JPS61228405A - Method for connecting single mode fiber - Google Patents

Method for connecting single mode fiber

Info

Publication number
JPS61228405A
JPS61228405A JP60069787A JP6978785A JPS61228405A JP S61228405 A JPS61228405 A JP S61228405A JP 60069787 A JP60069787 A JP 60069787A JP 6978785 A JP6978785 A JP 6978785A JP S61228405 A JPS61228405 A JP S61228405A
Authority
JP
Japan
Prior art keywords
fiber
light
mode
output
jacket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60069787A
Other languages
Japanese (ja)
Other versions
JPH0359403B2 (en
Inventor
Shigeo Sotodani
茂雄 外谷
Shigeru Ueda
茂 上田
Koichi Shiga
浩一 志賀
Isao Abe
功 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP60069787A priority Critical patent/JPS61228405A/en
Publication of JPS61228405A publication Critical patent/JPS61228405A/en
Publication of JPH0359403B2 publication Critical patent/JPH0359403B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3801Permanent connections, i.e. wherein fibres are kept aligned by mechanical means
    • G02B6/3803Adjustment or alignment devices for alignment prior to splicing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/424Mounting of the optical light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4287Optical modules with tapping or launching means through the surface of the waveguide
    • G02B6/4289Optical modules with tapping or launching means through the surface of the waveguide by inducing bending, microbending or macrobending, to the light guide

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

PURPOSE:To increase a clad mode light leak output by compressing and deforming a buffer layer or primary coat nearby a connection part where the other single mode fiber is connected and then scattering light propagated in the buffer layer or primary coat out of a jacket. CONSTITUTION:A compressing jig 30 is installed between a sensor 8 and the end surface of an SM fiber 2 which is at the distance of a gap G from the core end surface of an SM fiber 1 and pressure is applied without rupturing any fiber. Then, the light 10 propagated in the primary coat 25 leaks out of the jacket 27 and is detected by the sensor together with clad mode leak light 9 before the compressive deformation. Consequently, the output of the clad leak light is much larger than before and a long-distance connection which is impossible before is made.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、クラッドモード漏洩光を検知しながらシング
ルモードファイバを接続する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for splicing single mode fibers while detecting cladding mode leakage light.

[従来の技術] シングルモードファイバ(以下3Mファイバと略称する
)は大容量の情報を伝送できるとして注目されているが
、コア径が5〜10μ瓦と非常に小ざく、接続に関して
は高度な技術が要求されている。
[Prior art] Single mode fiber (hereinafter abbreviated as 3M fiber) is attracting attention for its ability to transmit large amounts of information, but it has a very small core diameter of 5 to 10 μm, and requires advanced technology for connection. is required.

3Mファイバの接続方法としては、光パワーモニタ一方
式、クラッドモード漏洩光検知方式等が挙げられる。前
者の光パワーモニタ一方式は、一方の3Mファイバ端よ
り光(λ=0.85μm又は1.3μm)を入射して他
方の3Mファイバ端より出射する先導波モード出力が最
大になるよう軸合わせして接続する方式であるが、他方
の3Mファイバから出射した光出力を接続部までマルチ
モードファイバにより導き戻す必要があり、ファイバ長
が1−以上の場合など、はなはだ面倒なばかりでなく、
その回線の確保が経済的に不利であった。
Examples of the 3M fiber connection method include a single optical power monitor method and a cladding mode leakage light detection method. The former type of optical power monitor is aligned so that light (λ = 0.85 μm or 1.3 μm) is input from one 3M fiber end and output from the other 3M fiber end to maximize the leading wave mode output. However, it is necessary to guide the optical output emitted from the other 3M fiber back to the connection point using a multimode fiber, which is not only extremely troublesome when the fiber length is 1- or more.
Securing that line was economically disadvantageous.

このようなことから、最近後者のクラッドモード漏洩光
検知方式が採用され始めている。
For this reason, the latter cladding mode leakage light detection method has recently begun to be adopted.

