JPS61228395A - Method of treating radioactive waste - Google Patents

Method of treating radioactive waste

Info

Publication number
JPS61228395A
JPS61228395A JP6899385A JP6899385A JPS61228395A JP S61228395 A JPS61228395 A JP S61228395A JP 6899385 A JP6899385 A JP 6899385A JP 6899385 A JP6899385 A JP 6899385A JP S61228395 A JPS61228395 A JP S61228395A
Authority
JP
Japan
Prior art keywords
waste
water
liquid
dryer
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6899385A
Other languages
Japanese (ja)
Inventor
悟 大橋
菊池 恂
進 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6899385A priority Critical patent/JPS61228395A/en
Publication of JPS61228395A publication Critical patent/JPS61228395A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Fertilizers (AREA)
  • Treatment Of Sludge (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原子力発電所等の原子力施設から発生する使
用済イオン交換樹脂スラリー、濃縮廃液等の液体状放射
性廃棄物を乾燥粉体化する放射性廃棄物の処理方法に関
するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a radioactive material for drying and pulverizing liquid radioactive waste such as spent ion exchange resin slurry and concentrated waste liquid generated from nuclear facilities such as nuclear power plants. It relates to waste disposal methods.

〔発明の背景〕[Background of the invention]

原子力発電所等の原子力施設(以下原子力施設と称す)
から発生する使用済イオン交換樹脂)以下廃樹脂と称す
)スラリー、濃縮廃液等の液体状放射性廃棄物は、従来
セメント固化、アスファルト固化、タンク貯蔵等の各種
処理、管理が施されてきた。
Nuclear facilities such as nuclear power plants (hereinafter referred to as nuclear facilities)
Liquid radioactive waste, such as slurry and concentrated waste liquid (used ion-exchange resin (hereinafter referred to as waste resin)), has conventionally been subjected to various treatments and management such as cement solidification, asphalt solidification, and tank storage.

ところが、原子力施設の増大、運転実績の長期化に伴い
累積する放射性廃棄物量の増大が問題となり廃棄物の減
容が強く要望されている。
However, with the increase in the number of nuclear facilities and the lengthening of their operating history, the amount of radioactive waste that accumulates has become a problem, and there is a strong demand for reducing the volume of waste.

また、放射性廃棄物の最終処分方針未定という日本の国
情から、中間貯蔵に耐える廃棄物の長期安定化要求も増
大してきた。
Furthermore, due to the national situation in Japan, where the final disposal policy for radioactive waste has not yet been determined, there has been an increasing demand for long-term stabilization of waste that can withstand interim storage.

これらの要求に応えるため、現在廃樹脂スラリー及び濃
縮廃液を乾燥粉体化することにより大きく減容し、更に
造粒することにより減容効果を上げかつ長期安定化する
乾燥粉体化・造粒技術が実層化している。また一部では
、造粒処理の代替案として、粉体をそのまま最終処分に
充分耐え得ると考えられている同化材(プラスチック等
)と混合固化する処理方法も実施されようとしている。
In order to meet these demands, we are currently developing dry powdering and granulation that significantly reduces the volume of waste resin slurry and concentrated waste liquid by drying it into powder, and then granulating it to increase the volume reduction effect and stabilize it over the long term. Technology is becoming more practical. In some cases, as an alternative to granulation, a treatment method is being implemented in which powder is mixed and solidified with an assimilated material (such as plastic), which is considered to be sufficient to withstand final disposal.

何れの技術に於ても、廃樹脂スラリー、濃縮廃液等の液
体状放射性廃棄物については、乾燥粉体化処理が最新の
実用化技術として今後とも長らくその処理方法の中核と
なるものと考えられている。
Regardless of the technology, for liquid radioactive waste such as waste resin slurry and concentrated waste liquid, dry powder processing is considered to be the core treatment method for a long time to come as the latest practical technology. ing.

以下に乾燥粉体化処理方法の概要を説明する。The outline of the dry powder processing method will be explained below.

