JPS61229381A - Semiconductor device temperature controlling apparatus - Google Patents

Semiconductor device temperature controlling apparatus

Info

Publication number
JPS61229381A
JPS61229381A JP60070501A JP7050185A JPS61229381A JP S61229381 A JPS61229381 A JP S61229381A JP 60070501 A JP60070501 A JP 60070501A JP 7050185 A JP7050185 A JP 7050185A JP S61229381 A JPS61229381 A JP S61229381A
Authority
JP
Japan
Prior art keywords
temperature
semiconductor
heat
heat sink
semiconductor lasers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60070501A
Other languages
Japanese (ja)
Inventor
Hideo Watanabe
英夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP60070501A priority Critical patent/JPS61229381A/en
Publication of JPS61229381A publication Critical patent/JPS61229381A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar

Abstract

PURPOSE:To control a plurality of semiconductor devices at different temperatures by a temperature controlling apparatus, by mounting the plurality of the semiconductor devices to a block-shaped heat conducting member, and by providing with a temperature controlling device in a section of the heat conducting member to cause flow of heat therein. CONSTITUTION:Three semiconductor lasers 1, 2, 3 are mounted in a block- shaped heat sink 4 being a heat conducting member in a row transversely. In the lower central section of the heat sink 4, an electronic cooling device 5 for controlling the temperature is provided. The heat is circulated within the heat sink 4 in the arrow direction. Accordingly, along the path in which heat flows, the semiconductor laser 1 becomes highest in temperature, and the semiconductor lasers 2 and 3 are reduced gradually in temperature. Therefore, if the respective semiconductor lasers are preliminarily placed at given positions within the heat sink 4 and the electronic cooling device 5 is driven so that the respective temperatures are at given values, the respective semiconductor lasers can be controlled at appropriate different temperatures through the use of the heat sink.

Description

【発明の詳細な説明】 (発明の分野) 本発明は半導体素子温度制御装置に関するものであり、
特に詳細には複数の半導体素子の温度を互いに異なった
ものとする温度制御を極めて容易に行なうことのできる
半導体素子温度制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention relates to a semiconductor element temperature control device;
In particular, the present invention relates to a semiconductor element temperature control device that can extremely easily perform temperature control to make the temperatures of a plurality of semiconductor elements different from each other.

(発明の技術的背景および先行技術) 周知のとおり、半導体素子はトランジスタ、集積回路等
の様々な技術分野において用いられており、また光ビー
ムを光偏向器により偏向して走査する各種走査記録装置
や走査読取装置等の光ビーム走査装置においては、従来
より光ビームを発生させる手段の1つとして半導体レー
ザが用いられている。
(Technical Background and Prior Art of the Invention) As is well known, semiconductor devices are used in various technical fields such as transistors and integrated circuits, and various scanning recording devices that scan by deflecting a light beam with an optical deflector. 2. Description of the Related Art Conventionally, semiconductor lasers have been used as one of the means for generating a light beam in light beam scanning devices such as scanners and scanning reading devices.

これらの半導体素子はその用途に応じて、同時に複数個
の素子が用いられることがある。たとえば上記の光ビー
ム走査装置における半導体レーザは、連続発振させる場
合には、現状では出力がたかだか20〜30mWと小さ
く、高エネルギーの走査光を必要とする光ビーム走査装
置においては1つの半導体レーザから射出されたレーザ
ビームではエネルギーが不足であるため、低出力の半導
体レーザから十分^エネルギーの走査ビームを得るため
に、複数の半導体レーザを使用して、これらの複数の半
導体レーザから射出されたレーザビームをその光路にお
いて一本に合成し、走査ビームとして使用することが考
えられる。
A plurality of these semiconductor devices may be used at the same time depending on the application. For example, when the semiconductor laser used in the above-mentioned optical beam scanning device is continuously oscillated, the output is currently as small as 20 to 30 mW at most, and in the optical beam scanning device that requires high-energy scanning light, one semiconductor laser Since the emitted laser beam does not have enough energy, multiple semiconductor lasers are used to obtain a scanning beam with sufficient energy from a low-power semiconductor laser. It is conceivable to combine the beams into one beam along the optical path and use it as a scanning beam.

