JPS61229322A - Plasma cvd apparatus - Google Patents

Plasma cvd apparatus

Info

Publication number
JPS61229322A
JPS61229322A JP7043385A JP7043385A JPS61229322A JP S61229322 A JPS61229322 A JP S61229322A JP 7043385 A JP7043385 A JP 7043385A JP 7043385 A JP7043385 A JP 7043385A JP S61229322 A JPS61229322 A JP S61229322A
Authority
JP
Japan
Prior art keywords
vacuum
cvd
chamber
chambers
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7043385A
Other languages
Japanese (ja)
Inventor
Hiroshi Sagara
相楽 広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7043385A priority Critical patent/JPS61229322A/en
Publication of JPS61229322A publication Critical patent/JPS61229322A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)

Abstract

PURPOSE:To simplify the shifting mechanism and operation by a method wherein multiple CVD chambers airtightly divided adjoining one another in the circumferential direction are formed inside a CVD vessel while a substrate side electrode is shifted to the positions opposed to high voltage electrodes. CONSTITUTION:A plasma CVD vessel 3 is partitioned by a bulkhead 22 with a pair of vacuum sluice valves 4, 12 while vacuumizing chambers 2 (inlet side), 11 (outlet side) and multiple CVD chambers 3a-3e are respectively arranged on the upper part side and lower part side of the plasma CVD vessel 3. A polygonal cylindrical holder (pentagonally formed holder) 8 provided with a substrate side electrode 5 is opposed to high voltage electrodes 9 insulatedly held by sidewall of CVD vessel 3. In such a constitution, multiple rotary wall parts 28 provided with sealing mechanism 6 serve both as the valve seat of vacuum sluice valve in the conventional apparatus rotating together with the electrode 5. Therefore, the shifting of all substrates as well as the opening and closing of bulkhead 22 dividing multiple CVD chambers 3a-3e can be automatically and easily performed by means of one time rotary intermittent pitch feeding without any obstruction as if the vacuum sluice valves 4, 12 are shifted together with the substrate side electrode 5.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明はプラズマCVD装置、ことに成膜反応ガスが互
いに異なる複数の平行平板形プラズー=rCVD処理室
を備えた薄膜生成装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field to which the Invention Pertains] The present invention relates to a plasma CVD apparatus, and more particularly to a thin film production apparatus equipped with a plurality of parallel plate-shaped plasma CVD processing chambers in which film-forming reaction gases are different from each other.

〔従来技術とその問題点〕[Prior art and its problems]

第6図および第7図は従来装置の概略断面図であり、第
6図は第7図の■−■線に沿った矢視方向の全体的な水
平断面図、第7図は第6図のI−■矢視方向の側断面図
であシ、多層構造からなる薄膜素子たとえばpL?L構
造の非晶質シリコン光起電力素子などの薄膜生成装置に
使用されているものである0図において、真空1ff=
56を備えた入口側の真空準備室46と真空扉57を備
えた出口側の真空準備室50との間にはそれぞれ真空仕
切弁51〜54を備えた隔壁によシ気密に区画されたC
VD処理室47,48,49が設けられ各室はそれぞれ
真空源41〜45に接続されて真空状態を保持できるよ
う構成されるとともに、CvD処理室41〜45にはそ
れぞれ成膜反応ガス導入管58〜60および電極面が鉛
直によるよう器壁に絶縁支持された高圧電極61が設け
られている。
6 and 7 are schematic cross-sectional views of the conventional device. FIG. 6 is an overall horizontal cross-sectional view taken along the line ■-■ in FIG. This is a side sectional view taken in the direction of the I-■ arrow of FIG. In Figure 0, which is used in thin film generation devices such as L-structure amorphous silicon photovoltaic devices, vacuum 1ff=
A vacuum preparation chamber 46 on the inlet side equipped with a vacuum chamber 56 and a vacuum preparation chamber 50 on the outlet side equipped with a vacuum door 57 are airtightly partitioned by partition walls each equipped with vacuum gate valves 51 to 54.
VD processing chambers 47, 48, and 49 are provided, and each chamber is configured to be connected to a vacuum source 41 to 45 to maintain a vacuum state, and each of the CvD processing chambers 41 to 45 is provided with a film-forming reaction gas introduction pipe. 58 to 60 and a high voltage electrode 61 which is insulated and supported on the vessel wall so that the electrode surface is vertical is provided.

また65は高圧電極と対向する面に基板1を保持し内部
にヒータ等の加熱手段65および温度制御器64を内部
した基板電極であり、真空l′I56を介して入口側の
真空準備室46内に挿入された基板電極65は真空仕切
弁51〜54が開いた状態において搬送機構66によ〕
高圧電極61と基板1とが互いに平行にかつ所定間隙長
Gを保持した状態−t’ CV D処331室47,4
8.49t−介して出口側の真空準備室50へと搬送さ
れるよう構成されている。また67は基板電極の加熱手
段65の電力供給機構部であシ、移動中の基板電極にも
常に電力が供給され基板電極65が所定温度に加熱され
る。
Further, 65 is a substrate electrode which holds the substrate 1 on the surface facing the high-voltage electrode and has a heating means 65 such as a heater and a temperature controller 64 inside. The substrate electrode 65 inserted therein is transported by the transport mechanism 66 with the vacuum gate valves 51 to 54 open.
A state in which the high voltage electrode 61 and the substrate 1 are parallel to each other and maintain a predetermined gap length G - t' CV D treatment 331 chambers 47, 4
8.49t- to be transported to the vacuum preparation chamber 50 on the exit side. Further, 67 is a power supply mechanism section of the substrate electrode heating means 65, and power is always supplied to the moving substrate electrode so that the substrate electrode 65 is heated to a predetermined temperature.

