JPS61229356A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS61229356A
JPS61229356A JP60070246A JP7024685A JPS61229356A JP S61229356 A JPS61229356 A JP S61229356A JP 60070246 A JP60070246 A JP 60070246A JP 7024685 A JP7024685 A JP 7024685A JP S61229356 A JPS61229356 A JP S61229356A
Authority
JP
Japan
Prior art keywords
layer
type
buried layer
type semiconductor
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60070246A
Other languages
Japanese (ja)
Inventor
Atsushi Ueno
上野 厚
Tadao Yoneda
米田 忠夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60070246A priority Critical patent/JPS61229356A/en
Publication of JPS61229356A publication Critical patent/JPS61229356A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14887Blooming suppression

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To suppress stably and efficiently the blooming phenomenon in a solid-state image pickup device by a method wherein the device is constituted in such a structure that the P-type well layers are eliminated, the opening part of each P<+> buried layer is completely covered with each N<+> photo diode and the excess charge is swept out by controlling the size of the opening part of each buried layer and the impurity concentration of the buried layer. CONSTITUTION:P<+> buried layers 2 are formed in an N-type semiconductor substrate 1, and after that, the layers 2 are covered and an N-type semiconductor layer is formed on the whole surface of the substrate 1. Then, P<+> regions 3 for channel isolation and insulating films 9 for element isolation are formed. Then, P-type ions for an enhancement type readin gate (a) are implanted, and furthermore, N-type ions for transfer gate and N-type well are implanted, and readin gates 7 and N-type well layers 8 are formed. Then, gate insulating films, common polycrystalline Si gate electrodes 5 and insulating films 10 for protection are formed, and after that, an N<+> photo diode (charge storage part) 4 is formed on the opening part 12 of each layer 2 by implanting N-type ions. The size of the opening part 12 of each layer 2 and the impurity concentration of the layer 2 are respectively controlled at the optimum value.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はブルーミング現象抑制構造を備えた固体撮像装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a solid-state imaging device equipped with a blooming phenomenon suppressing structure.

従来の技術 従来の固体撮像装置において、ブルーミング現象を抑制
する構造として、第6図に示す如く、■−■方向に電荷
蓄積領域4(以下n+ホトダイオードと称する)とPウ
ェル2oとn型半導体基板1のいわゆる縦型npn構造
をn”杢)ダイオード4直下に形成する方法がある。こ
の方法は、pウェル2oとn型半導体基板1間に逆バイ
アス電圧を印加し、Pウェル20を完全空乏化させた時
のポテンシャルを信号電荷転送時の読み込みゲート6I
L直下のポテンシャルよシ高く設定することによシ、強
い光が入射した時に発生する過剰電荷をn基板へ掃き出
してブルーミングを抑制するものである(例えば、特開
昭58−125962号)。なお第6図において、2は
P埋込み層、3はチャンネル分離用P十領域、4はn十
埋込み層、6bは転送ゲート、8はnウェル、9は素子
分離用絶縁膜、1oは保護用絶縁膜、11は光遮蔽膜で
ある。
2. Description of the Related Art In a conventional solid-state imaging device, as a structure for suppressing the blooming phenomenon, as shown in FIG. There is a method of forming a so-called vertical npn structure of 1 directly under the n" diode 4. In this method, a reverse bias voltage is applied between the p well 2o and the n type semiconductor substrate 1, and the p well 20 is completely depleted. Read the potential when the signal charge is transferred to the gate 6I.
By setting the potential higher than the potential directly below L, excess charges generated when strong light is incident are swept out to the n-substrate, thereby suppressing blooming (for example, Japanese Patent Laid-Open No. 125962/1982). In FIG. 6, 2 is a P buried layer, 3 is a P region for channel isolation, 4 is an n buried layer, 6b is a transfer gate, 8 is an n well, 9 is an insulating film for element isolation, and 1o is for protection. The insulating film 11 is a light shielding film.

発明が解決しようとする問題点 このような従来の装置では、Pウェルのポテンシャルを
最適化さすためには、Pウェル層の深さ、不純物濃度及
びn+ホトダイオード部の深さ、さらにP十埋込み層の
不純物濃度及びn+ホトダイオード部とのマスク合わせ
精度等を考慮する必要があるなど、制御性が複雑であっ
た。
Problems to be Solved by the Invention In such a conventional device, in order to optimize the potential of the P well, the depth of the P well layer, the impurity concentration, the depth of the n+ photodiode part, and the depth of the P buried layer must be adjusted. The controllability was complicated, as it was necessary to take into consideration the impurity concentration of the semiconductor and the accuracy of mask alignment with the n+ photodiode section.