ところで、半導体素子は通常、温度依存性が高く、その
作動時には作動に好適な温度となるように温度制御され
る必要のある場合があり、このような半導体素子を上記
のように複数個同時に用いる場合には、それぞれの半導
体素子に対して高精度な温度制御を行なう必要がある。
By the way, semiconductor devices are usually highly temperature dependent, and during operation, there are cases where the temperature needs to be controlled so that the temperature is suitable for operation. In some cases, it is necessary to perform highly accurate temperature control for each semiconductor element.

さらに、上記の複数の半導体素子に対する温度制御は、
全ての半導体素子を同一温度に制御する以外に、例えば
複数の半導体レーザを同時に用いる場合には、全ての半
導体レーザを全く同じ温度に制御すると、各半導体レー
ザからの発振波長が同一となってビートが生じてしまう
ので、各半導体レーザを互いに少しずつ異なった温度と
なるように制御することが望まれる。また、半導体レー
ザ以外の半導体素子についても、互いに特性の異なった
素子を同時に複数個用いる場合等には、それぞれの半導
体素子を、各々の特性に応じて、作動に最適な、互いに
異なった温度に制御する必要の生じることがある。
Furthermore, the temperature control for the plurality of semiconductor elements described above is
In addition to controlling all the semiconductor elements to the same temperature, for example, when using multiple semiconductor lasers at the same time, if you control all the semiconductor lasers to the exact same temperature, the oscillation wavelength from each semiconductor laser will be the same and beat. Therefore, it is desirable to control each semiconductor laser so that its temperature is slightly different from each other. Also, regarding semiconductor elements other than semiconductor lasers, when using multiple elements with different characteristics at the same time, each semiconductor element is heated to a different temperature that is optimal for operation according to its characteristics. There may be a need to control.

しかしながら上記のように、複数の半導体素子に対して
、互いに異なった温度となるように温度制御を行なうた
めに、複数の半導体素子にそれぞれ温度制御手段を設け
ることはコストの点から、みて好ましくなく、複数の半
導体素子に対する互いに異なった温度制御を容易かつ安
価に行なうことのできる温度制御装置が望まれている。
However, as mentioned above, it is undesirable from a cost standpoint to provide temperature control means for each of multiple semiconductor elements in order to control the temperature of the multiple semiconductor elements so that they are at different temperatures. There is a need for a temperature control device that can easily and inexpensively control different temperatures of a plurality of semiconductor elements.

(発明の目的) 本発明は上記のような要望に基づいてなされたものであ
り、複数の半導体素子を互いに異なった温度に極めて容
易に制御することができ°、しかも製造コストの低い半
導体素子温度制御装置を提供することを目的とするもの
である。
(Object of the Invention) The present invention has been made based on the above-mentioned needs, and provides a semiconductor device temperature that can extremely easily control a plurality of semiconductor devices to different temperatures and that is inexpensive to manufacture. The purpose of this invention is to provide a control device.

(発明の構成) 本発明の半導体素子温度制御装置は、複数の半導体素子
が取り付けられたブロック状の熱伝導部材およびこの熱
伝導部材の一部に設けられ、この熱伝導部材内に熱の流
れを生じさせる温度制御素子からなり、前記熱の流れに
より、複数の半導体素子の温度を互いに異なったものと
することを特徴とするものである。すなわち、本発明は
、前記温度制御素子を駆動させて熱伝導部材内に熱の流
れを生じさせ、熱の流れによりそれぞれの半導体素子の
取り付けられた熱伝導部材の部分の温度を互いに異なっ
たものにし、1つの温度制御素子により、複数の半導体
素子を容易に互いに異なった温度に制御することを可能
とするものである。
(Structure of the Invention) The semiconductor element temperature control device of the present invention is provided in a block-shaped heat conductive member to which a plurality of semiconductor elements are attached, and a part of this heat conductive member, so that heat flows within the heat conductive member. The device is characterized in that the heat flow causes the temperatures of the plurality of semiconductor elements to be different from each other. That is, in the present invention, the temperature control element is driven to generate a heat flow within the heat conduction member, and the temperature of the portion of the heat conduction member to which each semiconductor element is attached is made to differ from each other due to the heat flow. This makes it possible to easily control a plurality of semiconductor elements to different temperatures using one temperature control element.