第2図はクラッドモード漏洩光検知方式の原理を示す説
明図である。1.2は3Mファイバであり、13.23
はコア、14.24はクラッド、15゜25はシリコー
ン樹脂等のプライマリ−コート、16.26はシリコー
ン樹脂等のバッファ層および17.27はナイロン又は
テフロン等のジャケラ1〜である。
FIG. 2 is an explanatory diagram showing the principle of the cladding mode leakage light detection method. 1.2 is 3M fiber, 13.23
is a core, 14.24 is a cladding, 15.25 is a primary coat of silicone resin or the like, 16.26 is a buffer layer of silicone resin or the like, and 17.27 is a jacket made of nylon or Teflon.

3Mファイバ1には半導体レーザ等の光源より光が入射
されており、その光はコア13の端面から出射され、ギ
ャップGの距離だけ離れている3Mファイバ2のコア2
3およびクラッド24の端面に放射状に入射される。
Light is input into the 3M fiber 1 from a light source such as a semiconductor laser, and the light is emitted from the end face of the core 13, and is directed to the core 2 of the 3M fiber 2, which is separated by the distance of the gap G.
3 and the end faces of the cladding 24 in a radial manner.

このときコア13とコア23が軸ずれしていると、その
軸ずれ量に応じてジャケラ1〜27の外にクラッドモー
ド漏洩光9が漏れ、センサ8によりその出力を検知する
ことができる。なお、3Mファイバ1と3Mファイバ2
はギャップGだけ離れているため、軸ずれかない場合で
も第3図に示すようにクラッドモード漏洩光を検知する
ことができる。
At this time, if the cores 13 and 23 are axially misaligned, cladding mode leakage light 9 leaks out of the jackets 1 to 27 according to the amount of axial misalignment, and the sensor 8 can detect the output. In addition, 3M fiber 1 and 3M fiber 2
Since they are separated by the gap G, cladding mode leakage light can be detected as shown in FIG. 3 even when there is no axis deviation.

従って、第3図に示すように、クラッドモード漏洩光9
の出力が最小のときに接続すれば、コア13とコア23
の軸ずれがないものである。
Therefore, as shown in FIG. 3, the cladding mode leakage light 9
If you connect it when the output of
There is no axis misalignment.

[発明が解決しようとする問題点] ところが、コア13より出射された光のほとんどは、コ
ア23とクラッド24およびプライマリーフ−1〜25
内部に閉じ込められたまま遠方まで伝搬するためクラッ
ドモード漏洩光9の出力は小さく、光源から接続点が遠
くなるにつれ、更にその出力は小さくなってしまう。す
なわち、第3図においてセンサ8の検出下限界をaとす
ると、曲線Aでは問題ないが、曲線部Bでは軸ずれ0付
近でのクラッドモード漏洩光の検出ができなくなってし
まう。従って、従来接続点と光源の距離は20KII&
が限界でおり、又、検出下限界aを下げるために感度の
良い高価なセンサが必要となってしまう。
[Problems to be Solved by the Invention] However, most of the light emitted from the core 13 is transmitted through the core 23, the cladding 24, and the primary frames 1 to 25.
The output of the cladding mode leakage light 9 is small because it propagates to a long distance while being confined inside, and the output becomes further smaller as the connection point becomes farther from the light source. That is, if the lower detection limit of the sensor 8 is a in FIG. 3, there is no problem in the curve A, but in the curve B, it becomes impossible to detect the cladding mode leakage light in the vicinity of zero axis deviation. Therefore, the distance between the conventional connection point and the light source is 20KII &
is the limit, and in order to lower the detection limit a, a sensitive and expensive sensor is required.

又、プライマリ−コートおよびジャケットの材料更に製
造条件のばらつき等により、1心毎の漏洩光量は大幅に
変化し、接続作業に長時間を要する、といった問題があ
った。
Furthermore, due to variations in the materials of the primary coat and jacket, as well as variations in manufacturing conditions, the amount of leaked light for each fiber varies significantly, resulting in the problem of requiring a long time for connection work.