本発明はかかる点に濫みてなされたもので、簡単な構造
でかつ制御性の容易なプルーミング現象抑制構造を提供
することを目的としている。
The present invention has been made in view of this problem, and an object of the present invention is to provide a pluming phenomenon suppressing structure that has a simple structure and is easy to control.

問題点を解決するための手段 本発明は上記問題点を解決するため、Pウェル層をなく
し、P十埋込み層の開孔部を完全にn+ホトダイオード
が覆い、かつn型半導体基板表面に到達せしめ、P十埋
込み層の開孔部寸法と不純物濃度で、過剰電荷を掃き出
す為のポテンシャルを制御するものである。
Means for Solving the Problems In order to solve the above problems, the present invention eliminates the P well layer, completely covers the opening of the P buried layer with the n+ photodiode, and allows the n+ photodiode to reach the surface of the n-type semiconductor substrate. , the potential for sweeping out excess charge is controlled by the size of the opening in the P buried layer and the impurity concentration.

作用 本発明は上記した構造によシ、P十埋込み層とn基板間
に逆バイアス電圧を印加すると、P十埋込み層の開孔部
寸法及び不純物濃度の影響によシ♂*トダイオードと接
するn型半導体基板領域が空乏化され、任意のポテンシ
ャルとなり、過剰電荷のみを基板に掃き出すことが可能
となる。
Effect of the present invention is based on the above-described structure. When a reverse bias voltage is applied between the P buried layer and the n substrate, the P buried layer contacts the female diode due to the influence of the aperture size and impurity concentration. The n-type semiconductor substrate region is depleted and has an arbitrary potential, making it possible to sweep out only excess charge to the substrate.

実施例 第1図は本発明のプルーミング現象抑制構造の一実施例
を示す断面構造図である。第3図と同じ構成部分には同
一番号を付しておシ、1はn型半導体基板、2は?埋込
み層、3はチャネル分離用P増域、4は電荷蓄積領域で
あるn+ホトダイオード領域、6は読み込みゲートと転
送ゲートの共通ポリシコンゲート電極で、さらにゲート
絶縁膜6を介してエンノ・ンスメント型読み込みゲート
7、nウェル層8、素子分離用の厚い絶縁膜9、保護用
絶縁膜10、光遮蔽膜11が設けられている。
Embodiment FIG. 1 is a cross-sectional structural diagram showing an embodiment of the pluming phenomenon suppressing structure of the present invention. The same components as in Figure 3 are numbered the same, 1 is the n-type semiconductor substrate, 2 is the ? 3 is a buried layer, 3 is a P increase area for channel separation, 4 is an n+ photodiode region which is a charge storage region, 6 is a common polysilicon gate electrode for the read gate and transfer gate, and furthermore, through the gate insulating film 6, an enhancement type A read gate 7, an n-well layer 8, a thick insulating film 9 for element isolation, a protective insulating film 10, and a light shielding film 11 are provided.

この第1図と第6図に示した従来例との違いはPウェル
層2oがなく、P十埋込み層2の開孔部を完全にn+ホ
トダイオード4が覆う様に形成されていることにある。
The difference between this conventional example shown in FIG. 1 and FIG. 6 is that there is no P well layer 2o, and the n+ photodiode 4 is formed so as to completely cover the opening of the P well layer 2. .

この形成方法について第2図を用いて説明する。This forming method will be explained using FIG. 2.

まずn型半導体基板1上に通常のホ) IJソゲラフイ
ー技術を用いて酸化膜マスク19より埋込み層2に該当
する領域にイオン注入法、または熱拡散法によって高濃
度のP型不純物層を形成する(第2図(a))。その後
基板と同じか又は反対の導電型、この場合同一のn型半
導体層22を、例えば気相成長法等によって形成する。
First, a high-concentration P-type impurity layer is formed on the n-type semiconductor substrate 1 by ion implantation or thermal diffusion in the region corresponding to the buried layer 2 through the oxide film mask 19 using the usual IJ soger flow technique. (Figure 2(a)). Thereafter, an n-type semiconductor layer 22 of the same or opposite conductivity type as the substrate, in this case the same, is formed by, for example, vapor phase growth.