(実  施  態  様) 以下、図面を参照して本発明の実施態様について説明す
る。
(Embodiments) Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施態様による半導体素子温度制御
装置の構造を示す斜視図である。
FIG. 1 is a perspective view showing the structure of a semiconductor device temperature control device according to an embodiment of the present invention.

−例として3つの半導体レーザ1,2.3は、熱伝導部
材であるブロック状のヒートシンク、4内に横一列に並
べて取り付けられている。これらの半導体レーザは、そ
れぞれリード線1A、2A。
- As an example, three semiconductor lasers 1, 2.3 are mounted in a horizontal row in a block-shaped heat sink 4, which is a thermally conductive member. These semiconductor lasers have lead wires 1A and 2A, respectively.

3Aから電力を供給されることによって作動可能となっ
ている。
It can operate by being supplied with power from 3A.

前記ヒートシンク4の下端中央部には、温度制御素子で
あるベルチェ素子等の電子冷却素子5が設けられている
。この電子冷却素子5は、一端面5Aから熱を吸収して
ヒートシンク4の端面5A近傍を冷却し、他端面5Bか
らヒートシンク4内へ吸収した熱を放出するものであり
、前記ヒートシンク4は、図示のようにこの電子冷却素
子5の上方に空孔4Aを有していることから、電子冷却
素子の上記の働きにより、熱はヒートシンク4内を第2
図に矢印で示すように循環する。従ってヒートシンク4
のうち、電子冷却素子の一端面5Aと接している部分の
温度T1が最も低温となり、電子冷却素子の他端面5B
と接している部分の温度T2が最もa温となる。また上
述の3つの半導体レーザは、熱の流れる方向に沿って半
導体装置ザ1が最も高温となり、半導体レーザ2、半導
体レーザ3の順に次第に低温となって、それぞれの半導
体レーザの温度は各半導体レーザの位置および前記温度
TIN温度T2により決められる。従って各半導体レー
ザを予めヒートシンク内の所定の位置に設け、温度TI
、T2が所定の温度となるように、前記電子冷却素子5
を駆動させれば、ヒートシンクを介して各半導体レーザ
をそれぞれ最も好適な互いに異なった温度に制御するこ
とができる。このように複数の半導体レーザの温度を互
いに異なるように制御すれば、各半導体レーザの発振波
長は互いに異なったものとなり、ビートが生じるといっ
た不都合は生じない。
At the center of the lower end of the heat sink 4, an electronic cooling element 5 such as a Beltier element, which is a temperature control element, is provided. The electronic cooling element 5 absorbs heat from one end surface 5A to cool the vicinity of the end surface 5A of the heat sink 4, and releases the absorbed heat into the heat sink 4 from the other end surface 5B. Since the electronic cooling element 5 has a hole 4A above it as shown in FIG.
It circulates as shown by the arrow in the figure. Therefore heat sink 4
Among them, the temperature T1 of the part in contact with one end surface 5A of the electronic cooling element is the lowest, and the temperature T1 of the part in contact with one end surface 5A of the electronic cooling element is the lowest.
The temperature T2 of the part in contact with is the highest temperature a. Further, among the three semiconductor lasers described above, the semiconductor device laser 1 has the highest temperature along the heat flow direction, and the temperature of the semiconductor laser 1 gradually decreases in the order of the semiconductor laser 2 and the semiconductor laser 3. is determined by the position of TIN and the temperature T2. Therefore, each semiconductor laser is placed in advance at a predetermined position within the heat sink, and the temperature TI
, T2 becomes a predetermined temperature.
By driving the semiconductor lasers, it is possible to control each semiconductor laser to the most suitable temperature, which is different from each other, through the heat sink. If the temperatures of the plurality of semiconductor lasers are controlled to be different from each other in this manner, the oscillation wavelengths of the respective semiconductor lasers will be different from each other, and problems such as beats will not occur.

