JPS6122855B2 - - Google Patents

Info

Publication number
JPS6122855B2
JPS6122855B2 JP52126304A JP12630477A JPS6122855B2 JP S6122855 B2 JPS6122855 B2 JP S6122855B2 JP 52126304 A JP52126304 A JP 52126304A JP 12630477 A JP12630477 A JP 12630477A JP S6122855 B2 JPS6122855 B2 JP S6122855B2
Authority
JP
Japan
Prior art keywords
diffusion
gaas
diffused
diffusion source
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52126304A
Other languages
Japanese (ja)
Other versions
JPS5459075A (en
Inventor
Yoshinari Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP12630477A priority Critical patent/JPS5459075A/en
Publication of JPS5459075A publication Critical patent/JPS5459075A/en
Publication of JPS6122855B2 publication Critical patent/JPS6122855B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は不純物を被拡散材料へ拡散する場合
に拡散深さ、拡散層濃度の制御性、選択性を向上
することのできる不純物の拡散法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an impurity diffusion method that can improve diffusion depth, controllability and selectivity of diffusion layer concentration when impurities are diffused into a material to be diffused.

半導体工業等において不純物の拡散は重要か
つ、多くの製造工程を形成する重要なプロセスで
ある。すなわち、現在、半導体素子、集積回路中
のp−n接合は多くが不純物拡散をプロセスで作
られており、また拡散プロセスこそがプレーナ構
造を可能とし、集積回路の発展を約束した技術と
いつても過言ではない。
Diffusion of impurities is important in the semiconductor industry and is an important process that forms many manufacturing steps. In other words, currently, many of the p-n junctions in semiconductor devices and integrated circuits are made using an impurity diffusion process, and the diffusion process is said to be the technology that made planar structures possible and promised the development of integrated circuits. It is no exaggeration.

しかし、拡散プロセスにおいては被拡散材料を
熱的に劣化させる危険を常に伴なつている。例え
ばGaAs,GaP,InP等あるいはそれらの混晶
AlGaAs,InGaP等の化合物半導体材料に、不純
物蒸気雰囲気のもとで不純物を拡散する場合に、
これら被拡散材料をつつむ雰囲気に、被拡散材料
の母材と熱平衡を保つに必要な母材構成元素の分
圧を加えておかないと、被拡散材料中により母材
構成元素の一部が被拡散材料表面よりぬけだし、
被拡散材料中にいわゆる化学量論的欠陥、すなわ
ち原子空孔等が多量に発生する。しかるにこれら
の化学量論的欠陥は多くの場合、被拡散材料の基
本的性質であるキヤリアの移動度等を著しく落す
ため、このような材料を用いて作製した素子にお
いても、化学量論的欠陥は素子の性能を著しく落
すだかりか、素子の寿命をも低下させる原因とな
る。たとえば、GaP結晶中においては化学量論的
欠陥がGaP結晶からのルミネツセンスの効率を著
しく下げる重大な要因となつていることは今や明
白である。化学量論的欠陥が材料の性質を決める
重大な因子であることは上記−化合物半導体
において近年とみに注目されはじめたことである
が、NaCl,KCl,Nalなどのアルカリ・ハライド
と呼ばれる化合物や、CbS,ZnS等の−族化
合物に対しては古くから研究が行なわれている。
GaAsは材料の基本的性質から赤外発光ダイオー
ド、p−n接合注入形レーザ、ガン・ダイオー
ド、電界効果トランジスタ、受光素子等々の多く
の実用素子を生みつつある材料である。しかし化
合物半導体であるがために不注意な熱処理プロセ
スによつて化学量論的欠陥の導入がきわめて容易
に行なわれる材料でもある。従つてこの発明を説
明する場合には、被拡散材料としてはGaAsを、
拡散源の不純物元素としては亜鉛を例にとること
とする。
However, the diffusion process always carries the risk of thermally deteriorating the material to be diffused. For example, GaAs, GaP, InP, etc. or their mixed crystals
When diffusing impurities into compound semiconductor materials such as AlGaAs and InGaP in an impurity vapor atmosphere,
If the partial pressure of the constituent elements of the base material necessary to maintain thermal equilibrium with the base material of the diffused material is not added to the atmosphere surrounding these materials to be diffused, some of the constituent elements of the base material will be covered by the material to be diffused. It comes out from the surface of the diffusion material,
A large amount of so-called stoichiometric defects, ie, atomic vacancies, etc., occur in the material to be diffused. However, in many cases, these stoichiometric defects significantly reduce carrier mobility, which is a fundamental property of the material to be diffused, so even in devices fabricated using such materials, stoichiometric defects This not only significantly deteriorates the performance of the device, but also causes a reduction in the life of the device. For example, it is now clear that stoichiometric defects in GaP crystals are a significant factor that significantly reduces the efficiency of luminescence from GaP crystals. The fact that stoichiometric defects are an important factor that determines the properties of materials has recently begun to attract attention in the field of compound semiconductors. , ZnS, and other - group compounds have been studied for a long time.
Due to its basic properties, GaAs is a material that is being used to produce many practical devices such as infrared light emitting diodes, pn junction injection lasers, Gunn diodes, field effect transistors, and light receiving devices. However, since it is a compound semiconductor, it is also a material in which stoichiometric defects can be introduced very easily through careless heat treatment processes. Therefore, when explaining this invention, GaAs will be used as the material to be diffused,
Zinc will be taken as an example of an impurity element serving as a diffusion source.