高濃度P型埋込み層2はその後の熱処理によってn型半
導体層20へ拡散され第2図(b)に示すようにp+J
込み層の開孔部12が形成される。次に選択酸化法とB
+イオン注入法を用いて、チャネル分離層P十領域3及
び素子分離用の厚い絶縁膜9を形成する(第2図(C)
)。次に第1図に示すように工ンノ・ンスメント型読み
込みゲート用のP型イオン注入、さらに転送ゲート用の
nウェル用のn型イオン注入を行ない、読み込みゲー)
7.nウェル層8を形成する6次にゲート絶縁膜6及び
共通ポリシリコンゲート電極6を形成し、表面を酸化し
て保護用絶縁膜1oを形成する。次にn型イオン注入を
行ない鱈ホトダイオード4をP十埋込み層の開孔部であ
るn型半導体基板まで到達するように形成する。
The heavily doped P-type buried layer 2 is diffused into the n-type semiconductor layer 20 by subsequent heat treatment, resulting in a p+J layer as shown in FIG. 2(b).
Openings 12 in the embedded layer are formed. Next, the selective oxidation method and B
+ Using the ion implantation method, a channel isolation layer P region 3 and a thick insulating film 9 for element isolation are formed (FIG. 2(C))
). Next, as shown in Figure 1, P-type ion implantation is performed for the engineering type read gate, and then n-type ion implantation is performed for the n-well for the transfer gate.
7. Next, a gate insulating film 6 and a common polysilicon gate electrode 6 for forming an n-well layer 8 are formed, and the surface is oxidized to form a protective insulating film 1o. Next, n-type ions are implanted to form a cod photodiode 4 so as to reach the n-type semiconductor substrate, which is the opening of the P buried layer.

次に本実施例の固体撮像装置におけるプルーミング現象
抑制の動作について説明する。
Next, the operation of suppressing the pluming phenomenon in the solid-state imaging device of this embodiment will be explained.

第3図は第1図に示すn+ホトダイオード直下のI−I
線上すなわち深さ方向の電位分布を示している。今第1
図に示すチャネル分離層P十領域3の電位を基準電位(
この場合0ボルト)とする。読み込みゲート7の電位を
Vrn 、閾値電圧を7丁とするとn+ホトダイオード
4はVTR−7丁の電位でセットされる。またP十埋込
み層とn型半導体基板1に印加する逆バイアス電圧を曲
線3oで示す低い電圧から、よシ高い逆バイアス電圧に
すると曲線31のようにP十埋込み層2の開孔部12で
n+ホトダイオード4と接するn型半導体基板1表面が
完全に空乏化する。n+ホトダイオード4に光が照射さ
れ信号電荷が蓄積すると、n+ホトダイオード4の電位
は曲線31から曲線32のように小さくなってゆき最終
的には曲線33のようにn ホトダイオード4とn型半
導体基板1は順方向となシ、これ以上発生した信号電荷
は全てn型半導体基板1へ流れ込む。す々わち第1図で
示す読み込みゲ−ドア直下 、チャネル分離用p+*域
3直下、および図示していないがn+ホトダイオード4
を囲む全ての領域の表面電位よシn+ホトダイオード4
とn型半導体基板1で形成する接合電位34が高くなる
ようにn型半導体基板1とP+埋込み層2に逆バイアス
電圧を印加することによシ、n+ホトダイオード4で発
生する過剰電荷は完全にn型半導体基板へ掃き出すこと
ができる。特に本発明において重要なn+ホトダイオー
ド4とn型半導体基板1間の接合電位設定を説明する。
Figure 3 shows I-I directly below the n+ photodiode shown in Figure 1.
It shows the potential distribution on the line, that is, in the depth direction. Now the first
The potential of the channel separation layer P region 3 shown in the figure is set to the reference potential (
In this case, it is set to 0 volts). If the potential of the read gate 7 is Vrn and the threshold voltage is 7, then the n+ photodiode 4 is set at a potential of VTR-7. Furthermore, when the reverse bias voltage applied to the P00 buried layer and the n-type semiconductor substrate 1 is increased from the low voltage shown by the curve 3o to a higher reverse bias voltage, the opening 12 of the P00 buried layer 2 is increased as shown by the curve 31. The surface of the n-type semiconductor substrate 1 in contact with the n+ photodiode 4 is completely depleted. When the n+ photodiode 4 is irradiated with light and signal charges are accumulated, the potential of the n+ photodiode 4 decreases as shown by a curve 31 to a curve 32, and finally the potential of the n+ photodiode 4 and the n-type semiconductor substrate 1 decreases as shown by a curve 33. is in the forward direction, and all further generated signal charges flow into the n-type semiconductor substrate 1. That is, directly below the reading gate shown in Figure 1, directly below the p++ area 3 for channel separation, and the n+ photodiode 4 (not shown).
The surface potential of all the areas surrounding the n+ photodiode 4
By applying a reverse bias voltage to the n-type semiconductor substrate 1 and the P+ buried layer 2 so that the junction potential 34 formed between the n-type semiconductor substrate 1 and the n-type semiconductor substrate 1 becomes high, the excess charge generated in the n+ photodiode 4 is completely removed. It can be swept out onto an n-type semiconductor substrate. In particular, the setting of the junction potential between the n+ photodiode 4 and the n-type semiconductor substrate 1, which is important in the present invention, will be explained.