第3図に従来の乾燥粉体化処理設備のフローを示す。乾
燥粉体化処理設備では、上流側発生元1で発生した低濃
度の廃樹脂スラリーは、沈降分離槽2に収集され沈降分
離後上澄水はデカントポンプ3で低電導液体廃棄物処理
系4に移送され、廃樹脂は所定濃度の廃樹脂スラリーと
して移送ポンプ5で廃樹脂系受タンク6に移送され、更
に所定濃度で所定量、廃樹脂系受ポンプ7で供給タンク
8に移送される。また濃縮器9で発生した濃縮廃液は、
同様に所定量、供給タンクに移送される。
Figure 3 shows the flow of conventional dry powder processing equipment. In the dry powder processing equipment, low-concentration waste resin slurry generated at the upstream generation source 1 is collected in a sedimentation separation tank 2, and after sedimentation and separation, the supernatant water is sent to a low conductivity liquid waste treatment system 4 by a decant pump 3. The waste resin is transferred as a waste resin slurry with a predetermined concentration to a waste resin receiving tank 6 by a transfer pump 5, and further transferred to a supply tank 8 by a waste resin receiving pump 7 in a predetermined amount at a predetermined concentration. In addition, the concentrated waste liquid generated in the concentrator 9 is
Similarly, a predetermined amount is transferred to the supply tank.

供給タンク8に移送された廃樹脂スラリーあるいは濃縮
廃液は、供給ポンプ10で乾燥機11に供給され、水分
を除去され乾燥した粉体となり、下流側設備12に送ら
れ、造粒もしくは固化等の処理がなされる。乾燥機11
内で除去された水分は蒸気となって復水系13に導かれ
、凝縮後凝縮水タンク14に送られる。また乾燥機11
は、運転性能確保及び保守点検性確保の両観点から、温
水供給装置15から供給される温水で洗浄される。
The waste resin slurry or concentrated waste liquid transferred to the supply tank 8 is supplied to the dryer 11 by the supply pump 10, and the moisture is removed to form a dry powder, which is then sent to the downstream equipment 12 where it undergoes granulation, solidification, etc. Processing is done. Dryer 11
The water removed within the tank becomes steam and is led to the condensate system 13, and after being condensed, is sent to the condensate tank 14. Also, dryer 11
is washed with hot water supplied from the hot water supply device 15 from the viewpoint of both ensuring operational performance and ensuring ease of maintenance and inspection.

この洗浄水は、凝縮した水分と同様に凝縮水タン・ り
14へ送られる。凝縮水タンク14中の凝縮水及び洗浄
水は、凝縮水移送ポンプ16で、高電導度液体廃棄物処
理系17に移送されるにの乾燥粉体化処理設備中の液体
の流れを追ってみると、供給タンク8に流入した水分は
、全て高電導度液体廃棄物処理系17に移送され、再び
濃縮処理を施されることになる。また、洗浄用に供給さ
れる温水も全て高電導度液体廃棄物処理系17に移送さ
れ、再び濃縮されることになる。これは設備コスト、運
転コストの点から低電導度液体廃棄物処理系に比較して
割高である高電導度液体廃棄物処理系、即ち濃縮器の処
理量増大につ外がり設備合理化の観点からは望ましいも
のとは言えないが、現在の乾燥粉体化設備では、凝縮水
タンク中の廃液の電導度は、低電導度液体廃棄物処理系
の受は入孔基準を上回る為、低電導度液体廃棄物処理系
では処理できない。
This wash water, like the condensed water, is sent to the condensate tank 14. The condensed water and washing water in the condensed water tank 14 are transferred to the high conductivity liquid waste treatment system 17 by the condensed water transfer pump 16. Following the flow of liquid in the drying and pulverization treatment equipment, All of the water that has flowed into the supply tank 8 is transferred to the high conductivity liquid waste treatment system 17 and subjected to concentration treatment again. All the hot water supplied for cleaning will also be transferred to the high conductivity liquid waste treatment system 17 and concentrated again. This is from the perspective of equipment rationalization due to the increased throughput of the high conductivity liquid waste treatment system, that is, the concentrator, which is relatively expensive compared to the low conductivity liquid waste treatment system in terms of equipment costs and operating costs. However, in current dry pulverization equipment, the conductivity of the waste liquid in the condensate tank exceeds the inlet standard of the low conductivity liquid waste treatment system, so the low conductivity Cannot be treated in liquid waste treatment systems.