GaAsの熱処理過程としてきわめて一般的であ
り、実用的にも重要な代表例は、P形不純物の拡
散源である亜鉛(以後Znと記す)の拡散であ
る。Znの拡散はGaAs発光ダイオードや、プレー
ナ形と呼ばれるストライプ・ダブル・ヘテロ接合
レーザ・ダイオード製造の上で欠くことのできな
いものである。
An extremely common and practically important representative example of the heat treatment process for GaAs is the diffusion of zinc (hereinafter referred to as Zn), which is a diffusion source for P-type impurities. Zn diffusion is essential for manufacturing GaAs light-emitting diodes and planar striped double heterojunction laser diodes.

GaAsにZnを拡散する場合には、被拡散材料の
GaAsをつつむ雰囲気を、基本的にはGa,As,
Znの系から成るGaAs結晶と熱平衡にある状態に
して行なわないと被拡散材料のGaAs表面から被
拡散材料の母材構成元素のGaやAsが飛散し、表
面近傍に化学量論的欠陥を生じた領域が発生す
る。上記したようにGaAsとの熱平衡からずれた
蒸気圧下でGaAsへのZn拡散を行なうと、GaAs
の表面状態さえも著しくそこなわれたり、拡散フ
ロントの平担性が悪くなることは良く知られてい
る。
When diffusing Zn into GaAs, the diffusion material
The atmosphere surrounding GaAs is basically Ga, As,
If this is not carried out in a state of thermal equilibrium with the GaAs crystal, which is composed of a Zn system, Ga and As, which are constituent elements of the base material of the material to be diffused, will scatter from the GaAs surface of the material to be diffused, causing stoichiometric defects near the surface. A new area is generated. As mentioned above, when Zn is diffused into GaAs under a vapor pressure that is out of thermal equilibrium with GaAs,
It is well known that even the surface condition of the material is significantly damaged and the flatness of the diffusion front becomes poor.

