JPS61228686A - Manufacture of semiconductor coupled superconducting circuit device - Google Patents

Manufacture of semiconductor coupled superconducting circuit device

Info

Publication number
JPS61228686A
JPS61228686A JP60069334A JP6933485A JPS61228686A JP S61228686 A JPS61228686 A JP S61228686A JP 60069334 A JP60069334 A JP 60069334A JP 6933485 A JP6933485 A JP 6933485A JP S61228686 A JPS61228686 A JP S61228686A
Authority
JP
Japan
Prior art keywords
superconducting
oxide film
electrode
circuit device
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60069334A
Other languages
Japanese (ja)
Other versions
JPH0582074B2 (en
Inventor
Ichiro Ishida
一郎 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60069334A priority Critical patent/JPS61228686A/en
Publication of JPS61228686A publication Critical patent/JPS61228686A/en
Publication of JPH0582074B2 publication Critical patent/JPH0582074B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0912Manufacture or treatment of Josephson-effect devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To increase the Josephson current of a semiconductor coupled superconducting circuit device and to decrease the dispersion in the Josephson current in a chip, by making it possible to form first and second superconducting electrodes on a high- concentration impurity layers in a close proximity of a distance of about the coherence length of electrons. CONSTITUTION:A superconductor, which is provided in contact with the upper part of a semiconductor substrate 1, is patterned and a superconductor pattern 2 is formed. An anode oxide film 3, whose thickness can block a tunnel current, is grown on the surface of the pattern 2 by using an anode oxidation method. Thereafter, the superconductor pattern, which has the anode oxide film 3 on the surface, is machined, and a first superconducting electrode 4 is formed. Then a second superconducting electrode 5, which has a part contacting with the semiconductor substrate 1 and a part, which is overlapped with the anode electrode are arranged on the semiconductor substrate 1 so that they are separated by the thickness of the anode oxide film 3. Since the thickness of the anode oxide film 3 can be controlled at the accuracy of several tens of nm, the distance between the first and second superconducting electrodes can be shortened, and uniformity is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は互に近接した二つの超伝導電極を有する半導体
結合超伝導回路装置の製造方法に関する0(従来技術と
その問題点) 第1の超伝導電極と第2の超伝導電極を近接して半導体
基板上に電気的に接して設け、第1の超伝導電極と第2
の超伝導電極とを半導体基板を介して弱結合させた半導
体結合超伝導回路装置が提案されているロ第1.第2両
超伝導電極間を流れるジョセフソン電流の大きさは第1
.第2両超伝導電極間の距離が短かい程大きくなる口余
裕のある回路動作を実現するためには第1.第2両電極
間の距離を電子のコヒーレンス長程度にまで短かくしな
ければならない。又多数の回路装置を同一チップ内に集
積する場合、該チップ内での第1゜第2両超伝導電極間
の距離のばらつきはできる限シ小さくする必要がある。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing a semiconductor coupled superconducting circuit device having two superconducting electrodes in close proximity to each other. A superconducting electrode and a second superconducting electrode are provided in close electrical contact on a semiconductor substrate, and the first superconducting electrode and the second superconducting electrode
A semiconductor-coupled superconducting circuit device has been proposed in which a superconducting electrode is weakly coupled to a superconducting electrode via a semiconductor substrate. The magnitude of the Josephson current flowing between the second superconducting electrodes is the first
.. In order to realize a circuit operation with a margin that increases as the distance between the two superconducting electrodes becomes shorter, the first step is to achieve the following. The distance between the second electrodes must be shortened to about the coherence length of electrons. Furthermore, when a large number of circuit devices are integrated into the same chip, it is necessary to minimize variations in the distance between the first and second superconducting electrodes within the chip.