上述のように構成されたプラズマCVD装置において、
真空JFli56を介して真空準備室46に挿入された
複数の基板1を保持した基板電極65は真空状態に保持
された真空準備室46内で所定温度に加熱され、第1の
CVD処理室47を同様に排気し九状態で真空仕切弁5
1を開いて搬送機構66を操作することによシ基板電極
65を第1のCVD処理室47に搬送し、真空仕切弁5
1を閉じる。ついで処理室47の真空を保持しつつ成膜
反応ガス導入管58から第1膜生成用の反応ガスを導入
し、高圧電極61に電圧を印加すると、高圧電極61と
基板電極65との間の間隙長Gなる間隙中にグロー放電
が発生してプラズマ状態となシ、第1膜生成用の反応ガ
スが分解されて基板電極65にセットした基板1の表面
に反応生成物が堆積し、第1膜を生成することができる
。またこれと併行して真空準備室46には新たな基板電
極65が挿入され予備加熱が行われる。また第2のcv
I)処jl148.2g5ocVD処理室49における
操作も可様である。このようにして6層の薄膜が形成さ
れた基板1を保持した基板電極65は出口側の真空準備
室50に移され、所定の温度になるまで冷却されたのち
真空準備室50を大気圧状態に戻し、真空扉57を開放
することKよシ外部に取出される。
In the plasma CVD apparatus configured as described above,
The substrate electrode 65 holding a plurality of substrates 1 inserted into the vacuum preparation chamber 46 via the vacuum JFli 56 is heated to a predetermined temperature in the vacuum preparation chamber 46 maintained in a vacuum state, and the first CVD processing chamber 47 is heated. In the same way, the vacuum gate valve 5 is evacuated and in the 9 state.
By opening 1 and operating the transport mechanism 66, the substrate electrode 65 is transported to the first CVD processing chamber 47, and the vacuum gate valve 5 is opened.
Close 1. Next, while maintaining the vacuum in the processing chamber 47, a reaction gas for first film formation is introduced from the film formation reaction gas inlet pipe 58, and a voltage is applied to the high voltage electrode 61. A glow discharge is generated in the gap having the gap length G to create a plasma state, and the reaction gas for forming the first film is decomposed and reaction products are deposited on the surface of the substrate 1 set on the substrate electrode 65. 1 film can be produced. At the same time, a new substrate electrode 65 is inserted into the vacuum preparation chamber 46 and preheated. Also the second cv
I) Processing The operation in the VD processing chamber 49 is also possible. The substrate electrode 65 holding the substrate 1 on which six layers of thin films have been formed in this manner is transferred to the vacuum preparation chamber 50 on the exit side, and after being cooled to a predetermined temperature, the vacuum preparation chamber 50 is brought to atmospheric pressure. By returning it to K and opening the vacuum door 57, it is taken out to the outside.

上述のプラズマCVD装置の他に、基板水平搬送方式、
基板多層配置同時搬送方式などを採用したものが知られ
ているが、いずれの場合も基板の搬送が直線的であシ、
多層構造からなる薄膜素子を高品質に製造しようとする
と装置全体が長大化し、また搬送機構が真空仕切弁によ
シ分断されているために機構および搬送操作が複雑であ
り、かつ長大な真空権を用いることと併せて装置が°高
価になるという欠点がある。
In addition to the above-mentioned plasma CVD equipment, there are horizontal substrate transfer systems,
Some systems are known that use a multi-layer board placement and simultaneous transport system, but in either case, board transport is linear;
In order to manufacture high-quality thin film devices with multilayer structures, the entire equipment becomes long, and the transport mechanism is separated by vacuum gate valves, which complicates the mechanism and transport operation, and requires a long vacuum control. The disadvantage of using this method is that the equipment becomes expensive.

〔発明の目的〕[Purpose of the invention]

本発明は前述の状況に鑑みてなされたもので、少ない設
置面積で多数のCVD処理室を形成で色搬送機構および
搬送操作が簡素化されたプラズマCVD装置を経済的に
有利に提供することを目的とする。
The present invention has been made in view of the above-mentioned situation, and aims to economically advantageously provide a plasma CVD apparatus that forms a large number of CVD processing chambers with a small installation area and has a simplified color transport mechanism and transport operation. purpose.