GaAsへの良好な再現性のよいZn拡散の手法と
して、従来はZnの拡散源として、例えばGa5%、
Zn45%、As50%の組成で合成された合金を用い
ることにより達成された。この合金をZnの拡散
源に用いると、合金からはGaAsと熱平衡になる
As、およびGaがGaAsをつつむ雰囲気中にZnと
共に供給されるため、GaAsの表面状態やGaAs内
の化学量論的欠陥の多大な発生を防ぎ、良好な制
御されたZn拡散を行なうことができた。しかし
このGaAsおよびZnより成る上記した三元拡散源
合金は高温(約1100℃)で、かつ高圧下封入管中
で合成されるため、危険が伴ない、かつ封管材
料、ルツボ材料からの汚染が激しく、純度的見地
からも良好な拡散源とはなりにくい。また、この
Ga,AsおよびZnより成る上記の合金を拡散源と
して用いた場合には、拡散時の平衡蒸気圧におけ
るAsの分圧は高く、拡散層のZn濃度はきわめて
高くなる。この三元合金を拡散源に用い、700℃
でZnをGaAsへ拡散した場合には、GaAs表面で
のZn濃度は約2.4×1020cm-3となる。また、この
Zn濃度は650℃では1.6×1020cm-3、600℃では1.2
×1020cm-3であり、拡散温度を低下してきわめて
高い表面濃度を保つ。一方1010cm-3代あるいはそ
れ以下のZn濃度を持つたZn拡散を行なうために
は拡散源としてはZnとGaより成る系を通常用い
ている。しかしZnとGaより成る系を拡散源とし
て用いた閉管拡散においては、きわめて正確な
GaとZnの閉管内容積に見合つた微量秤量が必要
であるだかりでか、GaおよびZnに合金の融点が
30℃以下と低く、拡散源が空気中の酸素で汚染さ
れ易く、取り扱いもきわめて不便である。さらに
封管材料に通常用いられる石英はGa合属と高温
でなじみ易く、反応し易いため、封管材料からの
汚染が熱処理プロセス中に生じる。またGaとZn
より成る拡散源を用いた拡散においては弾常800
℃以上の高温が必要である。従つて、GaとZnよ
り成る拡散源を用いた拡散によつては拡散後に表
面状態、拡散深さ、拡散濃度等に関して再現性の
良いZn拡散を行なうことは困難である。
As a method of Zn diffusion into GaAs with good reproducibility, conventionally, as a Zn diffusion source, for example, Ga5%,
This was achieved by using an alloy synthesized with a composition of 45% Zn and 50% As. When this alloy is used as a Zn diffusion source, the alloy will be in thermal equilibrium with GaAs.
Since As and Ga are supplied together with Zn into the atmosphere surrounding GaAs, it is possible to prevent the occurrence of large surface conditions of GaAs and stoichiometric defects within GaAs, and to perform well-controlled Zn diffusion. Ta. However, the above-mentioned ternary diffusion source alloy consisting of GaAs and Zn is synthesized in a sealed tube at high temperature (approximately 1100°C) and under high pressure, which poses risks and contamination from the sealed tube material and crucible material. It is difficult to be a good diffusion source from the viewpoint of purity. Also, this
When the above-mentioned alloy consisting of Ga, As, and Zn is used as a diffusion source, the partial pressure of As at the equilibrium vapor pressure during diffusion is high, and the Zn concentration in the diffusion layer becomes extremely high. Using this ternary alloy as a diffusion source,
When Zn is diffused into GaAs, the Zn concentration on the GaAs surface is approximately 2.4×10 20 cm -3 . Also, this
Zn concentration is 1.6×10 20 cm -3 at 650℃ and 1.2 at 600℃
×10 20 cm -3 , which lowers the diffusion temperature and maintains an extremely high surface concentration. On the other hand, in order to perform Zn diffusion with a Zn concentration of 10 10 cm -3 or lower, a system consisting of Zn and Ga is usually used as a diffusion source. However, in closed tube diffusion using a system consisting of Zn and Ga as a diffusion source, extremely accurate
It is necessary to weigh a small amount of Ga and Zn to match the volume inside the closed tube.
The temperature is below 30°C, the diffusion source is easily contaminated with oxygen in the air, and handling is extremely inconvenient. Furthermore, since quartz, which is commonly used as a sealing tube material, is easily compatible with and reacts with Ga alloys at high temperatures, contamination from the sealing tube material occurs during the heat treatment process. Also Ga and Zn
In the case of diffusion using a diffusion source consisting of
A high temperature of ℃ or higher is required. Therefore, by diffusion using a diffusion source made of Ga and Zn, it is difficult to perform Zn diffusion with good reproducibility in terms of surface condition, diffusion depth, diffusion concentration, etc. after diffusion.

