JPS6122775A - Stepping motor - Google Patents

Stepping motor

Info

Publication number
JPS6122775A
JPS6122775A JP59141131A JP14113184A JPS6122775A JP S6122775 A JPS6122775 A JP S6122775A JP 59141131 A JP59141131 A JP 59141131A JP 14113184 A JP14113184 A JP 14113184A JP S6122775 A JPS6122775 A JP S6122775A
Authority
JP
Japan
Prior art keywords
rotor
teeth
actuator
pressing
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59141131A
Other languages
Japanese (ja)
Other versions
JPH0655035B2 (en
Inventor
Hisashi Sugimoto
久 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Sunac Corp
Original Assignee
Asahi Okuma Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Okuma Industrial Co Ltd filed Critical Asahi Okuma Industrial Co Ltd
Priority to JP59141131A priority Critical patent/JPH0655035B2/en
Publication of JPS6122775A publication Critical patent/JPS6122775A/en
Publication of JPH0655035B2 publication Critical patent/JPH0655035B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/101Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using intermittent driving, e.g. step motors

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To effectively rotate a rotor at every prescribed angle by sequentially moving forward rotor teeth and a pressor of the position displaced in phase, and pressing the oblique surface of the rotor tooth directly by the connector of the pressor to rotate the rotor. CONSTITUTION:An output shaft 6 passing a side plate 2 is provided in a cylindrical casing 1 having side plates 2, 3 at both ends, a disk-shaped rotor 5 is projected to be rotatably supported. Many engaging teeth 10 of an isosceles triangular shape are formed on the outer periphery of the other side of the rotor 5. A post 11 is projected from the side plate 3, and a lever 13 is telescopically supported at the base end to the five supports 12 of the ends under the guidance of a pair of guides 15. Feed teeth 17 engaging in mesh with the teeth 10 are formed on the levers 13, and the phase between the teeth 17 are displaced. The levers 13 are reciprocated by telescopic actuator 30, and the rotor 5 is rotated by the engagement of the teeth 10 with the teeth 17.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ロータを一定角度ずつ間欠的に回転させるス
テッピングモータに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a stepping motor that rotates a rotor intermittently by a constant angle.

発明が解決しようとする問題点 従来のステッピングモータとしては、ロータの外周に複
数個の鉄片を一定ピッチで設けるとともに、ステータの
内周に、複数個の磁極をロータの鉄片に対するずれが一
定角度ずつ順次増加するように配置し、各磁極を順次に
励磁して鉄片を吸引することによりロータを一定角度ず
つ回転させるものが知られているが、このように磁力で
ロータの鉄片を吸引してロータを回転させるステッピン
グモータでは、磁極と鉄片とが、例えば歯同士がかみ合
うときのように機械的に係合するのではないから、ロー
タを回転させたときにその慣性力に抗して磁極と鉄片と
が整合する位置で確実に停止させることが困難であり、
確動性に欠ける欠点があった。
Problems to be Solved by the Invention In conventional stepping motors, a plurality of iron pieces are provided on the outer circumference of the rotor at a constant pitch, and a plurality of magnetic poles are placed on the inner circumference of the stator at a constant angle of deviation from the iron pieces of the rotor. It is known that the rotor is rotated by a fixed angle by arranging the magnetic poles in a sequential manner and sequentially exciting each magnetic pole to attract the iron pieces. In a stepping motor that rotates the rotor, the magnetic poles and the iron pieces do not engage mechanically, for example when teeth mesh with each other, so when the rotor rotates, the magnetic poles and the iron piece resist the inertia force. It is difficult to reliably stop at a position where the
It had the drawback of lacking certainty.

