどの添加が効果的であるが、これらの有機
物は250℃程度以上の乾燥温度から炭化傾向を示し、
低水素系被覆アーク溶接棒の一般的な乾燥温度である3
50〜450℃では完全に炭化し、被覆剤自体の結合力
あるいは被覆剤と心線との固着度が弱くなシ耐脱落性を
劣化させるという問題点がある・一方、これら被覆剤自
体の結合力や固着度の劣化に対しては、固着剤濃度を上
げ改善する方法が考えられるが、固着剤濃度を上げすぎ
ると被覆剤との混線時に乾き易くか°えって被覆剤の流
動性を劣化させるという問題点がある。また、被覆剤自
体の結合力を強める方法としては、根本的な改善策では
ないが被覆剤の粒度構成において、その範囲を幅広く平
準化することもある程度は効果があると考えられるが、
溶接棒の特性に合せ使用する個々の原材料粒度やその配
合量などを考え合せると、粒度構成の平準化は現実的に
はかなりむずかしい問題となってくる・ 以上述べたように、低水素系被覆アーク溶接棒の耐脱落
性を向上させるためには、結晶水がほとんどなく、かつ
、耐脱落性を劣化させない滑動剤を見出すことである。
Materials containing a large amount of crystal water, such as talc and bentonite, are used, but they increase the amount of hydrogen in the weld metal and cause cold cracking, so they cannot be applied to low-hydrogen coated arc welding rods. be. Therefore, in order to improve the fluidity of the coating material in a low-hydrogen coated arc welding rod, it is effective to add sodium alginate or CMC, which improves slipperiness and increases viscosity. It shows a tendency to carbonize from a drying temperature of about ℃ or higher,
3, which is the general drying temperature for low-hydrogen coated arc welding rods.
At 50 to 450°C, it completely carbonizes, and there is a problem that the bonding strength of the coating itself or the degree of adhesion between the coating and the core wire is weak, which deteriorates the shedding resistance. One possible way to improve the deterioration of strength and adhesion is to increase the concentration of the adhesive, but if the concentration of the adhesive is increased too much, it will tend to dry out when mixed with the coating material, which will actually deteriorate the fluidity of the coating material. There is a problem with making it happen. In addition, as a way to strengthen the bonding force of the coating material itself, it is thought that it is effective to a certain extent to widen the range of particle size composition of the coating material, although it is not a fundamental improvement measure.
Considering the particle size of each raw material used and its blending amount in accordance with the characteristics of the welding rod, leveling the particle size composition becomes a very difficult problem in reality.As mentioned above, low hydrogen coating In order to improve the falling-off resistance of arc welding rods, it is necessary to find a slipping agent that contains almost no crystal water and does not deteriorate the falling-off resistance.

耐脱落性の向上は、被覆剤の脱落に起因するビットやブ
ローホールなどの溶接欠陥の発生を防止し、現場溶接作
業能率を向上させるという面からも重要な研究課題とな
っていた。
Improving shedding resistance has been an important research topic in terms of preventing welding defects such as bits and blowholes caused by shedding of coating material and improving on-site welding work efficiency.

以上のような課題に対し、特開昭54−102254号
公報で提案されている如く、被覆剤粒子において、10
〜20μの粒子を13〜2296.30〜60μの粒子
を10係以下、105〜149μの粒子を13〜22%
含有すること和よシ、乾燥割れ防止や耐脱落性向上を計
ることができ、製造現場の労力を軽減できるとともに、
ビット、ブローホールなどの欠陥が発生し難く良好な溶
接作業性が得られるという技術が開示されている。
In order to solve the above-mentioned problems, as proposed in Japanese Patent Application Laid-open No. 102254/1983, coating particles with 10
~20μ particles 13~2296.30~60μ particles less than 10%, 105~149μ particles 13~22%
It is possible to prevent dry cracking and improve resistance to falling off, reducing labor at the manufacturing site.
A technique has been disclosed in which defects such as bits and blowholes are less likely to occur and good welding workability can be obtained.