GaAsへのZn拡散法として従来用いられている
他の手法として、Znを添加したSiO2膜を被拡散
材料であるGaAs上に形成しSiO2中のZnをGaAs
へ拡散する方法もある。しかし拡散温度は約900
℃以上の高温が必要であるうえ、SiO2膜中にGa
が拡散し、GaAs中に化学量論的欠陥の発生が生
じる。この他、SiO2膜をとうしてZn蒸気から
GaAsへのZn拡散を行なう方法もあるがSiO2膜厚
等が拡散深さや濃度を決めるパラメータに加わる
ため制御性の良い拡散を行なうことは困難であ
る。又、拡散源に純粋なZn金属を用いる方法も
ある。しかし、純粋なZn金属を拡散源として用
いた場合は、被拡散材料であるGaAsの表面はZn
蒸気と反応するために、表面状態はいちじるしく
そこなわれる。この表面状態の変化を防ぐ方法と
して通常、Znの拡散源には純粋なZn金属に加え
て、粉状のGaAsを用意する方法がとられる。粉
状のGaAsの石英アンプル内に入れることにより
被拡散材料のGaAsの表面積よりかるかに大きな
GaAsの表面を拡散源側に作り、拡散温度上昇時
におけるAs、Gaの蒸気圧を粉状GaAsから出し、
かつ粉状GaAsへ溶融したZnからZn蒸気圧を供給
することができるため、被拡散材料であるGaAs
表面の変化を防ぐことができる。しかし粉状
GaAsを用意するには乳鉢等でGaAsをすつたりし
て粉砕しなければならず、粉塵が舞いきわめて危
険である。また石英アンプル内へ粉状GaAsを用
意する場合に、石英管壁等にGaAs粉がついたり
して、取扱いにはきわめて細心の注意が必要とな
る。また、粉状GaAsの粉の粒度を大きくした時
には粉状GaAsの量を増加しない被拡散材料であ
るGaAs表面の乱れを防ぐことはできない。さら
にGaAsを粉状にすることにより純度の低下は必
然的に生じるし、粉状GaAs表面は莫大な空気ガ
ス等の吸着が生じると考えられる。しかも温度上
昇時からアンプル内を雰囲気ガス蒸気で熱平衡に
なるまでZnと、AsおよびGaは独立に雰囲気ガス
圧を決めるので拡散の制御性は十分でない。さら
に開管中でのZn拡散は、Zn蒸気圧の被拡散材料
表面での精密な制御、及び被拡散材料である
GaAsの熱劣化を防ぐために、被拡散材料のGaAs
上でのGa及びAs蒸気圧の精密な制御を必要と
し、Zn拡散中たえずGa,As及びZnの蒸気を反応
管中に流して制御しなければならないため、再現
性のあるZn拡散はなかなか困難である。またこ
の種の開管法は反応系より多大のGa,Asおよび
Znの蒸気が排出されるため公害を防止する立場
からいつても好ましい方法ではない。
Another method conventionally used for Zn diffusion into GaAs is to form a Zn-doped SiO 2 film on GaAs, which is the material to be diffused.
There is also a way to spread it. However, the diffusion temperature is about 900
In addition to requiring high temperatures of ℃ or higher, there is no Ga in the SiO 2 film.
diffuses, resulting in the generation of stoichiometric defects in GaAs. In addition, SiO 2 film can be used to remove Zn vapor from Zn vapor.
There is a method of diffusing Zn into GaAs, but it is difficult to perform well-controlled diffusion because factors such as the SiO 2 film thickness are involved in determining the diffusion depth and concentration. There is also a method of using pure Zn metal as a diffusion source. However, when pure Zn metal is used as a diffusion source, the surface of GaAs, which is the material to be diffused, is exposed to Zn.
Due to the reaction with steam, the surface condition is severely damaged. In order to prevent this change in the surface state, the usual method is to prepare powdered GaAs in addition to pure Zn metal as a Zn diffusion source. By placing powdered GaAs in a quartz ampoule, the surface area is much larger than that of the GaAs material to be diffused.
The surface of GaAs is made on the diffusion source side, and the vapor pressure of As and Ga is released from the powdered GaAs when the diffusion temperature rises.
In addition, since Zn vapor pressure can be supplied from molten Zn to powdered GaAs, GaAs, which is the material to be diffused,
Can prevent surface changes. but powdery
To prepare GaAs, it is necessary to crush it by grinding it in a mortar or the like, which is very dangerous as it creates dust. Furthermore, when preparing powdered GaAs in a quartz ampoule, extremely careful handling is required since GaAs powder may adhere to the walls of the quartz tube. Further, when the particle size of the powdered GaAs powder is increased, it is not possible to prevent the surface of GaAs, which is a material to be diffused, from being disturbed without increasing the amount of powdered GaAs. Furthermore, by turning GaAs into powder, a decrease in purity will inevitably occur, and it is thought that the surface of powdered GaAs will adsorb a huge amount of air gas, etc. Moreover, since the atmospheric gas pressure of Zn, As, and Ga is determined independently from the time of temperature rise until thermal equilibrium is reached with atmospheric gas vapor inside the ampoule, controllability of diffusion is not sufficient. Furthermore, Zn diffusion in an open tube requires precise control of the Zn vapor pressure on the surface of the material to be diffused, and
In order to prevent thermal deterioration of GaAs,
It is difficult to achieve reproducible Zn diffusion because it requires precise control of the Ga and As vapor pressures above, and the vapors of Ga, As, and Zn must be continuously flowed into the reaction tube during Zn diffusion. It is. In addition, this type of open tube method produces a large amount of Ga, As, and
This is not always a preferable method from the standpoint of preventing pollution since Zn vapor is emitted.

この発明の目的は従来の方法が有していた上記
のような欠点を除き、化学量論的欠陥の生じない
ように、不純物を拡散する拡散法を提供すること
である。
An object of the present invention is to provide a diffusion method for diffusing impurities in a manner that eliminates the above-mentioned drawbacks of conventional methods and prevents stoichiometric defects from occurring.