[発明の目的] 本発明の目的は、前記した従来技術の問題点に鑑み、シ
ングルモードファイバの接続作業を容易にかつ短時間で
行うことができ、接続可能な距離を大幅に向上させるこ
とのできるシングルモードファイバの接続方法を提供す
ることにある。
[Object of the Invention] In view of the problems of the prior art described above, the object of the present invention is to provide a method for easily and quickly connecting single mode fibers, and to significantly improve the connectable distance. The purpose of this invention is to provide a method for connecting single mode fibers that can be used.

[発明の概要] 本発明の要旨は、2本のシングルモードファイバの端面
を互いに対向させ、一方のシングルモードファイバに光
を入射して他方のシングルモードファイバのジャケット
外に漏洩するクラッドモード漏洩光を検知しながら接続
する方法において、前記他方のシングルモードファイバ
の接続部近傍を圧縮変形して、バッファ層又はプライマ
リ−コート内部を伝搬する光をジャケラ1〜外に散乱さ
せることによつ−Cクラッドモード漏洩光出力を増大せ
しめるようとしたことにある。
[Summary of the Invention] The gist of the present invention is to make the end faces of two single mode fibers face each other so that the cladding mode leaked light is incident on one single mode fiber and leaks out of the jacket of the other single mode fiber. In the method of connecting while detecting -C, by compressively deforming the vicinity of the connection part of the other single mode fiber and scattering the light propagating inside the buffer layer or the primary coat to the outside. The aim is to increase the cladding mode leakage light output.

[実施例] 以下、本発明の実施例を第1図に基づいて説明する。[Example] Embodiments of the present invention will be described below with reference to FIG.

3Mファイバ1,2の配置は第2図と同様であり、それ
ぞれコア端面はギャップGだけ離れている。SMフ7バ
2端而とセンサ8との間に圧縮治具30を設置し、ファ
イバを破断させない程度の圧力を加えてやると、プライ
マリ−コート25内部を伝搬していた光10がジャケラ
1〜27の外に漏れ、圧縮変形させる前のクラッドモー
ド漏洩光9とあわざってセンサ8で検出される。
The arrangement of the 3M fibers 1 and 2 is similar to that shown in FIG. 2, and their core end faces are separated by a gap G. When a compression jig 30 is installed between the SM fiber 7 and the sensor 8 and pressure is applied to an extent that does not break the fiber, the light 10 propagating inside the primary coat 25 is transferred to the jacket 1. .

よって、クラッドモード漏洩光の出力は、従来よりも格
段に増大しており、従来ではできなかった長距離接続が
できるようになる。
Therefore, the output of the cladding mode leakage light is significantly increased compared to the conventional method, and it becomes possible to perform long-distance connections that were not possible in the conventional method.

実施例1 3Mファイバ2のコア端面から約100調の位置に圧縮
冶具を接地し、その後方約3#の位置にセンサを設置し
た。
Example 1 A compression jig was grounded at a position approximately 100 degrees from the core end surface of the 3M fiber 2, and a sensor was installed at a position approximately 3# behind it.

3Mファイバは、バッファ層径0.5%、テフロンジャ
ケット径0.88であり、この3Mファイバに圧縮冶具
により50%の変形を与えたところ透過パワーより約3
5db低いクラッドモード漏洩光が1qられた。
The 3M fiber has a buffer layer diameter of 0.5% and a Teflon jacket diameter of 0.88. When this 3M fiber was deformed by 50% using a compression jig, the transmitted power was approximately 3
The 5db lower cladding mode leakage light was reduced to 1q.

光源出力が一12dbm、センサの最小検知感度が一6
5dbであるので、ファイバ損失0.6db/飴であれ
ば、接続間隔30KInの接続が可能であることが確認
された。
Light source output is 112 dbm, minimum detection sensitivity of sensor is 16 dbm
Since the fiber loss is 5 db, it was confirmed that if the fiber loss is 0.6 db/candy, connection with a connection interval of 30 KIn is possible.

なお、従来のようにファイバに変形を与えない方式では
透過パワーより約50db低いタララドモード漏洩光し
か得られず、接続可能長は大幅に制限されてしまう。
In addition, in the conventional method that does not deform the fiber, only Talarad mode leakage light that is about 50 db lower than the transmitted power can be obtained, and the connectable length is greatly limited.