また、上記実施態様においては、半導体素子として半導
体レーザを用いた場合について説明したが、上記の装置
内に、半導体レーザの代りに、最適な作動濃度が互いに
異なる複数のその他の半導体素子を作動温度類に取り付
け、上述のように電子冷却素子によりヒートシンク内に
熱の流れを発生させ、それぞれの半導体素子が作動に最
適な温度になるように温度制御を行なうことも可能であ
る。いずれの場合にも、本発明の装置によれば、複数の
半導体素子に対して温度制御素子を1つ設けるだけで、
全ての半導体素子を同時に、互いに異なった温度に制御
することができるので、低いコストにより大きな効果を
あげることができる。
Further, in the above embodiment, a case has been described in which a semiconductor laser is used as the semiconductor element, but instead of the semiconductor laser, a plurality of other semiconductor elements having different optimum operating concentrations are used in the above apparatus at operating temperatures. It is also possible to control the temperature so that each semiconductor element reaches the optimum temperature for operation by attaching it to a heat sink and generating a flow of heat within the heat sink using the electronic cooling element as described above. In any case, according to the apparatus of the present invention, only one temperature control element is provided for a plurality of semiconductor elements, and
Since all semiconductor elements can be controlled to different temperatures at the same time, great effects can be achieved at low cost.

なお、温度制御素子により生ぜしめられる熱の流れは上
記のようにヒートシンク内を循環するものに限られるも
のではなく、例えば装置が使用される循環温度がほぼ一
定である場合等には熱伝導部材の一端を一定温度になる
ように冷却し、複数の半導体素子を前記温度制御素子ま
での距離が互いに異なるように熱伝導部材上に取りつけ
、温度制御素子に近い順に半導体素子の温度が低くなる
ように制御を行なうことも可能である。また温度制御素
子として用いられる冷却素子は電子冷却素子に限られる
ものではなく、また冷却素子の代りにヒータを用いても
よい。ざらに半導体゛素子の数、配列および熱伝導部材
の形状等も上述したものに限らず、任意に設定してもよ
いことは言うまでもない。
Note that the flow of heat generated by the temperature control element is not limited to circulating within the heat sink as described above; for example, when the circulating temperature at which the device is used is approximately constant, a heat conductive member One end is cooled to a constant temperature, and a plurality of semiconductor elements are mounted on a heat conductive member so that the distances to the temperature control element are different from each other, so that the temperature of the semiconductor elements decreases in the order of distance from the temperature control element. It is also possible to control the Further, the cooling element used as the temperature control element is not limited to the electronic cooling element, and a heater may be used instead of the cooling element. It goes without saying that the number and arrangement of semiconductor elements, the shape of the heat conductive member, etc. are not limited to those described above, and may be set arbitrarily.

(発明の効果) 以上説明したように、本発明の半導体素子温度制御装置
によれば、複数の半導体素子をブロック状の熱伝導部材
に取り付け、またこの熱伝導部材の一部に電子冷却素子
等の温度制御素子を設けて熱伝導部材内に熱の流れを生
じさせることにより、1つの温度制御素子により複数の
半導体素子を互いに異なった温度に制御することができ
、製造コストの低い装置により、複数の半導体素子に対
する互いに異なった温度制御を極めて容易に行なうこと
が可能となる。
(Effects of the Invention) As explained above, according to the semiconductor element temperature control device of the present invention, a plurality of semiconductor elements are attached to a block-shaped heat conductive member, and a part of the heat conductive member is provided with an electronic cooling element, etc. By providing a temperature control element to generate a heat flow within the heat conduction member, it is possible to control multiple semiconductor elements to different temperatures with one temperature control element, and with a low manufacturing cost device, It becomes possible to control different temperatures of a plurality of semiconductor elements very easily.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施態様による半導体素子温度制御
装置の構造を示す斜視図、 第2図は上記実施態様の装置における熱の流れを説明す
るための概略図である。 1.2.3・・・半導体レーザ 4・・・ヒートシンク   5・・・電子冷却素子第1
図 第2図
FIG. 1 is a perspective view showing the structure of a semiconductor element temperature control device according to an embodiment of the present invention, and FIG. 2 is a schematic diagram for explaining the flow of heat in the device of the above embodiment. 1.2.3...Semiconductor laser 4...Heat sink 5...Electronic cooling element first
Figure 2