本発明は、化合物半導体材料への不純物の拡散
性として、被拡散化合物半導体材料とは別の配置
した拡散源として、被拡散材料と同一母材の上に
形成した不純物元素あるいは不純物元素の化合物
からなる層を少なくとも含んだ、多層あるいは単
層薄膜を形成したものを用いる閉じた系の不純物
の拡散法において、拡散源である不純物元素の量
を拡散源の温度で、該元素と被拡散材料のみの共
存状態における該元素の熱平衡蒸気圧未満の蒸気
圧が得られる量とすることを特徴とする不純物の
拡散法である。この方法によれば被拡散材料の熱
的劣化を防ぎ、かつ拡散深さ、拡散濃度のきわめ
て再現性の良い、かつ、拡散濃度を広い範囲で任
意に選択でき、かつまた、被拡散材料の化学量論
比をくずすことのない不純物の拡散を実現でき
る。
The present invention deals with the diffusion of impurities into a compound semiconductor material from an impurity element or a compound of an impurity element formed on the same base material as the material to be diffused, as a diffusion source placed separately from the compound semiconductor material to be diffused. In a closed system impurity diffusion method using a multi-layer or single-layer thin film containing at least a layer of This is an impurity diffusion method characterized in that the amount is set to obtain a vapor pressure lower than the thermal equilibrium vapor pressure of the element in the coexistence state of the element. This method prevents thermal deterioration of the material to be diffused, has extremely good reproducibility of the diffusion depth and concentration, and allows the diffusion concentration to be arbitrarily selected within a wide range. It is possible to achieve diffusion of impurities without destroying the stoichiometric ratio.

以下、本発明の実施例としてGaAsへのZnの拡
散法について図を用いて詳細に説明する。
Hereinafter, a method for diffusing Zn into GaAs will be described in detail as an embodiment of the present invention using the drawings.

第1図は本発明の被拡散材料であるGaAsへの
Znの拡散に適用した場合の拡散源の断面図であ
る。11はGaAs結晶ウエフア、12は蒸着等に
より形成したZn薄膜層である。第1図のGaAs結
晶ウエフア11(ここではアン・ドープ単結晶
GaAsを用いた。)はダイアモンド・ペーストで鏡
面研磨し、次にH2SO4とH2O2およびH2Oの容量
比が3対1対1よりなる溶液で90℃において30秒
間エツチングしたものを用いた。GaAs結晶ウエ
フア11の厚みはきうして400μmとした。次に
GaAsウエフア11を蒸着装置内に入れて、Znは
約1μmの厚みで蒸着した。こうして拡散源は第
1図の構造で容易に作られる。
Figure 1 shows the diffusion of GaAs, which is the material to be diffused in the present invention.
FIG. 3 is a cross-sectional view of a diffusion source when applied to Zn diffusion. 11 is a GaAs crystal wafer, and 12 is a Zn thin film layer formed by vapor deposition or the like. GaAs crystal wafer 11 (in this case, an undoped single crystal
GaAs was used. ) was mirror-polished with diamond paste and then etched for 30 seconds at 90° C. with a solution containing H 2 SO 4 , H 2 O 2 and H 2 O in a volume ratio of 3:1:1. The thickness of the GaAs crystal wafer 11 was set to 400 μm. next
The GaAs wafer 11 was placed in a vapor deposition apparatus, and Zn was vapor-deposited to a thickness of about 1 μm. Thus, a diffusion source can be easily made with the structure shown in FIG.