〔発明の要点〕[Key points of the invention]

本発明は、プラズマCVD処理槽全体を縦形の円筒状に
形成し、基板が通過可能な一対の真空仕切弁を有する隔
壁によシ前記処理槽を軸方向に仕切ることによシ、軸方
向の一方側には成膜処理前後の基板を出し入れする真空
扉を備えた真空準備室を配し、軸方向の他方側には周方
向に複数のCVD処理室を区画するための固定壁部およ
び高圧電極を設けるとともに、CVD処理室の数に対応
した多角筒状に形成され外側面それぞれに基板電極を保
持し頂角部から放射状に突設され前記固定壁部とシール
機構を介して気密に係合するよう形成された複数の回転
壁部を有する多角筒状保持体を処理槽と同心状に回動可
能に配置し、この多角筒状保持体を回転駆動体によシ所
定角度回転させて固定壁部と回転壁部がシール機構を介
して気密に係合する位置ごとに停止させ、このときCV
D処理槽内部に周方向に隣接して気密に区画された複数
のCVD処理室が形成されるとともに、基板電極が高圧
電極と対向する位置に搬送されるよう構成したことによ
り、安価に形成しうる筒状のプラズマ処理槽の内周面に
沿って多数のCVD処理室をコンパクトに区画形成でき
ることによシ、プラズマCVD装置を経済的に有利に形
成できるようにするとともに、回転式の多角筒状保持体
によシ1回の回転操作によシすべての基板の搬送と複数
のCVD処理室の閉成とを同時に行えるようにする仁と
によシ、搬送機構およびその操作を簡素化できるように
したものである。
The present invention forms the entire plasma CVD processing tank in a vertical cylindrical shape, and divides the processing tank in the axial direction by a partition wall having a pair of vacuum gate valves through which the substrate can pass. On one side is a vacuum preparation chamber equipped with a vacuum door for loading and unloading substrates before and after film formation processing, and on the other side in the axial direction are fixed walls and high pressure to partition multiple CVD processing chambers in the circumferential direction. In addition to providing electrodes, the tube is formed into a polygonal cylinder shape corresponding to the number of CVD processing chambers, holds a substrate electrode on each outer surface, is protruded radially from the top corner, and is airtightly connected to the fixed wall through a sealing mechanism. A polygonal cylindrical holder having a plurality of rotating walls formed to fit together is rotatably arranged concentrically with the processing tank, and this polygonal cylindrical holder is rotated by a predetermined angle by a rotary drive member. The fixed wall portion and the rotating wall portion are stopped at each position where they are airtightly engaged through a sealing mechanism, and at this time, the CV
By forming a plurality of airtightly partitioned CVD processing chambers adjacent to each other in the circumferential direction inside processing tank D, and by configuring the substrate electrode to be transported to a position facing the high voltage electrode, it can be formed at low cost. By being able to form a large number of CVD processing chambers in a compact manner along the inner circumferential surface of a tubular plasma processing tank, it is possible to form a plasma CVD apparatus in an economically advantageous manner. It is possible to simultaneously transport all substrates and close multiple CVD processing chambers with a single rotational operation of the shape holder, simplifying the transport mechanism and its operation. This is how it was done.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例に基づいて説明する。 The present invention will be explained below based on examples.

第1図および第2図は本発明の実施例を示す概略側断面
図および水平断面図であシ、第1図は第2図のmV−m
V線に沿う側断面図、第2図は第1図のm−■線に沿う
水平断面図である。図において、3は円筒状に形成され
たプラズマCVD処理檜であシ、一対の仕切弁4および
12を有する隔壁22によシ軸方向に二つに仕切られて
おシ、図の場合上部側には入口側の真空準備室2および
出口側の真空準備室11が、また下部側には複数のCV
D処理室5a + 54 s 56.5cl * 34
が配設されている。入口側の真空準備室2は一方の面:
(矢印F−F方向に開閉する真空扉24および内部を真
空および大気圧状態に切換えるコックを備えたパルプ1
5.を備えるとともに、未成膜の基板1を収納したカセ
ット15aが収納されておシ、カセット15、を出し入
れするとき以外は真空状態に保持される。tた、矢印に
−に方向に開閉する真空扉11Aおよびパルプ164お
よびカセット154を備えた出口側の真空準備室11に
ついても同様である。
1 and 2 are a schematic side sectional view and horizontal sectional view showing an embodiment of the present invention, and FIG. 1 is a mV-m
FIG. 2 is a side sectional view taken along line V, and FIG. 2 is a horizontal sectional view taken along line m--■ in FIG. In the figure, numeral 3 is a plasma CVD-treated cypress formed into a cylindrical shape, and is partitioned into two in the axial direction by a partition wall 22 having a pair of gate valves 4 and 12; in the case of the figure, the upper side has a vacuum preparation chamber 2 on the inlet side and a vacuum preparation chamber 11 on the outlet side, and a plurality of CVs on the lower side.
D processing chamber 5a + 54 s 56.5cl * 34
is installed. The vacuum preparation chamber 2 on the inlet side is on one side:
(Pulp 1 equipped with a vacuum door 24 that opens and closes in the direction of arrow F-F and a cock that switches the inside to a vacuum and atmospheric pressure state.
5. A cassette 15a containing an undeposited substrate 1 is stored therein, and the cassette 15 is kept in a vacuum state except when the cassette 15 is being inserted or removed. The same applies to the vacuum preparation chamber 11 on the exit side, which is equipped with the vacuum door 11A, which opens and closes in the negative direction of the arrow, and the pulp 164 and cassette 154.