また、凝縮水タンク14中に流入する固形分について注
目すると、一旦濃縮器9を通り更に乾燥しいとは言い難
い。
Moreover, if we pay attention to the solid content flowing into the condensed water tank 14, it is difficult to say that the solid content that flows into the condensed water tank 14 is further dried after passing through the concentrator 9.

以上述べたように、乾燥粉体化処理設備については、発
生廃液量の低減、循環固形分量の低減と“いう合理化課
題が残されている。
As mentioned above, with regard to dry pulverization processing equipment, there are still issues to be solved in terms of rationalization, such as reducing the amount of waste liquid generated and the amount of circulating solids.

尚、関連する公知例としては特開昭55−142299
号公報のものがある。
Incidentally, a related known example is JP-A-55-142299.
There is a publication number.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、乾燥粉体化処理設備を発生廃液と有効
利用できるように改良し、その結果として発生廃液量低
減に伴う高電導度液体廃棄物処理系の負荷低減、洗浄用
温水使用量の低減に伴う温水装置の負荷低減、及び系統
を循環する固形分量の低減可能な放射性廃棄物の処理方
法を提供することにある。
The purpose of the present invention is to improve the dry pulverization processing equipment so that it can effectively utilize the generated waste liquid, and as a result, the load on the high conductivity liquid waste treatment system is reduced due to the reduction in the amount of generated waste liquid, and the amount of hot water used for cleaning is reduced. It is an object of the present invention to provide a method for treating radioactive waste that can reduce the load on a hot water system due to a reduction in the amount of water and reduce the amount of solid content circulating in the system.

〔発明の概要〕[Summary of the invention]

本発明は、乾燥粉体化処理の各所における液体状の廃棄
物の性状、発生量に着目することによって達成された。
The present invention was achieved by paying attention to the properties and amount of liquid waste generated at various points during the dry pulverization process.

即ち (1)廃樹脂スラリーは、廃樹脂が水と混合したもので
あり、簡便な分離処理によって廃樹脂と水分の分離が有
効に達成できる。
That is, (1) waste resin slurry is a mixture of waste resin and water, and the waste resin and water can be effectively separated by a simple separation process.

(2)廃樹脂スラリー中の水分は電導度が低いため、低
電導度液体廃棄物処理系で処理可能であ“る。   ゛ (3)凝縮水タンク中の廃液は、乾燥機から発生する洗
浄水が、復水系から発生する凝縮水で希釈されたもので
あるので、その電導度及び固形分濃度は、低電導度液体
廃棄物処理系の受は入れ基準を上回ってはいるが、洗浄
用水として要求される水質を充分に満足しており、また
分離された廃樹脂と混合し乾燥機に供給した場合でも、
混合による固形分濃度の増加量が乾燥機の性能に有意な
影響を与えることはない。
(2) Since the water in the waste resin slurry has low conductivity, it can be treated with a low conductivity liquid waste treatment system. Because the water has been diluted with condensate water generated from the condensate system, its conductivity and solids concentration exceed the acceptance criteria for low conductivity liquid waste treatment systems, but it is not suitable for cleaning water. It fully satisfies the water quality required for water, and even when mixed with separated waste resin and supplied to the dryer,
The amount of increase in solids concentration due to mixing does not significantly affect dryer performance.

(4)凝縮水タンク中の廃液は、約100℃の凝縮水と
、約60℃の洗浄水が混合したものであるので、洗浄用
温水に要求される水温を充分に満足している。
(4) Since the waste liquid in the condensed water tank is a mixture of condensed water at about 100°C and washing water at about 60°C, it sufficiently satisfies the water temperature required for hot water for washing.

(5)凝縮水タンク中の廃液の発生量は、乾燥機に供給
する廃液中の水分量と、洗浄用に供給する温水量の和で
あるので、供給する廃液の水分と洗浄用水として必要な
水量を満足できかつ両者に供した場合の残量は殆どなく
有効な再利用が図れる。
(5) The amount of waste liquid generated in the condensed water tank is the sum of the amount of water in the waste liquid supplied to the dryer and the amount of hot water supplied for cleaning. When the amount of water is sufficient and is used for both, there is almost no remaining amount and effective reuse can be achieved.