しかしながら、本発明者らの実施してきた研究結果によ
ると、特に低水素系被覆アーク溶接棒における耐脱落性
を根本的に改善するという点では、被覆剤の粒度構成を
平準化することのみでは極めて困難であることが認めら
れており、非低水素系被覆アーク溶接棒差みの耐脱落性
に改善し、溶接作業能率を向上させたいとする本発明者
らの目標を満足するものではなかった。
However, according to the research results conducted by the present inventors, it is extremely difficult to fundamentally improve the drop-off resistance of low-hydrogen coated arc welding rods by simply leveling the particle size structure of the coating material. It was recognized that this method was difficult, and did not satisfy the inventors' goal of improving the drop-off resistance of non-low hydrogen-based coated arc welding rods and improving welding work efficiency. .

(発明が解決しようとする問題点) 本発明は、被覆剤の耐脱落性の良好な低水素系被覆アー
ク溶接棒の提供を目的とする。
(Problems to be Solved by the Invention) An object of the present invention is to provide a low-hydrogen coated arc welding rod with good resistance to shedding of the coating material.

(問題点を解決するための手段) 本発明は、溶接棒被覆剤の耐脱落性に優れた低水素系被
覆アーク溶接nを用いることにより、ビットやブローホ
ールなどの溶接欠陥の発生を防止すると同時に、現場溶
接作業能率の向上を目的としたものであって、その要旨
とするところは1粒子径1μm未満が95重量%以上の
超微粒酸化チタン;0.2〜5重量%、有機物;0.5
重量%以下を含有する被覆剤に固着剤を添加し鋼心線外
周に塗布したことを特徴とする低水素系被覆アーク溶接
棒忙ある。
(Means for Solving the Problems) The present invention prevents the occurrence of welding defects such as bits and blowholes by using low-hydrogen coated arc welding with excellent drop-off resistance of the welding rod coating. At the same time, the purpose is to improve on-site welding work efficiency, and its gist is: ultrafine titanium oxide with 95% by weight or more of particles less than 1 μm; 0.2 to 5% by weight; organic matter: 0 .5
There is a low-hydrogen coated arc welding rod characterized by adding a fixing agent to a coating material containing less than % by weight and applying it to the outer periphery of a steel core wire.

(作用) 本発明の特徴は、被覆剤の流動性を良好とする有機物の
耐脱落性劣化への影響に着目し、有機物を0,5重量−
以下1粒子径1μm未溝が95重量%以上の超微粒酸化
チタンを被覆剤中に0.2〜5重量多含有せしめたとこ
ろだあ〕、溶接施工管理の厳しい低水素系被覆アーク溶
接棒において、被覆剤の脱落に起因するビットやブロー
ホールなどの溶接欠陥の発生を防止するとともに、極め
て能率的な現場溶接作業を可能ならしめるものである。
(Function) The present invention is characterized by focusing on the influence of organic substances on the deterioration of shedding resistance, which improves the fluidity of the coating material, and by adding 0.5% by weight of organic substances.
Below, we have added 0.2 to 5% by weight of ultrafine titanium oxide in the coating material, which contains 95% by weight or more of non-grooves with a particle size of 1 μm], for low-hydrogen coated arc welding rods that require strict welding control. This prevents welding defects such as bits and blowholes caused by coating material falling off, and enables highly efficient on-site welding work.

以下、本発明における各成分の作用と成分量限定の理由
を述べる。
The effects of each component in the present invention and the reason for limiting the amount of the components will be described below.