そこで、本願出願人は、確動性に優れたステッピングモ
ータとして、外周面に多数の歯を設けたロータをケーシ
ング内に回転自由に支持し、ケーシングの内周面に、前
記歯に係合する係合部を有し、かつ、ロータの中心方向
への進退自由な複数の押圧体を、前記歯に対する位相を
異ならせて装置するとともに、各押圧体に、電圧の印加
により歪を生ずる積層形の圧電セラミックを駆動源とし
て伸縮するアクチュエータを各別に設け、各押圧体を順
次に前進及び後退させて、押圧体の前進時に係合部で歯
の斜面を押圧することによりロータを一定角度ずつ回転
させるようにしたものを開発したが、か\る構造のステ
ッピングモータは、ロータと押圧体の機械的係合により
ロータを回転させるのであるから上記した確動性に優れ
、しかも、圧電セラミックは高速応答性に優れるため、
順次に位相のずれた高周波のパルス電圧を夫々のアクチ
ュエータに印加することによって、ロータを円滑に連続
回転させることができる利点を有する反面、圧電セラミ
ックの歪量が比較的小さいことから、押圧体に必要なス
トロークを得るためにはアクチュエータの全長を長くと
る必要があり、か\るステッピングモータのように押圧
体をロータの中心方向へ進退させる構造である七、ロー
タの外周にアクチュエータを収納する大きなスペースが
必要となってモータの径が大きくなる不具合があり、ま
た、これを回避するために、アクチュエータを押圧体と
ケーシングの間に押圧体の進行方向に対して斜めに傾け
て配置し、その押圧体と係合する作動端を前記進退方向
にのみ移動自由に拘束することによって、アクチュエー
タの変位量を増幅して押圧体を駆動する方法も考えられ
たが、構造が複雑となって製造に手間が掛かる不具合が
あり、未だ改良の余地が残されていた。
Therefore, as a stepping motor with excellent positive performance, the applicant of the present application supported a rotor having a large number of teeth on its outer circumferential surface in a freely rotatable manner in a casing, and engaged the teeth on the inner circumferential surface of the casing. A laminated type device in which a plurality of pressing bodies each having an engaging portion and freely movable toward the center of the rotor are arranged at different phases with respect to the teeth, and each pressing body is distorted by applying a voltage. A separate actuator is provided that expands and contracts using a piezoelectric ceramic as a drive source, and each pressing body is moved forward and backward sequentially. When the pressing body moves forward, the engaging part presses the slope of the tooth, thereby rotating the rotor by a fixed angle. A stepping motor with such a structure rotates the rotor through mechanical engagement between the rotor and the pressing body, so it has excellent positive performance as described above. Due to its excellent responsiveness,
By sequentially applying out-of-phase high-frequency pulse voltages to each actuator, the rotor has the advantage of being able to rotate smoothly and continuously. In order to obtain the necessary stroke, the overall length of the actuator must be long, and the structure is such that the pushing body advances and retreats toward the center of the rotor, similar to a stepping motor.7. In order to avoid this problem, the actuator is placed between the pressing body and the casing at an angle to the direction of movement of the pressing body. A method of amplifying the amount of displacement of the actuator and driving the pressing body by restraining the actuating end that engages with the pressing body so that it can move freely only in the forward and backward directions has been considered, but the structure becomes complicated and manufacturing is difficult. There were some problems that required time and effort, and there was still room for improvement.

本発明は、叙上の点に鑑み完成されたものであって、ロ
ータを一定角度ずつ確実に回転させ、がっ、ロータの円
滑な連続回転が可能であり、しかも、構造が簡単でモー
タが径方向に大きくならないようにしたステッピングモ
ータを提供することを目的とする。
The present invention has been completed in view of the above points, and is capable of reliably rotating the rotor at a constant angle, allowing smooth continuous rotation of the rotor, and having a simple structure and a motor. It is an object of the present invention to provide a stepping motor that does not become large in the radial direction.

実施例 以下、本発明の一実施例を添付図面に基づいて説明する
EXAMPLE Hereinafter, an example of the present invention will be described based on the accompanying drawings.

■は両端に側板2.3を有する筒形のケーシングであっ
て、ケーシング1内の一端側には、一面に側板2を貫通
して外部に突出する出力軸6を突殺した円板形のロータ
5が、ベアリング7及び8を介して回転自由に支持され
ており、このロータ5の他面の外周部には、二等辺三角
形をした多数の係合歯10が、ロータ5の回転中心を中
心とする放射状に一定のピッチで連続して形成されてい
る。
2 is a cylindrical casing having side plates 2.3 at both ends, and at one end inside the casing 1 is a disc-shaped casing with an output shaft 6 that penetrates the side plate 2 and projects to the outside on one side. A rotor 5 is rotatably supported via bearings 7 and 8, and on the outer periphery of the other surface of the rotor 5, a large number of engaging teeth 10 in the shape of an isosceles triangle are arranged around the center of rotation of the rotor 5. They are formed continuously at a constant pitch radially around the center.