一方隔壁22の下側のCVD処理槽6内には、その中央
部に底板を気密に貫通する回転軸18によ)回動自在に
支持された多角筒状保持体8が内設されておシ、図の場
合5角形に形成された多角筒状保持体8の五つの側壁部
それぞれには複数の基板1を支持するよ゛う形成された
基板電極5が設けられるとともに、基板電極5を所定温
度に加熱するヒータおよび温度制御器からまる加熱手段
7が内蔵されておシ、かつ各頂角部にはシール機構部6
を備えた回転壁部28が放射状に突設されている。また
CVD処理槽6側からはシール機構部6と気密に係合す
る固定壁部26が突設されておシ、回転軸18に連結さ
れた回転駆動手段10によシ多角筒状保持体8を所定角
度回転して第2図に示す保合位置で停止するよう構成す
ることによシ、CVD処理槽5を周方向に気密に区画し
た5個のCVD処理室3a−4を形成することができる
。9は基板側電極5に対向するようCVD処理槽3の側
壁に絶縁支持された高圧電極である。また第2図の場合
CVD処理室5a〜54のうち互いに隣接する3aおよ
び64は入口側および出口側の予熱室として、また34
 、5G、 3jはそれ°ぞれ第1〜第30CVD処理
室として使用するよう構成されておシ、それぞれ排気用
のバルブ17a〜17番 を備えるとともに、CVD処
理室54.5a。
On the other hand, inside the CVD processing tank 6 below the partition wall 22, a polygonal cylindrical holder 8 rotatably supported by a rotating shaft 18 that hermetically passes through the bottom plate is disposed in the center thereof. In the case of the figure, a substrate electrode 5 formed to support a plurality of substrates 1 is provided on each of the five side walls of a polygonal cylindrical holder 8 formed in a pentagonal shape. A heating means 7 consisting of a heater and a temperature controller for heating to a predetermined temperature is built-in, and a sealing mechanism 6 is provided at each vertex.
A rotary wall portion 28 having a rotating wall portion 28 is provided to protrude radially. Further, from the side of the CVD processing tank 6, a fixed wall portion 26 that airtightly engages with the sealing mechanism portion 6 is provided. By configuring the CVD processing tank 5 to be rotated by a predetermined angle and stopped at the locking position shown in FIG. 2, five CVD processing chambers 3a-4 are formed in which the CVD processing tank 5 is airtightly partitioned in the circumferential direction. I can do it. A high voltage electrode 9 is insulated and supported on the side wall of the CVD treatment tank 3 so as to face the substrate side electrode 5. Further, in the case of FIG. 2, among the CVD processing chambers 5a to 54, 3a and 64 adjacent to each other are used as preheating chambers on the inlet side and outlet side, and 34
, 5G, and 3j are configured to be used as the first to thirtieth CVD processing chambers, respectively, and are equipped with exhaust valves 17a to 17, respectively, and a CVD processing chamber 54.5a.

6dは図示しない反応ガスの導入管を備えるよう構成さ
れている。
6d is configured to include a reaction gas introduction pipe (not shown).

上述のように構成された装置において、真空扉(2)を
開いて基板1を収納したカセット15.を入口側の真空
準備室20所定位置に収納したのち真空扉2.を閉じて
真空準備室2を真空状態にする。
In the apparatus configured as described above, the vacuum door (2) is opened and the cassette 15 containing the substrate 1 is opened. is stored in the predetermined position of the vacuum preparation chamber 20 on the entrance side, and then the vacuum door 2. is closed to bring the vacuum preparation chamber 2 into a vacuum state.

この状態で真空仕切弁4を開き、あらかじめ真空状態に
なっている予熱用のCVD処理室3.内の基板電極5に
真空仕切弁4を介してカセット15゜に収納された未成
膜の基板1を装着する。この装着作業はCVD処理槽の
外部から操作できる図示しない簡単なマジックハンドを
用いて行うことができる。基板の装着を終了したのち真
空仕切弁4は閉鎖され、CVD処理室3aで基板の予熱
が行われるとともに、真空準備室2には新たなカセット
が収納される。予熱を終了した時点で回転駆動体10に
より多角筒状保持体8を矢印H方向に回転間欠ピッチ送
りして予熱室′5.内にあった基板を第1のCVD処理
室′54側に移動させろ4内に反応ガスを導入して第1
膜の生成処理が行われる。
In this state, the vacuum gate valve 4 is opened, and the preheating CVD processing chamber 3. An unformed substrate 1 housed in a cassette 15° is attached to the substrate electrode 5 inside the chamber via the vacuum gate valve 4. This mounting work can be performed using a simple magic hand (not shown) that can be operated from outside the CVD treatment tank. After the mounting of the substrate is completed, the vacuum gate valve 4 is closed, the substrate is preheated in the CVD processing chamber 3a, and a new cassette is stored in the vacuum preparation chamber 2. When the preheating is completed, the polygonal cylindrical holder 8 is rotated intermittently in the direction of arrow H by the rotary drive body 10 to move it to the preheating chamber '5. Move the substrate that was inside the CVD processing chamber to the first CVD processing chamber '54.
A film generation process is performed.