被覆剤中の超微粒酸化チタンは、一般に用いられている
粗粒の酸化チタンとは異なり、固着剤との混練時に均−
忙分散すると同時に、その特性から隠ぺい力が大きいた
め他の粒子表面を完全に覆いコーティングする性質があ
る。このことは、超微粒酸化チタンが他の粒子間に存在
することであり、他の粒子間隔を拡大あるいは粒子間空
隙に浸入して、最密充てん層を形成することになる。従
って、固着剤との混線において、他の粒子の持つ摩擦エ
ネルゼーを解除し、塗装時における被覆剤の流動性を極
めて良好とするものであり、滑動剤として被覆剤中に添
加していた有機物と同等もしくは、それ以上に流動性の
改善効果の得られることが判明し、耐脱落性を劣化させ
る有機物の大幅な減少が可能となった。一方、超微粒酸
化チタンは前述の如く他の粒子間隔を拡大あるいは、粒
子間空隙に侵入し最密充てん層を形成する作用、すなわ
ち膨潤現象を起すため被覆剤の流動性を良好とするもの
であるが、過大な添加は、溶接棒塗装後に被覆表面へ固
着剤である水ガラスが浮き出され溶接棒同志が接着し易
くなるため、乾燥工程において被覆の接着割れの原因と
なる。また、コンペア搬送中に傷がつき易く歩留シ低下
の原因ともなる。
The ultra-fine titanium oxide in the coating material is different from the commonly used coarse-grained titanium oxide, and the ultrafine titanium oxide in the coating material is uniform when mixed with the adhesive.
At the same time, it has the property of completely covering and coating the surfaces of other particles due to its strong hiding power. This means that the ultrafine titanium oxide exists between other particles, and expands the spacing between other particles or penetrates into the interparticle voids to form a close-packed layer. Therefore, when mixed with the fixing agent, it cancels the frictional energy of other particles and makes the fluidity of the coating extremely good during painting, and it also combines the organic substances added to the coating as a slipping agent. It was found that the fluidity was improved to an equal or greater degree, and it became possible to significantly reduce the amount of organic matter that degrades shedding resistance. On the other hand, as mentioned above, ultrafine titanium oxide improves the fluidity of the coating material by expanding the spacing between other particles or penetrating into the spaces between particles to form a close-packed layer, that is, causing a swelling phenomenon. However, if too much is added, water glass, which is an adhesion agent, will be embossed onto the coating surface after the welding rod is coated, making it easier for the welding rods to adhere to each other, which may cause adhesive cracks in the coating during the drying process. In addition, it is easy to get scratched during conveyance of the comparer, which causes a decrease in yield.

このように超微粒酸化チタンの添加は、耐脱落性を劣化
させずに被覆剤の流動性を良好にする面と塗装後の生産
性との面で相反する作用があるため、被覆剤中の超微粒
酸化チタンの最適範囲について1種々の供試棒を作成し
調査した。
In this way, the addition of ultrafine titanium oxide has contradictory effects in terms of improving the fluidity of the coating without deteriorating the shedding resistance and improving the productivity after painting. The optimum range of ultrafine titanium oxide was investigated by making various test rods.

〔脱落試験方法〕[Dropout test method]

80箇×320■×920■の容器に6.0コ×700
111にの溶接棒を12本(約3ゆ)を挿入し、駆動装
置により30 rpmの速度で3分間回転させ衝撃を加
えた後、被覆剤の脱落率を調査した。
6.0 x 700 in a container of 80 x 320 x 920
12 welding rods (approximately 3 mm) were inserted into the tube and rotated by a drive device at a speed of 30 rpm for 3 minutes to apply impact, and then the shedding rate of the coating material was investigated.

但し Wl :試験前供試棒被覆重量 W3 ;試験後供試棒被覆重量 供試棒の評価は、脱落率、被覆剤の流動性、被覆の接着
割れおよび傷の有無についてそれぞれ調査し、良(O印
)、やや不良(Δ印)、不良(×印)の3段階で総合評
価したところ第1図に示すような結果が得られた。但し
、脱落率については、3チ以下を良好とした。
However, Wl: Coating weight of the sample bar before the test W3; Coating weight of the sample bar after the test The evaluation of the sample bar was conducted by investigating the shedding rate, fluidity of the coating material, and the presence or absence of adhesion cracks and scratches on the coating. Comprehensive evaluation was performed on three levels: 0 mark), slightly poor (Δ mark), and poor (x mark), and the results shown in FIG. 1 were obtained. However, regarding the dropout rate, 3 inches or less was considered good.