ケーシング1の他端側の側板3には、先端部が前記ロー
タ5の近傍まで突出した支柱11が、ロータ5の回転中
心と同軸上に突設されており、この支柱11の先端部の
外周に、5つの支持部12が等角度間隔で放射状に突設
され、各支持部12に、夫々径方向を向いて放射状に伸
長したレバー13の基端部がピン14によって揺動自由
に支持されており、各レバー13は、ケーシング1の内
周面にレバー13の先端部の両側を挾むように突設され
た一対のガイド16.15に案内されて、ロータ5の軸
線方向に沿って進退自由となっており、各レバー13の
前記口、−夕5の係合歯】0と対応する面には、夫々係
合歯10と噛合可能な送り歯17が係合歯10と同一ピ
ッチで複数個ずつ形成されており、これらの送り歯17
の係合歯10に対する位置関係は、係合歯10と整合す
る送り歯17を基準として、その他の送り歯17が、係
合歯10に対する位相のずれを115ピツチずつ係合歯
10を正面に見て反時計方向に順次に増加させるように
なっており、第4図に示すように、位置Iの送り歯17
aが係合歯10と整合していると、位置■の送り歯17
bは外周歯10と115ピツチ位相がずれており、位置
■の送り歯17Cは215ピツチ、位置■の送り歯17
dは315ピツチ、位置Vの送り歯17【3は415ピ
ッチ夫々外周歯10と位相がずれている。
On the side plate 3 on the other end side of the casing 1, a column 11 whose tip protrudes close to the rotor 5 is provided so as to protrude coaxially with the rotation center of the rotor 5. Five supporting parts 12 are provided radially projecting at equal angular intervals, and the proximal ends of levers 13 extending radially and facing in the radial direction are supported by pins 14 so as to be freely swingable on each supporting part 12. Each lever 13 is guided by a pair of guides 16.15 protruding from the inner peripheral surface of the casing 1 so as to sandwich both sides of the tip of the lever 13, and is moved freely back and forth along the axial direction of the rotor 5. On the surface corresponding to the opening of each lever 13 and the engaging tooth 5 of the lever 13, a plurality of feed teeth 17 capable of meshing with the engaging teeth 10 are arranged at the same pitch as the engaging teeth 10. These feed teeth 17 are formed one by one.
The positional relationship with respect to the engagement tooth 10 is such that, with the feed tooth 17 that aligns with the engagement tooth 10 as a reference, the other feed teeth 17 have a phase shift of 115 pitches with respect to the engagement tooth 10 so that the engagement tooth 10 is in front. The feed dog 17 at position I is gradually increased in the counterclockwise direction as shown in FIG.
When a is aligned with the engagement tooth 10, the feed dog 17 at position
b is out of phase with the outer peripheral tooth 10 by 115 pitches, and the feed dog 17C at position ■ is 215 pitches out of phase with the outer peripheral tooth 10, and the feed dog 17C at position ■
d is 315 pitches, and the feed dog 17 [3 at position V is out of phase with the outer tooth 10 by 415 pitches.

各レバー13の基端部の近傍におけるロータ5と反対側
には、レバー13を駆動するための伸縮可能なアクチュ
エータ30が水平姿勢で装置され’でJ’6す、その固
定子、31が、ケーシング1の(1側の側板3の支持部
19に嵌合されて固定され、球形頭部を有する作動子3
2が、レバー13の支持部20の球形凹面に嵌合されて
おり、また′、各レバー13の先端部とケーシング1の
一端側の側板2の間には、各レバー13に送り歯17が
係合歯10から離間する方向への揺動力を伺勢する圧縮
コイルはね21が装着されている。
Near the base end of each lever 13, on the side opposite to the rotor 5, an extendable and retractable actuator 30 for driving the lever 13 is installed in a horizontal position, and its stator 31 is The actuator 3 is fitted into and fixed to the support part 19 of the side plate 3 of the casing 1 (1 side) and has a spherical head.
2 is fitted into the spherical concave surface of the support portion 20 of the lever 13, and a feed dog 17 is provided on each lever 13 between the tip of each lever 13 and the side plate 2 on one end side of the casing 1. A compression coil spring 21 is attached to apply a swinging force in a direction away from the engagement teeth 10.