このような移動作業はCVD処理呈54〜64をすべて
真空状態にして行われるので、多角筒状保持体8が回転
中t/CCVD処理室3.〜34が相互に連通した状態
になっても異なる反応ガスが混合して薄膜の純度が低下
するという懸念は全くない。第1膜の生成処理を終了し
た基板は上述と同様な操作により第2膜、第6膜が生成
され、CVD処理室54Vcおいて所定温度に冷却され
たのち、真空仕切弁12を介して出口側の真空準備室1
1に収納されたカセット154に収容され、次のステッ
プで準備室11を不活性ガスで大気圧に戻した後真空肺
11.を介して外部に取り出される。したがって、多角
筒状保持体8を回転させる度に新たな基板の装填作業と
成膜後の基板の取り出し作業を行うことにより成膜処理
を連続的に行うことができる。なお、基板を収納したカ
セットを使用する代シに、基板をセットした基板側電極
を用いてもよく、さらに基板電極5を収納したカセット
を用いるよう構成してもよい。
Since such moving work is performed with all of the CVD processing chambers 54 to 64 in a vacuum state, the polygonal cylindrical holder 8 is rotated while the CCVD processing chamber 3. 34 are in communication with each other, there is no concern that the purity of the thin film will deteriorate due to mixing of different reaction gases. After the first film generation process has been completed, the second film and the sixth film are generated on the substrate by the same operation as described above, and after being cooled to a predetermined temperature in the CVD processing chamber 54Vc, it is exited via the vacuum gate valve 12. Side vacuum preparation room 1
In the next step, the preparation chamber 11 is returned to atmospheric pressure with an inert gas, and then the vacuum lung 11. It is taken out to the outside via. Therefore, each time the polygonal cylindrical holder 8 is rotated, a new substrate is loaded and a substrate after film formation is taken out, thereby making it possible to perform the film formation process continuously. Note that instead of using a cassette containing a substrate, a substrate-side electrode on which a substrate is set may be used, and a cassette containing a substrate electrode 5 may also be used.

上述の実施例についての説明から明らかなように、多角
筒状保持体8が複数の基板電極を備えるとともに、シー
ル機構部6を備えた複数の回転壁部が従来装置における
真空仕切弁51〜54の弁板の役割を兼ね、しかも複数
の回転壁部が基板電極とともに回動するので、あたかも
真空仕切弁が基板電極とともに移動するのと同等に何の
障害物もなくすべての基板の移動と複数のCVD処理室
を区画する隔壁の閉成とを1回の回転間欠ピッチ送シに
よシ自動的かつ簡単に行うことができる。
As is clear from the description of the above-mentioned embodiments, the polygonal cylindrical holder 8 is provided with a plurality of substrate electrodes, and the plurality of rotating wall sections provided with the sealing mechanism section 6 are similar to the vacuum gate valves 51 to 54 in the conventional device. Furthermore, since the multiple rotating walls rotate together with the substrate electrodes, all substrates can be moved without any obstacles, just as if a vacuum gate valve were to move together with the substrate electrodes. Closing of the partition walls that partition the CVD processing chambers can be automatically and easily performed by one rotational intermittent pitch feed.

第3図および第4図は本発明の異なる実施例を示す断面
図であシ、第3図は第4図のv−v線に沿った水平断面
図、第4図は第3図のVl−M線に沿った矢視方向の側
断面図である。本実施例が前述の実施例と異なる点は、
入口側および出口側一対の真空準備室を区画する隔壁が
排除されて一室からなる真空準備室52が形成されたこ
と、CvD処理槽3が周方向に10室に区画されて第2
図における一連のCVD処理室64〜64が2連分一つ
のCVD処理槽5内に形成されたことである。
3 and 4 are sectional views showing different embodiments of the present invention, FIG. 3 is a horizontal sectional view taken along line v-v in FIG. 4, and FIG. - It is a sectional side view of the arrow direction along the M line. This embodiment differs from the previous embodiments in the following points:
The partition wall that partitions the pair of vacuum preparation chambers on the inlet side and the outlet side is removed to form a vacuum preparation chamber 52 consisting of one chamber, and the CvD treatment tank 3 is divided into 10 chambers in the circumferential direction and a second vacuum preparation chamber 52 is formed.
The series of CVD processing chambers 64 to 64 in the figure are formed in two chambers in one CVD processing tank 5.