なお、第1表に、本試験に用いた超微殻酸化チタンの粒
度分布を示す。第2表に供試溶接棒の基本処方を示す。
Table 1 shows the particle size distribution of the ultra-fine shell titanium oxide used in this test. Table 2 shows the basic formulation of the test welding rods.

第1図は、第2表の各供試溶接棒の超微粒酸化チタン含
有量と供試溶接棒の評価との関係の調査結果を示す、第
1図において、被覆剤中の超微粒酸化チタンが0.2%
未満では、いずれの供試溶接棒にお込ても耐脱落性は良
好であるが、被覆剤の流動性が悪いため溶接棒の偏心が
多発し歩留りが低下した。他方、5%を超えると耐脱落
性を劣化させることなく被覆剤の流動性は極めて良好と
なるが、塗装圧力の低下とともに被覆表面に傷がつき易
く、また、溶接棒同志が接着し乾燥時に被覆の接着割れ
が発生することから51sを上限とすべきであることが
判明した。
Figure 1 shows the investigation results of the relationship between the ultrafine titanium oxide content of each test welding rod in Table 2 and the evaluation of the test welding rod. is 0.2%
When the welding rod was less than 100%, the drop-off resistance was good for all of the welding rods tested, but due to poor flowability of the coating material, eccentricity of the welding rod occurred frequently and the yield decreased. On the other hand, if it exceeds 5%, the fluidity of the coating material will be extremely good without deteriorating the drop-off resistance, but the coating surface will be easily scratched as the coating pressure decreases, and the welding rods will adhere to each other, causing problems when drying. It was found that 51 seconds should be the upper limit because adhesive cracking of the coating occurred.

〔有機物=0.5重量囁以下〕 低水素系被覆アーク溶接棒において、滑動剤としての有
機物の添加量は、配合される他の原材料によっても若干
異なるが、1.51以上添加されるのが一般的である。
[Organic matter = 0.5 weight or less] In low hydrogen-based coated arc welding rods, the amount of organic matter added as a lubricant varies slightly depending on the other raw materials blended, but it is recommended that 1.51 or more is added. Common.

しかし1本発明においては。However, in the present invention.

前述の超微粒酸化チタン10.2〜5重量%添加するこ
とによって、有機物の添加量が0.51以下でも被覆剤
の流動性は劣化せずに、耐脱落性は良好となるが、0.
5係を超えると耐脱落性は急激に劣化する。従って、そ
の添加量6 o、 5 %以下にすべきである。
By adding 10.2 to 5% by weight of the aforementioned ultrafine titanium oxide, the fluidity of the coating material will not deteriorate even if the amount of organic matter added is 0.51% or less, and the shedding resistance will be good.
When the ratio exceeds 5, the drop resistance deteriorates rapidly. Therefore, the amount added should be less than 6.5%.

本発明の低水素系被覆アーク溶接棒は上記の如く構成さ
れているので被覆剤の耐脱落性に優れており、被覆剤の
脱落に起因するピットやブローホールなどの溶接欠陥が
発生しないため、手直し率を極力低減し溶接作業能率を
向上させたいという現場溶接作業者の要求を満足する低
水素系被覆アーク溶接棒が得られた。
Since the low-hydrogen coated arc welding rod of the present invention is constructed as described above, it has excellent resistance to shedding of the coating material, and welding defects such as pits and blowholes due to shedding of the coating material do not occur. A low-hydrogen-based coated arc welding rod was obtained that satisfies the demands of on-site welders who want to reduce the rework rate as much as possible and improve welding work efficiency.

(実施例) 次に、本発明の効果を実施例によシ更に具°体的に示す
(Example) Next, the effects of the present invention will be illustrated in more detail with reference to Examples.