次に一般に行なわれているように、閉管円筒状
石英アンプル内に被拡散材料であるGaAsと、第
1図に示した拡散源を真空中で封入する。第2図
はこうして作られた石英閉管アンプルの断面図で
あり、21は石英アンプル、22は石英アンプル
の拡散源収納部、23は石英アンプルの真空封入
時における封入部であり、24は拡散源、25は
被拡散材料であるGaAsを示す。第2図の石英ア
ンプル21の内容積は約5mlである。こうして第
2図のように製作された石英アンプル21をアン
プルの長さ(約80mm)方向で±1℃程度の温度均
一性を持つた電気炉中に挿入した566℃でZnの拡
散を行なうと、実効的拡散係数Dは拡散源24の
量に応じて第3図のように変化する。第3図にお
いて横軸はZnを蒸着した400μmの厚のGaAs結
晶ウエフア11の目方、すなわち拡散源の量W
(ミリグラム単位)を示し、縦軸は実効的拡散係
数Dを表わす。実効的拡散係数Dは拡散深さを
Xj(ミクロン単位)とし拡散時間をt(時間単
位)で表わせばXj2/tで定義する。第3図によれ
ば実効的拡散係数Dは拡散源の量によつて変化す
ることがわかる。第4図には第3図に対応した拡
散源の量W(ミリグラム)に対する被拡散材料に
形成された拡散層の表面濃度Nsの変化を示す。
すなわち拡散源の量Wを変化させることにより、
1018cm-3〜3×1019cm-3まで表面濃度Nsを変化さ
せることができる。第1図に示すようなGaAs結
晶ウエフア11の上に密着して作られたZn薄膜
層12を拡散源にした場合、まずアンプルを加熱
すると、Zn薄膜層12中には温度上昇に見合つ
てGaとAsが溶解し、アンプル内のZn、Ga、およ
びAsの蒸気圧は主にGaとAsが溶融したZn薄膜層
12から供給される。GaおよびAsの溶融したZn
溶液の分解圧はGaAsより低いのでアンプル内の
Ga,As,Znの熱平衡蒸気圧はほとんど拡散源2
4から供給されるため被拡散材料であるGaAs2
5の表面をそこなうことなく、Zn拡散が行なわ
れる。Zn蒸着膜12の厚みを0.2〜3μmまで変
化しても566℃の拡散温度の場合に5mlの内容積
のアンプル内にZnの総量が約5μg未満になる
ように拡散源24を用意することにより拡散速度
およ濃度を精度よく制御することができる。Zn
薄膜層12の厚みはZn薄膜層12中へGaとAsが
すみやかに溶融するために10μm以下であること
が望ましい。またた拡散源の量は、蒸着したZn
の薄膜層12中のZn総量が、その拡散温度にお
いて純粋なZnの飽和蒸気圧P未満の蒸気圧が得
られる量にすることが必要である。すなわち拡散
温度をTとし、この温度でのZnの飽和蒸気圧を
P気圧とするならば、Znの総量m(グラム)の
上限Mmaxは次式で定まる。
Next, as is generally done, GaAs, which is the material to be diffused, and the diffusion source shown in FIG. 1 are sealed in a closed cylindrical quartz ampoule in a vacuum. FIG. 2 is a cross-sectional view of the quartz closed tube ampoule made in this way, where 21 is a quartz ampoule, 22 is a diffusion source housing part of the quartz ampoule, 23 is an enclosure part when the quartz ampoule is sealed in vacuum, and 24 is a diffusion source. , 25 indicates GaAs which is the material to be diffused. The internal volume of the quartz ampoule 21 shown in FIG. 2 is approximately 5 ml. The quartz ampoule 21 manufactured in this way as shown in Figure 2 was inserted into an electric furnace with a temperature uniformity of about ±1°C along the length of the ampoule (approximately 80 mm), and Zn was diffused at 566°C. , the effective diffusion coefficient D varies depending on the amount of the diffusion source 24 as shown in FIG. In Fig. 3, the horizontal axis is the grain size of the 400 μm thick GaAs crystal wafer 11 on which Zn is deposited, that is, the amount W of the diffusion source.
(in milligrams), and the vertical axis represents the effective diffusion coefficient D. The effective diffusion coefficient D is the diffusion depth
If Xj (units of microns) and diffusion time are expressed by t (units of time), it is defined as Xj2/t. According to FIG. 3, it can be seen that the effective diffusion coefficient D changes depending on the amount of the diffusion source. FIG. 4 shows changes in the surface concentration Ns of the diffusion layer formed in the material to be diffused with respect to the amount W (milligrams) of the diffusion source corresponding to FIG.
That is, by changing the amount W of the diffusion source,
The surface concentration Ns can be varied from 10 18 cm -3 to 3×10 19 cm -3 . When the Zn thin film layer 12 formed in close contact with the GaAs crystal wafer 11 as shown in FIG. and As are melted, and the vapor pressure of Zn, Ga, and As in the ampoule is mainly supplied from the Zn thin film layer 12 in which Ga and As are melted. Fused Zn with Ga and As
The decomposition pressure of the solution is lower than that of GaAs, so the
The thermal equilibrium vapor pressure of Ga, As, and Zn is mostly due to diffusion source 2
GaAs2, which is the material to be diffused, is supplied from 4.
Zn diffusion is performed without damaging the surface of 5. By preparing the diffusion source 24 so that even if the thickness of the Zn vapor deposited film 12 is varied from 0.2 to 3 μm, the total amount of Zn in an ampoule with an internal volume of 5 ml is less than about 5 μg at a diffusion temperature of 566° C. Diffusion rate and concentration can be precisely controlled. Zn
The thickness of the thin film layer 12 is desirably 10 μm or less in order for Ga and As to melt quickly into the Zn thin film layer 12. In addition, the amount of diffusion source is
It is necessary that the total amount of Zn in the thin film layer 12 is such that a vapor pressure less than the saturated vapor pressure P of pure Zn can be obtained at the diffusion temperature. That is, if the diffusion temperature is T and the saturated vapor pressure of Zn at this temperature is P atmospheric pressure, then the upper limit Mmax of the total amount m (grams) of Zn is determined by the following equation.