しかし従来の半導体結合超伝導回路装置では1例えば日
刊工業新聞11月、10日(1984)4頁に記載され
ている如く((第3図)電子ビーム露光法やドライエツ
チング法等を用いて超伝導体を分割する方法を用いるた
め第1.第2の画題伝導電極間の距離は0.2μm度で
あシ、この値は電子のコヒーレンス長に比較して約1桁
以上大きな値である◎又、電子ビー4露光法やドライエ
、チング法等の微細加工技術を用いた場合、同一チップ
内での第1.第2両超伝導電極間の距離のばらつきは0
.2μmの値に対して無視できないものである。その結
果従来の製造方法では、大きなジョセフソン電流を用い
、且つ同一チップ内でのジ冒セフソン電流のばらつきの
少ない半導体結合超伝導回路装置を実現する事はむずか
しかつ九〇 (発明の目的) 本発明は上述の従来の欠点を除去せしめて第1゜第2の
画題伝導電極間の距離を電子のコヒーレンス長程度にま
で短縮し、j!に同一チップ内で第1゜第2の画題伝導
電極間の距離のばらつきを低減できる半導体結合超伝導
回路装置の製造方法を提供する事にある@ (発明の構成) 本発明によれば半導体と結合した超伝導回路装置の製造
において半導体基板と電気的に接触する第1の超伝導電
極を咳半導体基板上に設け、該第1の超伝導電極の表面
に陽極酸化法によシ、トンネル電流を阻止する絶縁層を
形成する工程と該絶縁層を介して該第1の超伝導電極と
重なる部分を有し、且つ該半導体基板と電気的に接触せ
る第2の超伝導電極を咳半導体基板上に設ける工程とを
有する事を特徴とする半導体結合超伝導回路装置の製造
方法が得られる。
However, in conventional semiconductor-coupled superconducting circuit devices, as described in Nikkan Kogyo Shimbun, November 10, 1984, page 4 ((Fig. 3)) Because the method of dividing the conductor is used, the distance between the first and second conductive electrodes is 0.2 μm, which is about one order of magnitude larger than the coherence length of electrons. Furthermore, when microfabrication techniques such as the electron beam 4 exposure method, dryer, and etch method are used, the variation in the distance between the first and second superconducting electrodes within the same chip is 0.
.. This cannot be ignored for a value of 2 μm. As a result, with conventional manufacturing methods, it is difficult to realize a semiconductor-coupled superconducting circuit device that uses a large Josephson current and has little variation in Josephson current within the same chip. The present invention eliminates the above-mentioned conventional drawbacks, shortens the distance between the first and second image conduction electrodes to about the coherence length of electrons, and j! An object of the present invention is to provide a method for manufacturing a semiconductor-coupled superconducting circuit device that can reduce variations in the distance between first and second conductive electrodes within the same chip. In manufacturing the combined superconducting circuit device, a first superconducting electrode that is in electrical contact with the semiconductor substrate is provided on the semiconductor substrate, and a tunneling current is applied to the surface of the first superconducting electrode by an anodizing method. forming a second superconducting electrode that has a portion that overlaps with the first superconducting electrode and is in electrical contact with the semiconductor substrate via the insulating layer; A method for manufacturing a semiconductor-coupled superconducting circuit device is obtained, the method comprising the steps of:

(構成の詳細な説明) 本発明は上述の構成をとることによシ、従来技術の問題
点を解決した0第1図は本発明による半導体結合超伝導
回路装置の製造工程を示す図であるo (alt (c
t)は平面図% (b)(C)(e)は(f)は(a)
のX−Y位置における断面図であるo (a)、 (b
)に示す如く半導体基板l上に接して設けた超伝導体を
パターニングし、超伝導体パターン2を形成する。次に
陽極酸化法を用いて(C)に示す如く超伝導体パターン
2の表面にトンネル電流を阻止する厚さの陽極酸化膜3
を成長させる。その後表面に陽極酸化膜3を有した超伝
導パターンを加工し、第1の超伝導電極4を形成する0
次に(、=)に示す如く半導体基板lに接する部分と陽
極酸化膜3に重なる部分とを有する第2の超伝導電極5
を形成するロ 第1.第2の画題伝導電極は半導体基体l上に陽極酸化
膜3の厚さだけ隔てて配置される。陽極酸化膜の厚さは
数10 nmの精度で制御できるため、第1.第2の超
伝導電極間の距離を従来のりソグラフイ法あるいはエツ
チング法等による微細加工技術で達成できる同距離より
も短縮でき、更にその均一性も向上する。以上の結果1
本発明の製造方法を用いれば従来よ〕大きなジ重セフソ
ン電流を用いた回路装置が実現され、又更に多数の回路
装置を同時に形成した場合そのジ冒セフソン電流のばら
つきが低減する。
(Detailed explanation of the structure) The present invention solves the problems of the prior art by adopting the above-described structure. FIG. 1 is a diagram showing the manufacturing process of a semiconductor coupled superconducting circuit device according to the present invention. o (alt (c
t) is a plan view% (b) (C) (e) is (f) is (a)
o (a), (b) are cross-sectional views at the X-Y position of
), the superconductor provided in contact with the semiconductor substrate l is patterned to form a superconductor pattern 2. Next, using an anodic oxidation method, as shown in (C), an anodic oxide film 3 with a thickness that blocks tunneling current is formed on the surface of the superconductor pattern 2.
grow. After that, a superconducting pattern having an anodic oxide film 3 on the surface is processed to form a first superconducting electrode 4.
Next, as shown in (,=), a second superconducting electrode 5 having a portion in contact with the semiconductor substrate l and a portion overlapping with the anodic oxide film 3 is formed.
1. The second image conduction electrode is arranged on the semiconductor substrate l with a distance of the thickness of the anodic oxide film 3. Since the thickness of the anodic oxide film can be controlled with an accuracy of several tens of nanometers, the first The distance between the second superconducting electrodes can be made shorter than the same distance that can be achieved by conventional microfabrication techniques such as lamination or etching, and its uniformity is also improved. Above result 1
By using the manufacturing method of the present invention, it is possible to realize a circuit device that uses a larger dielectric current than in the past, and furthermore, when a large number of circuit devices are formed at the same time, variations in the dielectric current can be reduced.