したがって、2組の予熱室および冷却室5. 、5゜室
に対応する位置に2組の真空仕切弁4および12を設け
るよう構成することKよシ、2連の成膜処理を同時に実
施でき、かつ未成膜の基板と成膜法の基板を一つのカセ
ットにょシ供給あふいは回収するいわゆるカセット・ツ
ー・カセットの基板処理を可能とすることができるので
、CVD処理指6の大きさをさほど大きくすることなく
、また真空罪2cL、 11aの開閉頻度を高めること
なく、それ故安価な装置で多量の基板を高能率に成膜処
理することができ、またカセット・ツー・カセット処理
できることにより塵埃等による基板の汚損を防止できる
ために高品質の薄膜を形成することができる。
Therefore, there are two sets of preheating chambers and cooling chambers5. , two sets of vacuum gate valves 4 and 12 are provided at positions corresponding to the 5° chambers, so that two series of film forming processes can be performed simultaneously, and the substrates on which no films have been formed and the substrates in the film forming method can be Since it is possible to perform so-called cassette-to-cassette substrate processing in which one cassette is supplied and recovered, the size of the CVD processing finger 6 can be increased without increasing the size of the CVD processing finger 6, and the vacuum capacity is 2 cL, 11a. Therefore, it is possible to process a large amount of substrates with high efficiency without increasing the frequency of opening and closing of the cassette, and it is also possible to perform cassette-to-cassette processing, which prevents contamination of substrates due to dust, etc., making it highly efficient. Able to form quality thin films.

第5図は本発明のさらに異なる実施例を示す要部の水平
断面図であシ、第1膜〜第3膜の生成に要する時間ある
いは基板の冷却時間を相互に等しくできない場合の例を
示したものである。図°の場合、多角筒状保持体8は8
個の基板電極5および回転壁部2511:備えておシ、
CVD処理槽6側の固定壁部23は第2膜生成用のCV
D処理室6C内において2個の固定壁部を欠き、基板冷
却用のCVD処理室54において1個の固定壁部23を
欠くよう構成されている。したがって、第5図の装置に
よって成膜処理を行う場合、1区画からなる予熱用の処
理室6.L、第1膜生成用の処理室3善、第3膜生成用
の処理室3dの処理時間を1とすると、3区画からなる
第2膜生成用の処理室3c。
FIG. 5 is a horizontal cross-sectional view of a main part showing still another embodiment of the present invention, and shows an example where the time required to generate the first to third films or the cooling time of the substrate cannot be made equal to each other. It is something that In the case of figure °, the polygonal cylindrical holder 8 is 8
The substrate electrodes 5 and the rotating wall portion 2511:
The fixed wall part 23 on the side of the CVD treatment tank 6 is a CV for producing the second film.
Two fixed walls are missing in the D processing chamber 6C, and one fixed wall 23 is missing in the CVD processing chamber 54 for cooling the substrate. Therefore, when a film formation process is performed using the apparatus shown in FIG. 5, the preheating processing chamber 6. L, the processing chamber 3c for forming the second film is composed of three sections, assuming that the processing time of the processing chamber 3d for forming the first film and the processing chamber 3d for forming the third film is 1.

では6倍の処理時間が、2区画からなる冷却用の処理室
54では2倍の処理時間を確保することができる。CV
D処理装置を上述のように構成することによシ、基板電
極5は一定の時間で所定角度づつ回転間欠ピッチ送シさ
れるが、処理時間を回転間欠ピッチ送シの時間間隔の整
数倍の時間範囲で調整することができる。このように、
CVD処理室の区画数の任意性が高いので、ラインバラ
ンスのとれたプラズマCVD装置を装置の大きさをさほ
ど大きくすることなく容易に提供することができる。
In the case of the cooling processing chamber 54, which consists of two sections, the processing time can be doubled. CV
By configuring the processing device D as described above, the substrate electrode 5 is rotated intermittently pitch-fed by a predetermined angle at a constant time, but the processing time is an integral multiple of the time interval of the rotational pitch-fed. Can be adjusted in time range. in this way,
Since the number of compartments in the CVD processing chamber is highly arbitrary, a plasma CVD apparatus with good line balance can be easily provided without significantly increasing the size of the apparatus.