Claims (1)

【特許請求の範囲】[Claims] 複数の半導体素子が取り付けられたブロック状の熱伝導
部材および該熱伝導部材の一部に設けられ、この熱伝導
部材内に熱の流れを生じさせる温度制御素子からなり、
前記熱の流れにより、前記複数の半導体素子の温度を互
いに異なつたものとすることを特徴とする半導体素子温
度制御装置。
It consists of a block-shaped heat conductive member to which a plurality of semiconductor elements are attached, and a temperature control element that is provided in a part of the heat conductive member and causes a flow of heat within the heat conductive member,
A semiconductor element temperature control device characterized in that the temperature of the plurality of semiconductor elements is made to be different from each other by the heat flow.
JP60070501A 1985-04-03 1985-04-03 Semiconductor device temperature controlling apparatus Pending JPS61229381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60070501A JPS61229381A (en) 1985-04-03 1985-04-03 Semiconductor device temperature controlling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60070501A JPS61229381A (en) 1985-04-03 1985-04-03 Semiconductor device temperature controlling apparatus

Publications (1)

Publication Number Publication Date
JPS61229381A true JPS61229381A (en) 1986-10-13

Family

ID=13433332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60070501A Pending JPS61229381A (en) 1985-04-03 1985-04-03 Semiconductor device temperature controlling apparatus

Country Status (1)

Country Link
JP (1) JPS61229381A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088266A (en) * 2005-09-22 2007-04-05 Sony Corp Laser light source device and optical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088266A (en) * 2005-09-22 2007-04-05 Sony Corp Laser light source device and optical device

Similar Documents

Publication Publication Date Title
JPS61189658A (en) Semiconductor element temperature controller
JP6430677B1 (en) Line beam light source, line beam irradiation apparatus, and laser lift-off method
US6975659B2 (en) Laser diode array, laser device, wave-coupling laser source, and exposure device
US5084886A (en) Side-pumped laser system with independent heat controls
US7505495B2 (en) Optical assembly comprising multiple semiconductor optical devices and an active cooling device
US5029335A (en) Heat dissipating device for laser diodes
US4689659A (en) Temperature controller for semiconductor device
US20100158060A1 (en) Laser Diode Assemblies
JP2000156538A (en) Temperature-controlled microchip laser assembly and associated submount assembly
JPH02142695A (en) Laser beam machine
US5086431A (en) Increased intensity laser diode source configuration
JPS61229381A (en) Semiconductor device temperature controlling apparatus
US4864584A (en) Laser diode pumped ND:YAG laser and method of making same
JPH0852582A (en) Laser heating method, device and laser heating tool used therefor
JP2002353551A (en) Semiconductor laser device
JP2918739B2 (en) Multi-beam semiconductor laser device
US10886700B2 (en) Optical module control method, optical module unit, and optical module
JPH02306681A (en) Semiconductor laser device
JPH1094892A (en) Laser beam heating device
KR100265808B1 (en) Laser diode package
JPH11354890A (en) Semiconductor laser module
JPH11197868A (en) Laser beam projecting device
KR20210121651A (en) Direct active cooling structure and laser source including the same
JPS6232942A (en) Medical laser apparatus
JPH0927655A (en) Optical semiconductor coupler