〔発明の実施例〕[Embodiments of the invention]

本発明の詳細を以下に述べる0本発明による乾燥粉体化
処理設備のフローを第1図に示す、I!l中の太線で示
した部分が、本発明の部分である。
The details of the present invention will be described below. The flow of the dry powder processing equipment according to the present invention is shown in FIG. The part indicated by the thick line in 1 is the part of the present invention.

供給タンク8の上流側に分離装置18を設置し廃樹脂系
受タンク6から移送される廃樹脂スラリーを分離するこ
とにある6 分離された廃樹脂は、供給タンクに移送され。
A separator 18 is installed upstream of the supply tank 8 to separate the waste resin slurry transferred from the waste resin receiving tank 6. 6 The separated waste resin is transferred to the supply tank.

分離された水分は電導塵が低いため、沈降分離槽2の上
澄水と同様に低電導度系座体廃棄物処理系4に移送され
る。
Since the separated water has low conductivity dust, it is transferred to the low conductivity seat body waste treatment system 4 in the same way as the supernatant water of the sedimentation separation tank 2.

凝縮水タンク14と供給タンク8の間に移送ラインを設
置し、凝縮水を供給タンク8に移送可能とする。
A transfer line is installed between the condensed water tank 14 and the supply tank 8 so that the condensed water can be transferred to the supply tank 8.

移送された凝縮水は、分離された廃樹脂と混合され乾燥
機11へ供給される廃樹脂スラリーを形成する。
The transferred condensed water is mixed with the separated waste resin to form waste resin slurry that is supplied to the dryer 11.

凝縮水タンク14と乾燥機11への温水供給ライン間に
移送ラインを設は凝縮水を温水供給ラインに移送可能と
する。移送された凝縮水は、乾燥機11の洗浄用水とし
て使用される。
A transfer line is provided between the condensed water tank 14 and the hot water supply line to the dryer 11 so that the condensed water can be transferred to the hot water supply line. The transferred condensed water is used as washing water for the dryer 11.

尚1本発明の別法として、分離装置18を廃樹脂系受タ
ンク6の上流側に設置し、かつ凝縮水タンク14と廃樹
脂系受タンク6の間に移送ラインを設けることによって
も同一の機能が確保されるが、設備の運用性の面からは
、分離装置18は供給タンク8の上流側に設置し、かつ
凝縮水タンク14と供給タンク8の間に移送ラインを設
置することが望ましい。
As an alternative method of the present invention, the same result can be achieved by installing the separation device 18 upstream of the waste resin receiving tank 6 and providing a transfer line between the condensed water tank 14 and the waste resin receiving tank 6. Although the functionality is ensured, from the standpoint of equipment operability, it is desirable to install the separation device 18 upstream of the supply tank 8 and to install a transfer line between the condensed water tank 14 and the supply tank 8. .

また、本発明における廃樹脂スラリーの分離の程度は、
脱水された廃樹脂の移送性、廃液の有効利用、分離装置
18の性能の点から廃樹脂の濃度で、50%1t%程度
が望ましいが1分離の程度に応じて本発明の効果が得ら
れる。即ち本発明によれば何らかの分離処理を施すこと
により、本発明の目的を達成することができる。
Furthermore, the degree of separation of waste resin slurry in the present invention is as follows:
From the viewpoint of transportability of dehydrated waste resin, effective use of waste liquid, and performance of the separation device 18, the concentration of waste resin is preferably about 50% to 1t%, but the effects of the present invention can be obtained depending on the degree of separation. . That is, according to the present invention, the object of the present invention can be achieved by performing some kind of separation treatment.

また、さらに各タンクを分離装置として使用することも
可能である。
It is also possible to further use each tank as a separator.