Mmax=PVM/RT ここにVはアンプル内容積、MはZnの原子
量、Rは気体定数で8.2×10-2・atom/
degomolである。純粋なZnの飽和蒸気圧はオー・
クバシエフスキー氏らのメタルジカル・サーモ・
ケミストリー(Pergamon Press)第4版を参考
にした。Znの酸化を防ぐため拡散源24のZn薄
膜12の上にさらにAuを0.3μm程度蒸着によつ
てつけておいてもZn拡散はAuのあるなしにかか
わらず同様に行なわれる。
Mmax=PVM/RT where V is the ampoule internal volume, M is the atomic weight of Zn, and R is the gas constant 8.2×10 -2・atom/
It is degomol. The saturated vapor pressure of pure Zn is
The metallurgical thermometer of Kubasiewski et al.
Chemistry (Pergamon Press) 4th edition was used as a reference. Even if Au is further applied by vapor deposition to a thickness of about 0.3 μm on the Zn thin film 12 of the diffusion source 24 to prevent oxidation of Zn, Zn diffusion is performed in the same way regardless of whether Au is present or not.

以上、この発明の実施例をGaAsへのZn拡散の
場合について説明したが、前にも記したように
GaPやInGaP等の化合物半導体、さらにはアルカ
リハライド等の化合物、−族化合物等広範囲
の被拡散材料に対しても、その被拡散材料に適し
た拡散源を用意することで同様の効果が達成でき
る。
The embodiments of this invention have been described above for the case of Zn diffusion into GaAs, but as mentioned earlier,
Similar effects can be achieved for a wide range of diffused materials such as compound semiconductors such as GaP and InGaP, compounds such as alkali halides, and - group compounds by providing a diffusion source suitable for the diffused material. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を説明するための
GaAsへZnを拡散する場合に用いる拡散源の断面
図であり、第2図は拡散時に用いる閉管アンプル
の構成を示す石英アンプルの断面図である。11
はGaAsウエフア、12は蒸着等で形成されたZn
層、21は石英アンプル、22は拡散源収納部、
23は石英アンプル封入部、24は拡散源、25
は被拡散材料GaAs。 第3図および第4図は共に横軸に400μmの
GaAs結晶ウエフアの上にZnを1μm蒸着した拡
散源の量をとり、第3図は縦軸に実効的拡散係数
D(=Xj2/t)を示し、第4図の縦軸は被拡散材
料に形成された拡散層の表面のZn濃度Nsを示し
た。
FIG. 1 is a diagram for explaining an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a diffusion source used when diffusing Zn into GaAs, and FIG. 2 is a cross-sectional view of a quartz ampoule showing the configuration of a closed tube ampoule used during diffusion. 11
12 is a GaAs wafer, 12 is a Zn formed by vapor deposition, etc.
layer, 21 is a quartz ampoule, 22 is a diffusion source storage part,
23 is a quartz ampoule enclosure, 24 is a diffusion source, 25
is the diffused material GaAs. In both Figures 3 and 4, 400 μm is plotted on the horizontal axis.
Figure 3 shows the effective diffusion coefficient D (=Xj2/t) on the vertical axis, and the vertical axis in Figure 4 shows the amount of diffusion source obtained by depositing 1 μm of Zn on a GaAs crystal wafer. The Zn concentration Ns on the surface of the formed diffusion layer is shown.