〔発明の効果〕〔Effect of the invention〕

本発明は前述のように、真空準備室と多数のCVD処理
室を包蔵するプラズマCVD処理槽を円筒状に形成し、
基板の出し入れが可能な真空仕切弁を有する隔壁によシ
処理槽を軸方向に気密に区画して一方側にはカセットの
出し入れが可能に形成された真空準備室を、他方側には
処理槽を周方向に区画してCVD処理室を形成すること
により装置を立体化構成した。その結果、プラズマCV
D処理檜の径をさほど大きくせずに成膜工程に相応した
多数のCVD処理室を形成でき、かつ筒状としたことく
よ、9CVD処理槽を安価に形成できるので、効率の高
いプラズマCVD装置を経済的に有利に提供する仁とが
できる。tた、基板電極を保持する熱板を兼ねた保持体
をCVD処理室の数に対応した多角形の多角筒状保持体
とするとともに、筒状のCVD処理槽から突設された固
定壁部と気密に係合するシール機構部を備えた回転壁部
を多角筒状保持体の頂角部から放射状に突設し多角筒状
保持体を所定角度づつ回転間欠ピッチ送シすふことによ
シ、多角筒状保持体が、基板の支持および搬送体として
の役割と複数のCVD処理室の隔壁の一部および真空仕
切弁の役割とを兼ねるよう構成した。その結果、複数の
基板電極の搬送と複数のCVD処理室の開閉(間仕切り
の変更)を1回の回転間欠ピッチ送シ操作によって簡単
かつ迅速に行うことができ、真空仕切弁によりCVD処
理室ごとに分断されていた従来の搬送機構に比べて搬送
装置および操作が簡素化かつ迅速化され、したがって作
業性のすぐれたプラズマCVD装置を経済的に有利に提
供することができる。
As described above, the present invention forms a plasma CVD processing tank in a cylindrical shape that contains a vacuum preparation chamber and a large number of CVD processing chambers,
The processing tank is airtightly partitioned in the axial direction by a partition wall with a vacuum gate valve that allows substrates to be taken in and taken out, with a vacuum preparation chamber formed on one side that allows cassettes to be taken in and out, and a processing tank on the other side. The apparatus was constructed three-dimensionally by dividing the chamber in the circumferential direction to form a CVD processing chamber. As a result, plasma CV
A large number of CVD processing chambers suitable for the film formation process can be formed without significantly increasing the diameter of the D-treated cypress, and by making it cylindrical, 9 CVD processing chambers can be formed at low cost, resulting in highly efficient plasma CVD. This makes it possible to provide the device economically. In addition, the holder that also serves as a hot plate for holding the substrate electrodes is a polygonal cylindrical holder with a polygonal shape corresponding to the number of CVD processing chambers, and a fixed wall portion protruding from the cylindrical CVD processing tank is used. A rotary wall portion provided with a sealing mechanism portion that airtightly engages with the polygonal cylindrical holder is provided radially protruding from the top corner of the polygonal cylindrical holder, and the polygonal cylindrical holder is rotated intermittently at a predetermined angle. The polygonal cylindrical holder was configured to serve as a support and carrier for the substrate, as well as a part of the partition wall of the plurality of CVD processing chambers and a vacuum gate valve. As a result, transport of multiple substrate electrodes and opening/closing of multiple CVD processing chambers (change of partitions) can be easily and quickly performed with a single rotational intermittent pitch feed operation, and vacuum gate valves can be used for each CVD processing chamber. The transport device and operation are simpler and faster than the conventional transport mechanism which is divided into two parts, and therefore it is possible to provide an economically advantageous plasma CVD apparatus with excellent workability.

さらK、真空準備室とCVD処理室との間の基板の出し
入れを真空状態下でカセット・ツー・カセット処理によ
シ行うことができるので、基板の清浄度を高度に保持で
きるという利点が得られる。
Furthermore, substrates can be transferred between the vacuum preparation chamber and the CVD processing chamber using cassette-to-cassette processing under vacuum conditions, which has the advantage of maintaining a high level of substrate cleanliness. It will be done.

なお本発明は薄膜生成装置の他に、プラズマエツチング
装置、プラズマアッシング装置としても応用することが
できる。
Note that the present invention can be applied not only to a thin film production apparatus but also to a plasma etching apparatus and a plasma ashing apparatus.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の実施例を示す概略側断面
図および水平断面図、第6図および第4図は本発明の異
なる実施例を示す概略水平断面図および側断面図、第5
図は本発明のさらに異なる実施例を示す概略水平断面図
、第6図および第7図は従来装置の概略水平断面図およ
び側断面図である。 1・・・基板、2・・・真空準備室(入口側)、6・・
・CVD処理槽、3.〜5.−CV D処理室、3..
46・・・予熱室、3z、47・・・第1膜生成室、3
C、48・・・第2膜生成室、3d、 49・・・第6
膜生成室、6450・・・冷却室、4.12.51〜5
4・・・真空仕切弁、22・・・隔壁、11・・・真空
準備室(出口@)、(2).11α、56.57・・・
真空扉、5,65・・・基板電極、8・・・多角筒状保
持体、9・・・高圧電極、7・・・加熱手段、10・・
・回転駆動体、15a、154・・・カセット、26・
・・固定壁部、28・・・回転壁部、6・・・第1図 8多角ltl状イ呆杓咬木 第2図 第3図 第4図 第5図
1 and 2 are schematic side sectional views and horizontal sectional views showing embodiments of the present invention, and FIGS. 6 and 4 are schematic horizontal sectional views and side sectional views showing different embodiments of the present invention. 5
The figure is a schematic horizontal sectional view showing still another embodiment of the present invention, and FIGS. 6 and 7 are schematic horizontal sectional views and side sectional views of the conventional device. 1... Substrate, 2... Vacuum preparation chamber (inlet side), 6...
・CVD treatment tank, 3. ~5. -CV D processing chamber, 3. ..
46... Preheating chamber, 3z, 47... First film generation chamber, 3
C, 48...Second film generation chamber, 3d, 49...Sixth
Film generation chamber, 6450...Cooling chamber, 4.12.51-5
4... Vacuum gate valve, 22... Partition wall, 11... Vacuum preparation chamber (outlet @), (2). 11α, 56.57...
Vacuum door, 5, 65... Substrate electrode, 8... Polygonal cylindrical holder, 9... High voltage electrode, 7... Heating means, 10...
・Rotary drive body, 15a, 154...cassette, 26・
...Fixed wall part, 28...Rotating wall part, 6...Fig. 1 8 Polygonal LTL-shaped lattice plate Fig. 2 Fig. 3 Fig. 4 Fig. 5

Claims (3)