第3表に示す組成および構成の供試棒を作成した。これ
らを用い、以下に示す方法で耐脱落性を評価すると同時
に、被覆の接着割れや傷の有無および被覆剤の流動性な
どについて3段階で判定した結果を総合評価したところ
、第3表に示すような結果が得られた。なお、表中の評
価は、O印;良好 Δ印;やや不良 ×印;不良 を示す。
Test bars having the composition and structure shown in Table 3 were prepared. Using these, we evaluated the shedding resistance using the method shown below, and at the same time conducted a comprehensive evaluation of the presence or absence of adhesion cracks and scratches on the coating, as well as the fluidity of the coating material, and evaluated the results in three stages, as shown in Table 3. The following results were obtained. In addition, the evaluation in the table shows O mark; good Δ mark; slightly poor × mark; poor.

〔脱落試験方法〕[Dropout test method]

80mX 320mX 920wmの容器に6.Owφ
×7005mの溶接棒を12本(約3kg)を挿入し、
駆動装置によF) 30 rpmの速度で3分間回転さ
せ衝撃を加えた後、被覆剤の脱落″IEを調査した・但
し Wl :試験前供試棒被覆重量 W鵞 ;試験後供試棒被覆重量 (脱落率判定基準) 0印;良好(<3L) △印:やや不良(3〜6%) ×印;不良(>6%) 第3表において(A−1)〜(A−7)は比較例、(B
−1)〜(B−4)は本発明例を示す。
6. In a container of 80mX 320mX 920wm. Owφ
Insert 12 x7005m welding rods (approx. 3kg),
After applying a shock by rotating at a speed of 30 rpm for 3 minutes using a drive device, the falling off of the coating material was investigated. Weight (dropping rate judgment criteria) 0 mark: Good (<3L) △ mark: Slightly poor (3 to 6%) × mark: Poor (>6%) In Table 3, (A-1) to (A-7) is a comparative example, (B
-1) to (B-4) show examples of the present invention.

(A−1)は超微粒酸化チタンが添加されていないため
、被覆剤の流動性が悪く、溶接棒の偏心が多発し不良で
あった。
Since (A-1) did not contain ultrafine titanium oxide, the fluidity of the coating material was poor, and the welding rod was eccentric due to frequent occurrences.

(A−2)は有機物が過剰であるため耐脱落性が劣化し
た・ (A−3)は超微粒酸化チタンが過剰であるため、被覆
の接着割れが発生し、傷も多く極めて不良でありだ。
(A-2) had an excessive amount of organic matter, so the shedding resistance deteriorated. (A-3) had an excessive amount of ultrafine titanium oxide, which caused cracks in the adhesion of the coating, and it was extremely defective with many scratches. .

(A−4)は超微粒酸化チタンおよび有機物が過剰であ
るため、耐脱落性が悪く、また、被覆の接着割れや傷が
多発し極めて不良であった。
(A-4) had an excessive amount of ultrafine titanium oxide and organic matter, so it had poor resistance to falling off, and the coating had many adhesive cracks and scratches, which was extremely poor.

(A−5)は超微粒酸化チタンが添加されていないため
被覆剤の流動性が悪く、溶接棒の偏心が多発し不良であ
った。
(A-5) was defective because ultrafine titanium oxide was not added, so the fluidity of the coating material was poor, and the welding rod was eccentric frequently.

(A−6)は有機物が過剰であるため耐脱落性が劣化し
不良であった。
(A-6) had an excessive amount of organic matter, so the shedding resistance deteriorated and was poor.

(A−7)は粒子径1μm未満の含有量が95重量%以
下の酸化チタンであるため、被覆剤の流動性が悪く不良
であった。
Since the content of titanium oxide (A-7) having a particle diameter of less than 1 μm was 95% by weight or less, the fluidity of the coating material was poor and it was poor.