以下本発記の実施例について図面を参照して詳細に説明
する。
Embodiments of the present disclosure will be described in detail below with reference to the drawings.

第2図は本発明の実施例を示す三端子半導体結合超伝導
回路装置の製造工程図であるO (d)(f)は平面図
であり 、 (a)(b)(cl(eXgl(h)は平
面図(d)のX−Yに対応する断面図である0例えば(
a)に示す如くシリコンの基板6を用意しその主表面に
例えば厚さ150nmK熱酸化法で8i01膜7を成長
させる。しかる後に1例えばフォトレジストをマスクに
用いて必要な領域に選択的に例えばボロンを1018〜
19.73cyr密度でイオン注入し、高濃度不純物層
8を形成する(a) 0次に例えばバッ7アードフッ酸
液を用いて高濃度不純物層8に対応する8iQ!膜7に
開孔部9を設ける、(b)その後例えばスパッタリング
堆積法で例えばニオブを用いた超伝導パターン10を例
えば200 nmの厚さに堆積する。そして例えばCF
、ガスを用いたドライエツチング法によりパターニング
を行う0(C)尚(C)は(d)のX−Y部分での断面
図で1L又簡単のため(d)には基板6と超伝導パター
ンlOのみを示し九口次に例えば1569の五硼酸アン
モニウムと1120−のエチレングリコールを760−
の水に溶かした電解液を用いて超伝導バター710の陽
極酸化を行ない、超伝導パターン100表面を陽極酸化
膜11で被覆する。
FIG. 2 is a manufacturing process diagram of a three-terminal semiconductor-coupled superconducting circuit device showing an embodiment of the present invention. ) is a cross-sectional view corresponding to X-Y in the plan view (d). For example, (
As shown in a), a silicon substrate 6 is prepared, and an 8i01 film 7 is grown on its main surface to a thickness of, for example, 150 nm by K thermal oxidation. Thereafter, using a photoresist as a mask, for example, boron (1018 to 1018) is selectively applied to necessary areas.
Ion implantation is performed at a density of 19.73 cyr to form a high concentration impurity layer 8 (a) Next, for example, using a buffered hydrofluoric acid solution, 8iQ! corresponding to the high concentration impurity layer 8 is formed. Apertures 9 are provided in the membrane 7, and (b) a superconducting pattern 10 made of, for example, niobium is deposited to a thickness of, for example, 200 nm by, for example, a sputtering deposition method. And for example CF
, patterning is performed by a dry etching method using gas (C) Note that (C) is a 1L cross-sectional view at the X-Y section of (d). For simplicity, (d) shows the substrate 6 and the superconducting pattern. Only IO is shown, and then, for example, 1569 ammonium pentaborate and 1120-ethylene glycol are 760-
The superconducting butter 710 is anodized using an electrolytic solution dissolved in water, and the surface of the superconducting pattern 100 is covered with an anodic oxide film 11.