【特許請求の範囲】[Claims] (1)成膜処理前後の基板を真空扉を介して出し入れ可
能に形成された真空準備室ならびにこの真空準備室に基
板が通過可能な真空仕切弁を介して連接して形成された
複数のCVD処理室を備えたものにおいて、前記真空仕
切弁を有する隔壁により筒状のCVD処理槽の軸方向の
一方側に気密に区画形成された前記真空準備室と、軸方
向の他方側の前記筒状のCVD処理槽内に同心状に回動
可能に支持され多角筒状に形成され加熱手段を内蔵した
保持部の側壁面それぞれに密着支持された複数の基板電
極ならびに保持部の頂角部から放射状に突設され端部に
シール機構部を有する複数の回転壁部を備えた多角筒状
保持体と、前記回転壁部にシール機構部を介して気密に
係合するよう前記CVD処理槽の内側に突設された固定
壁部と、前記多角筒状保持体を回転間欠ピッチ送りして
前記係合状態で停止する回転駆動体、ならびにこの回転
駆動体の前記停止時に前記CVD処理槽内に周方向に連
接して形成される複数のCVD処理室と、このCVD処
理室に前記基板電極に所定の間隙を保持して対向するよ
う前記CVD処理槽に絶縁支持された高圧電極とを備え
たことを特徴とするプラズマCVD装置。
(1) A vacuum preparation chamber formed in which substrates before and after film formation can be taken in and out through a vacuum door, and a plurality of CVDs connected to this vacuum preparation chamber via vacuum gate valves through which substrates can pass. In the apparatus comprising a processing chamber, the vacuum preparation chamber is airtightly partitioned on one axial side of the cylindrical CVD processing tank by a partition wall having the vacuum gate valve, and the cylindrical chamber on the other axial side. A plurality of substrate electrodes are supported concentrically and rotatably in a CVD processing tank, and are closely supported on each side wall surface of a holding part formed in a polygonal cylinder shape and containing a built-in heating means. a polygonal cylindrical holder having a plurality of rotating walls protruding from the holder and having a sealing mechanism at the end; a fixed wall protruding from the holder; a rotary drive body that rotates the polygonal cylindrical holder intermittently and stops it in the engaged state; A plurality of CVD processing chambers are formed to be connected in a direction, and the CVD processing chamber is provided with a high voltage electrode insulated and supported by the CVD processing tank so as to face the substrate electrode with a predetermined gap therebetween. A plasma CVD device characterized by:
(2)特許請求の範囲第1項記載のものにおいて、真空
準備室が入口側および出口側一対の真空準備室に区画形
成され、それぞれに真空扉および真空仕切弁を備えたこ
とを特徴とするプラズマCVD装置。
(2) The device described in claim 1, characterized in that the vacuum preparation chamber is divided into a pair of vacuum preparation chambers on the inlet side and the outlet side, each of which is equipped with a vacuum door and a vacuum gate valve. Plasma CVD equipment.
(3)特許請求の範囲第2項記載のものにおいて、入口
側および出口側真空準備室が一体化形成されたことを特
徴とするプラズマCVD装置。
(3) A plasma CVD apparatus according to claim 2, characterized in that the inlet side and outlet side vacuum preparation chambers are integrally formed.
JP7043385A 1985-04-03 1985-04-03 Plasma cvd apparatus Pending JPS61229322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7043385A JPS61229322A (en) 1985-04-03 1985-04-03 Plasma cvd apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7043385A JPS61229322A (en) 1985-04-03 1985-04-03 Plasma cvd apparatus

Publications (1)

Publication Number Publication Date
JPS61229322A true JPS61229322A (en) 1986-10-13

Family

ID=13431339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7043385A Pending JPS61229322A (en) 1985-04-03 1985-04-03 Plasma cvd apparatus

Country Status (1)

Country Link
JP (1) JPS61229322A (en)

Similar Documents

Publication Publication Date Title
TWI438300B (en) Atomic layer deposition systems and methods
JP4879509B2 (en) Vacuum deposition system
JP2008509547A (en) High throughput CVD apparatus and method
JP2605465B2 (en) Method of forming capacitive insulating film
KR940004735A (en) Semiconductor Wafer Processing Equipment
US20140127404A1 (en) Apparatus For Spatial Atomic Layer Deposition With Recirculation And Methods Of Use
JPH0246670B2 (en)
TW201827640A (en) Temporal atomic layer deposition processing chamber
KR19990066676A (en) Sputter Chemical Vapor Deposition
JP3342118B2 (en) Processing equipment
JPS61229322A (en) Plasma cvd apparatus
JP2006028577A (en) Cvd system
US5327624A (en) Method for forming a thin film on a semiconductor device using an apparatus having a load lock
JPH0427293B2 (en)
JPS62120475A (en) Low pressure vapor growth device
JPS59167012A (en) Plasma cvd equipment
JPS60230981A (en) Apparatus for producing deposited film by vapor phase method
JPS61198716A (en) Production unit for thin-film
JP2907403B2 (en) Deposition film forming equipment
JPH0152052B2 (en)
JPH09137270A (en) Sputtering device
JPS62230983A (en) Thin film producing device
JPS58176922A (en) Plasma cvd apparatus
JPH0452994Y2 (en)
JPH0324274A (en) Vapor phase growing device