本発明の実施例として、100万K W e級の沸騰水
型原子力発電所(以下BWRと称す)の放射性廃棄物処
理設備に本発明を適用した場合について以下に記す。
As an example of the present invention, a case where the present invention is applied to a radioactive waste treatment facility of a 1 million KW e class boiling water nuclear power plant (hereinafter referred to as BWR) will be described below.

本実施例の100万KWa級のBWRから発生する廃樹
脂、及び濃縮廃液の量は、おおよそ下表の様である。
The amounts of waste resin and concentrated waste liquid generated from the 1 million KWa class BWR of this example are approximately as shown in the table below.

本実施例の乾燥粉体化処理設備の運転条件は下記の通り
である。
The operating conditions of the dry powder processing equipment of this example are as follows.

(1)年間運転日数は250日とする。(1) The number of operating days per year is 250 days.

(2)廃樹脂スラリーは濃度10wt%で、濃縮廃液は
濃度25wt、%で乾燥機に供給する。
(2) The waste resin slurry is supplied to the dryer at a concentration of 10 wt%, and the concentrated waste liquid is supplied at a concentration of 25 wt%.

(3)1日あたり1回の頻度で乾燥機の洗浄を実施し、
洗浄用水を1回あたり0.5rrl’使用する。
(3) Clean the dryer once a day,
Use 0.5rrl' of water for washing each time.

(4)5日あたり1回の頻度で乾燥粉体化処理設備全体
の洗浄を実施し、洗浄用水を1回あたりtrrt’使用
する。
(4) The entire drying and pulverization processing equipment is washed once every 5 days, and the washing water is used trrt' for each time.

尚、ここで参考の為に本発明を実施しない場合の高電導
度液体廃棄物処理系への廃液移送量と温水の使用量を示
すとそれぞれ465rri’/年、150イ/年となる
For reference, the amount of waste liquid transferred to the high conductivity liquid waste treatment system and the amount of hot water used in the case where the present invention is not implemented are shown as 465 ri'/year and 150 i/year, respectively.

実施例1゜ 分離装置として脱水フィルタを使用した場合である。脱
水フィルタとしては、遠心フィルタ、フンダフィルタ、
水切り多孔板等積々の装置が考えられるが、この場合に
は分離の程度として、廃樹脂の濃度で約50wt%まで
達成可能である。即ち第1図において分離装置18から
供給タンク8へ分量は240rn’/年となる。
Example 1 This is a case where a dehydration filter is used as a separation device. Dehydration filters include centrifugal filters, funda filters,
A number of devices such as a draining perforated plate may be used, but in this case, it is possible to achieve a concentration of waste resin of up to about 50 wt% as the degree of separation. That is, in FIG. 1, the quantity from the separator 18 to the supply tank 8 is 240 rn'/year.

ところで供給タンクで発生する凝縮水及び洗浄水の量は
465rrr/年であるから、このうち240rri’
/年は分離された水分の補給水として供給タンクへ戻さ
れ、150n?/年は洗浄水として使用される。したが
って、高電導度液体廃棄物処理系へ戻される廃液量は7
5rrl’/年、温水の使用量は0rrl’/年となる
。また循還する固形分量も、本発明を実施しない場合の
約176になる。
By the way, the amount of condensed water and washing water generated in the supply tank is 465 rrr/year, so of this 240 rrr'
/year, 150n? of separated water was returned to the supply tank as make-up water. / year is used as washing water. Therefore, the amount of waste liquid returned to the high conductivity liquid waste treatment system is 7
5rrl'/year, and the amount of hot water used is 0rrl'/year. Moreover, the amount of solids recycled is also about 176 in the case where the present invention is not implemented.

実施例2゜ 廃樹脂系受タンクを分離装置として使用した場合の設備
のフローシートを第2図に示す。本実施例では実施例1
の分離装置18がなく、かわりに廃樹脂系受タンク6に
分離装置の機能を持たせ廃樹脂系受タンク6と低電導度
系液体廃棄物処理系4の間に移送ラインを設ける。この
場合には分離の程度として廃樹脂の濃度で約25tyt
%まで達成可能である(粒状樹脂と粉状樹脂の混合物と
して)。
Example 2 A flow sheet of equipment in which a waste resin receiving tank is used as a separation device is shown in FIG. In this example, Example 1
There is no separation device 18; instead, the waste resin receiving tank 6 has the function of a separation device, and a transfer line is provided between the waste resin receiving tank 6 and the low conductivity liquid waste treatment system 4. In this case, the degree of separation is approximately 25 tyt based on the concentration of waste resin.
% (as a mixture of granular and powdered resins).