又、上記実施例1では圧縮変形部は1箇所であるが、そ
れよりも接続部側に約10sの位置にもうひとつ圧縮冶
具を設けることにより、更にタララドモードの散乱が助
長され、漏洩光出力が大幅に向上することを確認した。
In addition, in Example 1, there is only one compressive deformation part, but by providing another compression jig at a position about 10 s closer to the connection part, the scattering of the Tararad mode is further promoted, and the leakage light output is reduced. It was confirmed that there was a significant improvement.

以上のように、本発明の方法により3Mファイバの接続
実験を行った結果、接続個所数が100で、平均接続損
失が0.07dbを1q、現在実用化されている光パワ
ーモニタ一方式と同等な接続ができた。又、接続部近傍
で軸ずれ量が検知できるため、作業が容易であり且つ短
時間で接続できるものである。
As described above, as a result of conducting experiments on connecting 3M fibers using the method of the present invention, the number of connection points was 100, and the average connection loss was 0.07 dB for 1q, which is equivalent to the optical power monitor system currently in practical use. A connection was made. Further, since the amount of axis deviation can be detected near the connection part, the work is easy and connection can be made in a short time.

なお、圧縮治具30の形状は、ファイバに傷を与えない
形状であることが望ましく、又、一方を固定板にして他
方から圧縮するようにしてもよい。
Note that the shape of the compression jig 30 is preferably such that it does not damage the fiber, and one side may be used as a fixed plate and compression may be performed from the other side.

[発明の効果] 以上に詳細に説明した通り、本発明によれば次のような
顕著な効果を奏する。
[Effects of the Invention] As explained in detail above, the present invention provides the following remarkable effects.

(1)接続部近傍で軸ずれ量を検知できるため、光パワ
ーモニタ一方式のようなフィトバック回路を必要とせず
経済的でおり、 (2)作業が容易であり、且つ、短時間で接続できるも
のである。
(1) Since the amount of axis misalignment can be detected near the connection part, it is economical because it does not require a fiber-back circuit like a one-sided optical power monitor. (2) It is easy to work and can be connected in a short time. It is possible.

(3)接続部近傍を圧縮変形したことにより、タララド
モード漏洩光出力を大幅に増大せしめることができ、中
継区間30KIn以上の接続が十分可能である。
(3) By compressing and deforming the vicinity of the connection part, it is possible to significantly increase the Talarado mode leakage light output, and it is possible to connect a relay section of 30 KIn or more.

(4−)センサと圧縮冶具は小型で且つ一体化できるた
め、従来の融着接続機に容易に取り付けることができる
(4-) Since the sensor and compression jig are small and can be integrated, they can be easily attached to a conventional fusion splicer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す説明図、第2図は従来例
を示す説明図、第3図は軸ずれ量とタララドモード漏洩
光の関係を示す説明図である。 1.2・・・3Mファイバ、 8・・・センサ、 9・・・タララドモード漏洩光、 10・・・光、 13.23・・・コア、 14.24・・・クラッド、 15.25・・・プライマリ−コート、16.26・・
・バッファ層、 17.27・・・ジャケット、 30・・・圧縮治具。 代理人  弁理士  佐 膝 不二雄 見 112]
FIG. 1 is an explanatory diagram showing an embodiment of the present invention, FIG. 2 is an explanatory diagram showing a conventional example, and FIG. 3 is an explanatory diagram showing the relationship between the amount of axis deviation and Talarado mode leakage light. 1.2...3M fiber, 8...Sensor, 9...Tararad mode leakage light, 10...Light, 13.23...Core, 14.24...Clad, 15.25...・Primary court, 16.26...
- Buffer layer, 17.27... Jacket, 30... Compression jig. Agent: Patent Attorney Sa Ni Fujiyomi 112]

Claims (1)