Claims (1)

【特許請求の範囲】[Claims] 1 化合物半導体材料への不純物の拡散法とし
て、被拡散化合物半導体材料とは別に配置した拡
散源として、被拡散材料と同一母材の上に形成し
た不純物元素あるいは不純物元素の化合物からな
る層を少なくとも含んだ、多層あるいは単層薄膜
を形成したものを用いる閉じた系での不純物の拡
散法において、拡散源である不純物元素の量を拡
散源の温度で、該元素と被拡散材料のみの共存状
態における該元素の熱平衡蒸気未満の蒸気圧が得
られる量とすることを特徴とする不純物の拡散
法。
1 As a method for diffusing impurities into a compound semiconductor material, at least a layer consisting of an impurity element or a compound of an impurity element formed on the same base material as the material to be diffused is used as a diffusion source placed separately from the compound semiconductor material to be diffused. In a closed system impurity diffusion method using a multi-layered or single-layered thin film, the amount of the impurity element that is the diffusion source is determined at the temperature of the diffusion source, and the coexistence state of only the element and the material to be diffused is determined. A method for diffusing impurities, characterized in that the amount is such that a vapor pressure less than the thermal equilibrium vapor of the element is obtained.
JP12630477A 1977-10-19 1977-10-19 Diffusing method of impurity Granted JPS5459075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12630477A JPS5459075A (en) 1977-10-19 1977-10-19 Diffusing method of impurity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12630477A JPS5459075A (en) 1977-10-19 1977-10-19 Diffusing method of impurity

Publications (2)

Publication Number Publication Date
JPS5459075A JPS5459075A (en) 1979-05-12
JPS6122855B2 true JPS6122855B2 (en) 1986-06-03

Family

ID=14931878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12630477A Granted JPS5459075A (en) 1977-10-19 1977-10-19 Diffusing method of impurity

Country Status (1)

Country Link
JP (1) JPS5459075A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524302B2 (en) * 1987-09-01 1993-04-07 Kajima Construction Corp

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492511A (en) * 1972-04-20 1974-01-10
JPS5023562A (en) * 1973-06-29 1975-03-13
JPS5311574A (en) * 1976-07-19 1978-02-02 Fujitsu Ltd Production of semiconductor device
JPS6011801A (en) * 1983-06-30 1985-01-22 Fujitsu Ltd Stereoscopic display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492511A (en) * 1972-04-20 1974-01-10
JPS5023562A (en) * 1973-06-29 1975-03-13
JPS5311574A (en) * 1976-07-19 1978-02-02 Fujitsu Ltd Production of semiconductor device
JPS6011801A (en) * 1983-06-30 1985-01-22 Fujitsu Ltd Stereoscopic display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524302B2 (en) * 1987-09-01 1993-04-07 Kajima Construction Corp

Also Published As

Publication number Publication date
JPS5459075A (en) 1979-05-12

Similar Documents

Publication Publication Date Title
US4115163A (en) Method of growing epitaxial semiconductor films utilizing radiant heating
Lopez-Otero Hot wall epitaxy
Yim et al. Vapor‐Phase Epitaxial Growth and Some Properties of ZnSe, ZnS, and CdS
US3839084A (en) Molecular beam epitaxy method for fabricating magnesium doped thin films of group iii(a)-v(a) compounds
KR970008339B1 (en) Supersaturated rare earch doped semiconductor layers by cvd
US3974002A (en) MBE growth: gettering contaminants and fabricating heterostructure junction lasers
US3914136A (en) Method of making a transmission photocathode device
US3725135A (en) PROCESS FOR PREPARING EPITAXIAL LAYERS OF Hg{11 {118 {11 Cd{11 Te
US3249473A (en) Use of metallic halide as a carrier gas in the vapor deposition of iii-v compounds
US3666553A (en) Method of growing compound semiconductor films on an amorphous substrate
US4642142A (en) Process for making mercury cadmium telluride
JP2754765B2 (en) Method for manufacturing compound semiconductor crystal
US3549401A (en) Method of making electroluminescent gallium phosphide diodes
JPS6122855B2 (en)
US3485685A (en) Method and source composition for reproducible diffusion of zinc into gallium arsenide
JPS5917846B2 (en) 3↓-5 Method of diffusing impurities into compound semiconductors
US3725149A (en) Liquid phase diffusion technique
JP2000049105A (en) Method for diffusing zn to 3-5-group compound semiconductor crystal and diffuser
JPH0253097B2 (en)
JPS6011801B2 (en) Thermal diffusion method of impurities into semiconductor materials
Jordan et al. Vapor growth of high resistivity ZnTe
US4287527A (en) Opto-electronic devices based on bulk crystals of complex semiconductors
US3099588A (en) Formation of semiconductor transition regions by alloy vaporization and deposition
US2929971A (en) Semi-conductive device and method of making
JP2599767B2 (en) Solution growth equipment