即ち第2図において廃樹脂系受タンク6から供給タンク
8への廃樹脂の移送は濃度25υt%で実施される。し
たがって低電導液体廃棄物処理系へ戻される水分量は1
80m/年となる。
That is, in FIG. 2, the waste resin is transferred from the waste resin receiving tank 6 to the supply tank 8 at a concentration of 25 υt%. Therefore, the amount of water returned to the low conductivity liquid waste treatment system is 1
80m/year.

ところで供給タンクで発生する凝縮水及び洗浄水の量は
465rrr/年であるから、このうち180rrf/
年は分離された水分の補給水として供給タンクへ戻され
、150rrl’/年は洗浄用水として使用される。
By the way, the amount of condensed water and washing water generated in the supply tank is 465 rrr/year, of which 180 rrr/
The separated water is returned to the supply tank as make-up water, and 150 rrl'/year is used as wash water.

したがって、高電導度液体廃棄物処理系へ戻される廃液
量は135rrr/年、温水の使用量は0rri/年と
なる。またmsする固形分量も、本発明を実施ししない
場合の約1/3になる。
Therefore, the amount of waste liquid returned to the high conductivity liquid waste treatment system is 135 rrr/year, and the amount of hot water used is 0 rrr/year. Furthermore, the solid content in ms is also about 1/3 of that in the case where the present invention is not implemented.

−1本 の果 〔発明の効果〕 本発明を実施した場合の効果としては、下記の通りであ
る。
-1 Results [Effects of the Invention] The effects of implementing the present invention are as follows.

(1)高電導度液体廃棄物処理系へ持ち込まれる廃液の
量が、従来方式に比較して大きく低減でき最高で1/6
程度にまで低減できる。
(1) The amount of waste liquid brought into the high conductivity liquid waste treatment system can be significantly reduced compared to conventional methods, up to 1/6
It can be reduced to a certain degree.

(2)洗浄用の温水使用量がほぼOとなる。(2) The amount of hot water used for cleaning is approximately 0.

(3)(1)に記した効果に伴い、液体廃棄物処理系を
循環する固形分量も大きく低減でき最高で176程度に
まで低減できる。
(3) Along with the effect described in (1), the amount of solid content circulating through the liquid waste treatment system can be greatly reduced to about 176 at most.

尚本発明を実施した場合の3つの効果のうち、効果(1
)は、将来低電導度系液体廃棄物と高電導度系液体廃棄
物が一括処理される方式となった場合はその効果はなく
なるが、効果(2)、(3)は全く同様の効果を有する
Of the three effects when implementing the present invention, effect (1)
) will no longer be effective if low conductivity liquid waste and high conductivity liquid waste are collectively treated in the future, but effects (2) and (3) will have exactly the same effect. have

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による放射性廃棄物の乾燥粉体化処理
設備のフローシート、第2図は、本発明の一実施例によ
る放射性廃棄物の乾燥粉体化処理設備のフローシート、
第3図は、従来方式による放射性廃棄物の乾燥粉体処理
設備のフローシートである。
FIG. 1 is a flow sheet of a dry pulverization treatment facility for radioactive waste according to the present invention, and FIG. 2 is a flow sheet for a dry pulverization treatment facility for radioactive waste according to an embodiment of the present invention.
FIG. 3 is a flow sheet of a conventional dry powder treatment facility for radioactive waste.