【特許請求の範囲】[Claims] (1)2本のシングルモードファイバの端面を互いに対
向させ、一方のシングルモードファイバに光を入射して
他方のシングルモードファイバのジャケット外に漏洩す
るクラッドモード漏洩光を検知しながら接続する方法に
おいて、前記他方のシングルモードファイバの接続部近
傍を圧縮変形することを特徴とするシングルモードファ
イバの接続方法。
(1) In a method in which the end faces of two single-mode fibers are made to face each other, light is input into one single-mode fiber, and the cladding mode leakage light leaking out of the jacket of the other single-mode fiber is detected while being connected. . A method for connecting single mode fibers, characterized in that the vicinity of the connecting portion of the other single mode fiber is compressively deformed.
JP60069787A 1985-04-02 1985-04-02 Method for connecting single mode fiber Granted JPS61228405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60069787A JPS61228405A (en) 1985-04-02 1985-04-02 Method for connecting single mode fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60069787A JPS61228405A (en) 1985-04-02 1985-04-02 Method for connecting single mode fiber

Publications (2)

Publication Number Publication Date
JPS61228405A true JPS61228405A (en) 1986-10-11
JPH0359403B2 JPH0359403B2 (en) 1991-09-10

Family

ID=13412813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60069787A Granted JPS61228405A (en) 1985-04-02 1985-04-02 Method for connecting single mode fiber

Country Status (1)

Country Link
JP (1) JPS61228405A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225961A (en) * 2006-02-24 2007-09-06 Nippon Telegr & Teleph Corp <Ntt> Method of splicing optical fibers
JP2009198953A (en) * 2008-02-25 2009-09-03 Mitsubishi Cable Ind Ltd Method of connecting double clad fiber
WO2012118021A1 (en) * 2011-03-01 2012-09-07 住友電気工業株式会社 Optical waveguide, laser light irradiation device, and method for assembling laser light irradiation device
WO2015086308A1 (en) * 2013-12-09 2015-06-18 Koninklijke Philips N.V. Optical fiber connector validation
US10379290B2 (en) 2013-12-09 2019-08-13 Koninklijke Philips N.V. Optical fiber connector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225961A (en) * 2006-02-24 2007-09-06 Nippon Telegr & Teleph Corp <Ntt> Method of splicing optical fibers
JP2009198953A (en) * 2008-02-25 2009-09-03 Mitsubishi Cable Ind Ltd Method of connecting double clad fiber
WO2012118021A1 (en) * 2011-03-01 2012-09-07 住友電気工業株式会社 Optical waveguide, laser light irradiation device, and method for assembling laser light irradiation device
WO2015086308A1 (en) * 2013-12-09 2015-06-18 Koninklijke Philips N.V. Optical fiber connector validation
US10031297B2 (en) 2013-12-09 2018-07-24 Koninklijke Philips N.V. Optical fiber connector validation
US10379290B2 (en) 2013-12-09 2019-08-13 Koninklijke Philips N.V. Optical fiber connector

Also Published As

Publication number Publication date
JPH0359403B2 (en) 1991-09-10

Similar Documents

Publication Publication Date Title
CA1311381C (en) Connector employing mode field modification
JP2572402B2 (en) Access method for optical fiber line and connector plug thereof
EP0271177B1 (en) Optical fibre coupler
JPH02188706A (en) Optical fiber coupler
JPH0439044B2 (en)
JPS61228405A (en) Method for connecting single mode fiber
JPS59187305A (en) Core aligning method during fusion connection of optical fiber
US4645923A (en) Method and device for coupling an optical signal from a first light guide into a second light guide
JP4217276B2 (en) Optical element
KR890002996B1 (en) Axial aligning device for optical fiber
CA2059861C (en) Terminal structure for an optical device
JPH0357450B2 (en)
JPS61194411A (en) Detecting method for axial alignment of optical fiber
JPS6343111A (en) Optical fiber branching device
JPH01227108A (en) Optical branching circuit
JPH03238404A (en) Method for splicing optical fiber
JPH01246512A (en) Bending head for accessing optical fiber circuit
JPS6170512A (en) Method and device for detecting light propagated in optical fiber
JPH01128014A (en) Production of photosemiconductor device
JP2585272Y2 (en) Fiber type optical isolator
JPH0540484Y2 (en)
JPH01234804A (en) Method of connecting optical fibers
JPS60247206A (en) Monitor device for optical fiber line
JPS5857723B2 (en) Fusion splicing method for single mode optical fiber
Nagase et al. MU-type PANDA fiber connector