(発明の効果) 以上説明したように、本発明の低水素系被覆アーク溶接
棒を用いることによシ、被覆剤の脱落に起因するビット
やブローホールなどの溶接欠陥の発生がないため、造船
、鉄骨および橋梁関係の現場溶接作業能率を著しく向上
させるものであシ、産業上寄与するところが極めて大で
ある。
(Effects of the Invention) As explained above, by using the low-hydrogen coated arc welding rod of the present invention, welding defects such as bits and blowholes caused by shedding of the coating material do not occur, so shipbuilding , it significantly improves the efficiency of on-site welding work related to steel frames and bridges, and has an extremely large industrial contribution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は耐脱落性全劣化させることなく、被覆剤の流動
性を良好とし、かつ、被覆の接着割れや外観不良の発生
を起さない超微粒酸化チタンの最適配合量を示すグラフ
である。
Figure 1 is a graph showing the optimal blending amount of ultrafine titanium oxide that does not completely deteriorate the shedding resistance, improves the fluidity of the coating, and does not cause adhesive cracking or poor appearance of the coating. .

Claims (1)

【特許請求の範囲】[Claims] 粒子径1μm未満が95重量%以上の超微粒酸化チタン
を0.2〜5重量%、有機物を0.5重量%以下含有す
る被覆剤に固着剤を添加し、鋼心線外周に塗布してなる
ことを特徴とする低水素系被覆アーク溶接棒。
A fixing agent is added to a coating material containing 0.2 to 5% by weight of ultrafine titanium oxide with 95% by weight or more of particle diameters of less than 1 μm and 0.5% by weight or less of organic matter, and the adhesive is applied to the outer periphery of the steel core wire. A low hydrogen-based coated arc welding rod.
JP6891985A 1985-04-03 1985-04-03 Low hydrogen type coated arc electrode Granted JPS61229494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6891985A JPS61229494A (en) 1985-04-03 1985-04-03 Low hydrogen type coated arc electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6891985A JPS61229494A (en) 1985-04-03 1985-04-03 Low hydrogen type coated arc electrode

Publications (2)

Publication Number Publication Date
JPS61229494A true JPS61229494A (en) 1986-10-13
JPH0457439B2 JPH0457439B2 (en) 1992-09-11

Family

ID=13387540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6891985A Granted JPS61229494A (en) 1985-04-03 1985-04-03 Low hydrogen type coated arc electrode

Country Status (1)

Country Link
JP (1) JPS61229494A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796394A (en) * 1993-09-29 1995-04-11 Kobe Steel Ltd Low hydrogen type coated electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796394A (en) * 1993-09-29 1995-04-11 Kobe Steel Ltd Low hydrogen type coated electrode

Also Published As

Publication number Publication date
JPH0457439B2 (en) 1992-09-11

Similar Documents

Publication Publication Date Title
JPH03180298A (en) Flux cored wire for gas shielded arc welding
JPS61229494A (en) Low hydrogen type coated arc electrode
JP3549412B2 (en) Low hydrogen coated arc welding rod
CN107984117B (en) Flow resisting agent for flame brazing or molten salt dipping brazing
JPS6358077B2 (en)
JPH0124600B2 (en)
US2209829A (en) Arc welding electrode
SU1655697A1 (en) Method of arc welding of aluminium alloys
JP2942142B2 (en) Low hydrogen coated arc welding rod
JP3051251B2 (en) Low hydrogen coated arc welding rod
US2171306A (en) Welding rod
JPS5847954B2 (en) Low hydrogen coated arc welding rod
Gould et al. Weldability and electrode wear characteristics of hot-dip galvanized steel with and without a ferrophos containing primer
JPS5911397B2 (en) Electrically Neutral Weld Suppression Composition
JPS6037292A (en) Brazing method of aluminum and alloy thereof
JPS5854916B2 (en) The first day of the year
JPS6045993B2 (en) Low hydrogen coated arc welding rod
US4086389A (en) Coating composition comprising crystalline cellulose and a coated electrode for arc welding produced therewith
JPH08290271A (en) Method for one side submerged arc welding
JPH08276292A (en) Non-low hydrogen type coated electrode
JPH023678B2 (en)
JPH02299797A (en) Non-low-hydrogen type coated arc welding electrode
JPH05169296A (en) Low hydrogen type coated electrode
JPS646875B2 (en)
JPH05237691A (en) Arc welding electrode for coating cast iron