Claims (1)

【特許請求の範囲】 1、原子力発電所等の原子力施設から発生する使用済イ
オン交換樹脂スラリーの供給タンクを有し濃縮廃液等の
液体状放射性廃棄物を乾燥粉体化する設備において、使
用済イオン交換樹脂と乾燥機から発生する凝縮水を混合
し、乾燥機に供給することを特徴とする放射性廃棄物の
処理方法。 2、特許請求範囲第1項に記載の放射性廃棄物の処理方
法において乾燥機から発生する凝縮水の一部を乾燥機の
洗浄水として使用することを特徴とする放射性廃棄物の
処理方法。 3、特許請求範囲第1項記載の放射性廃棄物の処理方法
において、供給タンクで使用済イオン交換樹脂と乾燥機
から発生する凝縮水を混合することを特徴とする放射性
廃棄物の処理方法。
[Claims] 1. In equipment that has a supply tank for used ion exchange resin slurry generated from nuclear power facilities such as nuclear power plants and dry powders liquid radioactive waste such as concentrated waste liquid, A radioactive waste treatment method characterized by mixing ion exchange resin and condensed water generated from a dryer and supplying the mixture to the dryer. 2. A radioactive waste disposal method according to claim 1, characterized in that a part of the condensed water generated from the dryer is used as washing water for the dryer. 3. A method for treating radioactive waste according to claim 1, characterized in that the used ion exchange resin and condensed water generated from a dryer are mixed in a supply tank.
JP6899385A 1985-04-03 1985-04-03 Method of treating radioactive waste Pending JPS61228395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6899385A JPS61228395A (en) 1985-04-03 1985-04-03 Method of treating radioactive waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6899385A JPS61228395A (en) 1985-04-03 1985-04-03 Method of treating radioactive waste

Publications (1)

Publication Number Publication Date
JPS61228395A true JPS61228395A (en) 1986-10-11

Family

ID=13389691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6899385A Pending JPS61228395A (en) 1985-04-03 1985-04-03 Method of treating radioactive waste

Country Status (1)

Country Link
JP (1) JPS61228395A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011227024A (en) * 2010-04-23 2011-11-10 Toshiba Corp Method and device for treating waste liquid containing boric acid
JP2017090098A (en) * 2015-11-04 2017-05-25 株式会社荏原製作所 Slurry disposal device, and slurry disposal method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011227024A (en) * 2010-04-23 2011-11-10 Toshiba Corp Method and device for treating waste liquid containing boric acid
JP2017090098A (en) * 2015-11-04 2017-05-25 株式会社荏原製作所 Slurry disposal device, and slurry disposal method

Similar Documents

Publication Publication Date Title
US4033868A (en) Method and apparatus for processing contaminated wash water
US4505824A (en) Method and apparatus for purifying liquid using an electromagnetic filter
JPS61228395A (en) Method of treating radioactive waste
CN109524143B (en) Method and system for treating radioactive waste liquid of nuclear power plant
JPH0214114B2 (en)
JPS62132584A (en) Condensate desalting tower
RU2164714C2 (en) Method for extracting mercury from primary circuit of water-cooled nuclear reactor
JP3369725B2 (en) Condensate desalination equipment
JPS5828700A (en) Treatment system for radioactive waste
JP2004093149A (en) Equipment and method for purifying primary coolant in nuclear power plant
JP2007199023A (en) Ion-exchange resin processing method, ion-exchange resin pulverizing system, decontamination apparatus, nuclear power station, decontamination apparatus modifying method and nuclear power station modifying method
JPS60125598A (en) Desalting device for condensate
Fletcher et al. New performance standards for demineralization set by Recoflo {reg_sign} technology
JPH0954195A (en) Treatment method for radioactive spent ion exchanger resin
JP3083628B2 (en) Solidification of radioactive waste resin and waste sludge
JPS6051679B2 (en) Boiling water reactor power plant waste liquid treatment method
JPS5892997A (en) Condensed water clean-up device
JPS60113194A (en) Nuclear reactor condensate system filtration desalting device
JP3081149B2 (en) Method for reducing impurity elution from condensate desalination unit of BWR type nuclear power plant
JPH0422489A (en) Water treatment method of power plant
Pearl et al. PWR secondary water chemistry study
JPS60195493A (en) Condensate puryfying system
JPS5882193A (en) Device for cleaning residual heat removal pipeline
JPS5916546A (en) Desalting column for condensate
JPS58201094A (en) Reactor coolant cleanup system