この時例えば0.5 m A an−2の電流を供給す
ると印加電圧IV当υ約2 nmのニオブ陽極酸化膜1
1が成長する0つま9約10Vの電圧を加えると約20
nmのニオブ陽極酸化膜11で形成する事ができる(e
)次に平面図(f)に示す如く超伝導パターン108例
えばCF4プラズマエッチ法によル更にパターニングし
て第1の超伝導電極12を形成する0簡単の為に平面図
(f)には基板6と第1の超伝導電極12のみを示した
@その後例えばアルゴンガスを用いて露出している高濃
度不純物層8の表面をプラズマクリーニングした後1例
えばスパッタリング法を用いて厚さ300 nmのニオ
ブ膜を堆積し、更に例えばり7トオ7法等によシ、第2
の超伝導電極13を形成する。(g)次に例えば(h)
に示す如くシリコン基板6を主表面とは反対側の裏表面
より例えばエチレンジアミンとピロカテコールの水溶液
を用いて例えば高濃度不純物層8を300 nmの厚さ
を残すまでエツチングする◎その後通常シリコンプロセ
スでよく知られている方法を用いて、例えば厚さ40 
amのsio、膜を基板6の裏面に成長させてゲート絶
縁膜148設ける0次にゲート絶縁膜14の下側に接し
て例えば蒸着法によシアルミを約700 amの厚さに
堆積し、リン酸を用いたウェットエツチング法又はドラ
イエツチング法によりバターンングをしてゲート電極1
5を設ける◎更に陽極酸化膜11に開孔部16を設は第
1の超伝導電極12へのコンタクト部分を形成する・更
に必要ならば従来よく知られた方法で配線層、抵抗素子
等を組み込んで三端子半導体超伝導回路装置が完成する
6以上の結果第1と第2の超伝導電極12.13は陽極
酸化膜11の厚さを隔てて高濃度不純物層8上に配置さ
れている口前述の如く。
At this time, for example, if a current of 0.5 mA an-2 is supplied, the niobium anodic oxide film 1 with a thickness of about 2 nm is applied to the applied voltage IV.
1 grows 0 to 9 When a voltage of about 10V is applied, about 20
It can be formed with a niobium anodic oxide film 11 of nm thickness (e
) Next, as shown in the plan view (f), the superconducting pattern 108 is further patterned by, for example, a CF4 plasma etching method to form the first superconducting electrode 12. 6 and the first superconducting electrode 12 are shown.@Then, after plasma cleaning the exposed surface of the high concentration impurity layer 8 using, for example, argon gas, 1. The film is deposited, and then a second
A superconducting electrode 13 is formed. (g) Then, for example (h)
As shown in the figure, the silicon substrate 6 is etched from the back surface opposite to the main surface using, for example, an aqueous solution of ethylenediamine and pyrocatechol until a thickness of 300 nm remains. ◎Then, a normal silicon process is performed. using well-known methods, e.g.
A film is grown on the back surface of the substrate 6 to form a gate insulating film 148.Next, cyalium is deposited to a thickness of about 700 am by, for example, a vapor deposition method on the underside of the gate insulating film 14, and phosphorus is deposited on the underside of the gate insulating film 14. Gate electrode 1 is patterned by wet etching or dry etching using acid.
◎Additionally, an opening 16 is provided in the anodic oxide film 11 to form a contact portion to the first superconducting electrode 12.If necessary, a wiring layer, a resistive element, etc. are formed using a well-known method. A three-terminal semiconductor superconducting circuit device is completed by incorporating the above results. The first and second superconducting electrodes 12 and 13 are placed on the high concentration impurity layer 8 with the thickness of the anodic oxide film 11 separated. As mentioned above.

陽極酸化膜11の厚さは数10 nmが容易に実現でき
、4.2°Kにおける電子のコヒーレンス長駒10am
と同程度の距離に第1.第2の超伝導電極12.。
The thickness of the anodic oxide film 11 can easily be several tens of nm, and the electron coherence length at 4.2°K is 10 am.
The first one is about the same distance as the first one. Second superconducting electrode 12. .

13を接近させる事ができる0しかも陽極酸化法によれ
ば、チップ内での陽極酸化膜厚11のばらつきは無視で
き、第1.第2の超伝導電極12゜13間の距離の均一
性は向上する0 (発明の効果) 本発明によれば、第1と第2の超伝導電極を電子のコヒ
ーレンス長程度の距離に近接しそ高濃度不純物層上に形
成する事ができるため、半導体結合超伝導回路装置のジ
ョセフソン電流を大きくでき、更にチップ内でのジ―セ
7ソン電流のハラツきが低減する。
Moreover, according to the anodic oxidation method, variations in the anodic oxide film thickness 11 within the chip can be ignored, and the first. The uniformity of the distance between the second superconducting electrodes 12 and 13 is improved. Since it can be formed on a high concentration impurity layer, the Josephson current of the semiconductor coupled superconducting circuit device can be increased, and furthermore, the fluctuation of the Josephson current within the chip can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図の(b)[c)(elは本発明による半導体結合
超伏を示す為の三端子半導体結合超伝導回路装置の製造
工程を示す断面図、 (dl(f)は平面図で69、第
3図は従来の半導体結合超伝導回路装置の檎造断面図で
ある。 図において、1.16は半導体基板、2,10は超伝導
体パターン、4,12.17は第1の超伝導電極、3.
11は陽極酸化膜−5,13e  18は第2の超伝導
電極、9は開孔部、6は基板、7はStO,膜、8は高
濃度不純物層、14はゲート絶縁膜、15はゲート電極
である。 亭  1  図 (c) 17亭IfI磨伝薯電趣 16半膚口不蟇扱
(b) [c) (el is a cross-sectional view showing the manufacturing process of a three-terminal semiconductor-coupled superconducting circuit device for demonstrating semiconductor-coupled superconductivity according to the present invention, (dl(f) is a plan view of 69 , Fig. 3 is a cross-sectional view of a conventional semiconductor coupled superconducting circuit device. In the figure, 1.16 is a semiconductor substrate, 2 and 10 are superconductor patterns, and 4 and 12. conductive electrode, 3.
11 is an anodic oxide film -5, 13e, 18 is a second superconducting electrode, 9 is an opening, 6 is a substrate, 7 is a StO film, 8 is a high concentration impurity layer, 14 is a gate insulating film, 15 is a gate It is an electrode. Tei 1 Diagram (c) 17 TeiIfIMadenshodenshu16Half-mouthful treatment