第4図(IL) 、 (b) 、 (0)は第1図に示
すn+ホトダイオード直下のP+埋込み層2の開孔部1
2のn−n線上すなわち横方向の電位分布をP+埋込み
層2の開孔部120寸法変化(12a、12b)に対し
て模式的に示したもので、今P十埋込み層2の電位を基
準電位(ここでは0ボルト)とし、P+埋込み層2とn
型半導体基板1間にある一定の逆バイアスv!lを印加
すると、第4図(b)において開孔部寸法が広く、n型
半導体基板表面が完全に空乏化されずP+埋込み層2と
の空乏層21の場合、電位分布は4oとなる(同図(&
))。しかし第4図(C)のように開孔部寸法が12b
の如く狭くすると二次元効果によIn型半導体基板1表
面は完全に空乏化され電位分布4゜はOボルトに近づく
(同図(a))。この電位分布が低くなる要因にP41
1込み層2の不純物濃度を高くした場合も同じことが言
える。この二次元効果によりn+ホトダイオードの電荷
(ここでは電子)が少ない時はバリアとなり、多く蓄え
られると第3図の電位曲線33となる。このようにP+
埋込み層2の開孔部寸法及び不純物濃度を制御すること
によりn+ホトダイオードとn型半導体基板表面の接合
電位を任意に設定することができ、過剰電荷の基板への
掃き出しを可能とさすものである。
FIG. 4 (IL), (b), and (0) are the openings 1 of the P+ buried layer 2 directly under the n+ photodiode shown in FIG.
This diagram schematically shows the potential distribution on the nn line of 2, that is, in the lateral direction, with respect to the dimensional change (12a, 12b) of the opening 120 of the P+ buried layer 2, and the potential of the P+ buried layer 2 is now referenced. potential (here 0 volts), P+ buried layer 2 and n
A constant reverse bias v! between type semiconductor substrates 1. When l is applied, the potential distribution becomes 4o in the case where the opening size is wide and the surface of the n-type semiconductor substrate is not completely depleted and there is a depletion layer 21 with the P+ buried layer 2 as shown in FIG. 4(b). Same figure (&
)). However, as shown in Figure 4(C), the opening size is 12b.
When the width is narrowed as shown in FIG. 1, the surface of the In type semiconductor substrate 1 is completely depleted due to the two-dimensional effect, and the potential distribution 4° approaches O volts (FIG. 2(a)). P41 is the reason why this potential distribution becomes low.
The same can be said when the impurity concentration of the 1-layer 2 is increased. Due to this two-dimensional effect, when the charge (here, electrons) in the n+ photodiode is small, it becomes a barrier, and when a large amount is stored, it becomes a potential curve 33 in FIG. 3. Like this P+
By controlling the size of the opening in the buried layer 2 and the impurity concentration, the junction potential between the n+ photodiode and the surface of the n-type semiconductor substrate can be set arbitrarily, making it possible to sweep out excess charge to the substrate. .

この簡単な構造及び動作によってプルーミング現象を完
全に抑制することができる。
This simple structure and operation can completely suppress the pluming phenomenon.

ここでn型半導体層22はP型でも良い。又膜厚はn+
ホトダイオードの深さを考慮して設定する必要がち90
.5〜2ミクロンが好ましい。第1図の構造からも判る
ようにp+s込み層の開孔部とn+ホトダイオードのマ
スク合わせ精度はあまシ要求されない。
Here, the n-type semiconductor layer 22 may be of P type. Also, the film thickness is n+
It is necessary to take the depth of the photodiode into account when setting 90
.. 5-2 microns is preferred. As can be seen from the structure shown in FIG. 1, the precision of mask alignment between the opening in the p+s layer and the n+ photodiode is not required.

発明の効果 以上述べてきたように、本発明によれば、きわめて簡単
な構造で、安定に精度良くプルーミング現象を抑制でき
、実用的にきわめて有用である。
Effects of the Invention As described above, according to the present invention, the pluming phenomenon can be suppressed stably and accurately with an extremely simple structure, and is extremely useful in practice.

【図面の簡単な説明】 第1図は本発明の一実施例におけるプルーミング現象を
抑制する固体撮像装置の断面図、第2図線、n−n線方
向の電位分布を示す図、第6図は従来の固体撮像装置の
断面図である。 1・・・・・・半導体基板、2・・・・・・埋込み層、
4・・・・・・電荷蓄積領域、7・・・・・・エンハン
スメント型読み込みゲート。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 第4図 第5図
[Brief Description of the Drawings] Fig. 1 is a cross-sectional view of a solid-state imaging device that suppresses the pluming phenomenon in an embodiment of the present invention, Fig. 2 is a diagram showing the potential distribution in the line nn direction, Fig. 6 is a cross-sectional view of a conventional solid-state imaging device. 1... Semiconductor substrate, 2... Buried layer,
4... Charge storage region, 7... Enhancement type read gate. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板の主面に、前記基板と反対の導電型を
もつ埋込み層を部分的に形成し、前記埋込み層を覆うよ
うに前記基板主面全体に一導電型をもつ半導体層を形成
し、前記埋込み層が形成されていない前記半導体層主面
に電荷蓄積領域を形成し、前記埋込み層が形成されてい
る前記半導体層上に、前記電荷蓄積領域からの信号を転
送及び読み出す装置を設けたことを特徴とする固体撮像
装置。
(1) A buried layer having a conductivity type opposite to that of the substrate is partially formed on the main surface of a semiconductor substrate, and a semiconductor layer having one conductivity type is formed over the entire main surface of the substrate so as to cover the buried layer. and a device for forming a charge storage region on the main surface of the semiconductor layer where the buried layer is not formed, and transferring and reading signals from the charge storage region on the semiconductor layer where the buried layer is formed. A solid-state imaging device characterized by:
(2)電荷蓄積領域は、少なくとも埋込み層が形成され
ていない半導体基板の主面に到達していることを特徴と
する特許請求の範囲第1項記載の固体撮像装置。
(2) The solid-state imaging device according to claim 1, wherein the charge storage region reaches at least the main surface of the semiconductor substrate on which no buried layer is formed.
JP60070246A 1985-04-03 1985-04-03 Solid-state image pickup device Pending JPS61229356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60070246A JPS61229356A (en) 1985-04-03 1985-04-03 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60070246A JPS61229356A (en) 1985-04-03 1985-04-03 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS61229356A true JPS61229356A (en) 1986-10-13

Family

ID=13426013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60070246A Pending JPS61229356A (en) 1985-04-03 1985-04-03 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS61229356A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019117933A (en) * 2019-02-27 2019-07-18 株式会社東芝 Solid state imaging apparatus and method of manufacturing image state imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019117933A (en) * 2019-02-27 2019-07-18 株式会社東芝 Solid state imaging apparatus and method of manufacturing image state imaging apparatus

Similar Documents

Publication Publication Date Title
JP3177514B2 (en) Solid-state image sensor
JP3111212B2 (en) Manufacturing method of CCD type solid-state imaging device
EP0212794A1 (en) Solid state image sensing device and a method of manufacturing the same
US5324669A (en) Process for manufacturing a solid state image pickup device having increased charge storage and improved electronic shutter operation
JPS62222667A (en) Solid-state image pickup device
JP2575907B2 (en) Solid-state imaging device and method of manufacturing the same
JPS61229356A (en) Solid-state image pickup device
JPH08264747A (en) Solid-state picturization device having container-lateral-side overflow-drain inplant,and its manufacture
JP3326798B2 (en) Solid-state imaging device
JP2909158B2 (en) Charge coupled device
JP3176300B2 (en) Solid-state imaging device and manufacturing method thereof
JP2526512B2 (en) Method of manufacturing solid-state imaging device
EP0607874A1 (en) Solid state image sensor
JP3320589B2 (en) Solid-state imaging device and method of manufacturing the same
JPH04291965A (en) Solid-state image sensor and manufacture thereof
JP2944785B2 (en) Method for manufacturing solid-state imaging device
JP2555888B2 (en) Method of manufacturing solid-state image sensor
JPS5917585B2 (en) solid-state imaging device
JP3408382B2 (en) Charge detection device, method of manufacturing the same, and solid-state imaging device
JPS60105382A (en) Solid-state pickup element
JPS6262067B2 (en)
JPH0522397B2 (en)
JPH03135069A (en) Solid-state image sensing element
JPH0823084A (en) Solid state image pickup device
JPH0570947B2 (en)