Claims (1)

【特許請求の範囲】[Claims] 半導体と結合した超伝導回路装置の製造において、半導
体基板と電気的に接触する第1の超伝導電極を該半導体
基板上に設け、該第1の超伝導電極の表面に陽極酸化法
によりトンネル電流を阻止する絶縁層を形成する工程と
、該絶縁層を介して該第1の超伝導電極と重なる部分を
有し且つ該半導体基板と電気的に接触する第2の超伝導
電極を該半導体基板上に設ける工程とを有する事を特徴
とする半導体結合超伝導回路装置の製造方法。
In manufacturing a superconducting circuit device combined with a semiconductor, a first superconducting electrode that is in electrical contact with a semiconductor substrate is provided on the semiconductor substrate, and a tunneling current is applied to the surface of the first superconducting electrode by an anodizing method. a second superconducting electrode having a portion overlapping with the first superconducting electrode and electrically contacting the semiconductor substrate via the insulating layer; 1. A method for manufacturing a semiconductor coupled superconducting circuit device, comprising the steps of:
JP60069334A 1985-04-02 1985-04-02 Manufacture of semiconductor coupled superconducting circuit device Granted JPS61228686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60069334A JPS61228686A (en) 1985-04-02 1985-04-02 Manufacture of semiconductor coupled superconducting circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60069334A JPS61228686A (en) 1985-04-02 1985-04-02 Manufacture of semiconductor coupled superconducting circuit device

Publications (2)

Publication Number Publication Date
JPS61228686A true JPS61228686A (en) 1986-10-11
JPH0582074B2 JPH0582074B2 (en) 1993-11-17

Family

ID=13399545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60069334A Granted JPS61228686A (en) 1985-04-02 1985-04-02 Manufacture of semiconductor coupled superconducting circuit device

Country Status (1)

Country Link
JP (1) JPS61228686A (en)

Also Published As

Publication number Publication date
JPH0582074B2 (en) 1993-11-17

Similar Documents

Publication Publication Date Title
JP2616130B2 (en) Superconducting element manufacturing method
EP0476844A1 (en) Method for fabricating Josephson tunnel junctions with accurate junction area control
JPS61228686A (en) Manufacture of semiconductor coupled superconducting circuit device
EP0090612A2 (en) Method of making Josephson junction devices
US4178602A (en) Thin film cryotron
JP2682136B2 (en) Method of manufacturing Josephson device
EP0080532B1 (en) Buried junction josephson interferometer
JP3416898B2 (en) Method for manufacturing semiconductor-coupled superconducting element
JP2646440B2 (en) Method of manufacturing Josephson junction device
JPH0562831B2 (en)
JP2656364B2 (en) Superconducting element manufacturing method
JPH0114701B2 (en)
JPS59181075A (en) Manufacture of josephson integrated circuit device
JPS6377175A (en) Manufacture of josephson junction device
JP2002222725A (en) Method of manufacturing thin film inductor
JPS58145172A (en) Josephson junction element
JPH04101445A (en) Manufacture of semiconductor device
JP2621819B2 (en) Semiconductor device and method of manufacturing the same
JPH05167123A (en) Method of insulating superconducting element, and superconducting element
JPH06181322A (en) Dielectric base transistor and manufacture thereof
JPS62213287A (en) Manufacture of josephson element
JPS63224273A (en) Josephson junction element and its manufacture
JPS6148957A (en) Manufacture of mos capacitor
JPH06302870A (en) Thin-film element and manufacture thereof
JPS6153785A (en) Manufacture of photovoltaic element