前記アクチュエータ30は、近時、日本特殊陶業株式会
社により開発された積層形の圧電セラミックを利用した
アクチュエータであって、第3図に示すように、リング
形を成す板状の圧電セラミック33を多数枚積層し゛て
、各圧電セラミック33を電気的に並列に接続し、その
積層体34を、一端に前記固定子31を同着しだ外筒3
5内に摺動自由に嵌装してその一面を固定子31に当接
し、外筒35の他端に摺動体36を摺動自由に嵌装して
積層体34の他面に当接し、摺動体36の中心孔36a
から積層体34の中心孔348を貫通してボルト37を
挿通し、固定子31の中空内に突出した先端部に、圧縮
コイルばね38を介してナツト39を締め付け、積層体
34を固定子31と摺動体36で挾んで弾力的に保持し
、摺動体36に前記作動子32を固着した構造になり、
アクチュエータ30に通電して各圧電セラミック33に
電圧を印加することによって、各圧電セラミック33が
重ね合わせ方向に伸び、その歪の総和で作動子32が圧
縮コイルばね38のばね力に抗して押されて前進し、通
電を遮断すると、圧電セラミック33が縮み、作動子3
2が圧縮コイルはね38のばね力で外筒35内へ後退し
、圧電セラミック33は、応答速度が極めて速いという
特徴を有するため、アクチュエータ30に高周波のパル
ス電圧を印加することにより、作動子32が高速度で往
復運動する。
The actuator 30 is an actuator that uses a laminated piezoelectric ceramic recently developed by NGK Spark Plug Co., Ltd. As shown in FIG. The piezoelectric ceramics 33 are stacked and electrically connected in parallel, and the stacked body 34 is connected to the outer cylinder 3 with the stator 31 attached to one end.
5, and one side thereof is in contact with the stator 31, and a sliding body 36 is slidably fitted in the other end of the outer cylinder 35, and is in contact with the other surface of the laminate 34, Center hole 36a of sliding body 36
The bolt 37 is inserted through the center hole 348 of the stacked body 34 from the center hole 348 of the stator 34, and the nut 39 is tightened via the compression coil spring 38 to the tip protruding into the hollow of the stator 31. The actuator 32 is sandwiched and elastically held by a sliding body 36, and the actuator 32 is fixed to the sliding body 36,
By energizing the actuator 30 and applying a voltage to each piezoelectric ceramic 33, each piezoelectric ceramic 33 stretches in the overlapping direction, and the total strain causes the actuator 32 to be pushed against the spring force of the compression coil spring 38. When the actuator 3 moves forward and the current is cut off, the piezoelectric ceramic 33 contracts and the actuator 3
2 retreats into the outer cylinder 35 by the spring force of the compression coil spring 38. Since the piezoelectric ceramic 33 has an extremely fast response speed, by applying a high-frequency pulse voltage to the actuator 30, the actuator 32 reciprocates at high speed.

なお、このアクチュエータ30の作動子32の変位量は
比較的小さいのであるが、本実施例では、アクチュエー
タ30を、その作動子32をレバー13の揺動支点の近
傍に設けた支持部20に当てた水平姿勢で装置したこと
によって、レバー13の揺動支点であるピン14から支
持部20までの距離をa1ピン14から送り歯17まで
の距離をbとした場合に、作動子32の変位量を))7
3倍に増幅して、送り歯17に必要なストロークを得る
ようになっている。
Although the amount of displacement of the actuator 32 of the actuator 30 is relatively small, in this embodiment, the actuator 30 is placed in a position where the actuator 32 is placed on the support portion 20 provided near the swinging fulcrum of the lever 13. Since the device is installed in a horizontal position, the displacement of the actuator 32 is a))7
It is amplified three times to obtain the necessary stroke for the feed dog 17.

次に、本実施例の作用について説明する。Next, the operation of this embodiment will be explained.

第4図及び第5図の(a)に示すように、位置Iのレバ
ー13が前進して、送り歯17aが係合歯10とかみ合
っている状態において、送り歯17bが係合歯10に対
して115ピツチ位相がずれている隣りの位置]のアク
チュエータ30に通電するとともに、位置Iのアクチュ
エータ300通電を遮断すると、位置]のレバー13が
圧縮コイルばね21を弾縮しつ\揺動して前進するとと
もに、位置1のレバー13が、第5図の(b)に示すよ
うに、圧縮コイルはね21の弾力で後退し、上記したよ
うに、位置■の送り歯171)は、係合歯10に対して
115ピツチ位相がずれていて、送り歯171〕の歯先
が係合歯10の第4図の時計方向の前側の斜面に対応し
ていることから、送り歯171〕の前進行程で、その歯
先が係合歯10の斜面を押しながら斜面上を滑って係合
歯10を反時計方向に移動させることによって、ロータ
5を反時計方向に回転させ、送り歯171]の歯先が係
合歯10の歯元に当ったところでロータ5が丁度115
ピッチ回転し、この状態では、その隣りの位置■の送り
歯17Cが係合歯10に対して115ピツチ位相がずれ
ているから、引続いて、位置■のアクチュエータ30に
通電して送り歯17cを前進させるとともに、位置Hの
アクチュエータ30の通電を遮断して送り歯17bを後
退させることによって、ロータ5が再び115ピツチ同
方向に回転し、続いて、その隣りの位置■のアクチュエ
ータ30に通電して送り歯17dを前進させるとともに
、位置■のアクチュエータ30の通電を遮断して送り歯
17Cを後退させ、さらに、位置Vのアクチュエータ3
0に通電して送り歯178を前進4させるとともに、位
置■のアクチュエータ30の通電を遮断して送り歯17
dを後退させると1、ロータ5が115ピツチずつ回転
する。
As shown in FIGS. 4 and 5(a), when the lever 13 in position I is moved forward and the feed dog 17a is engaged with the engagement tooth 10, the feed dog 17b is engaged with the engagement tooth 10. When the actuator 30 at the adjacent position with a phase difference of 115 pitches is energized, and the actuator 300 at position I is de-energized, the lever 13 at position elastically contracts the compression coil spring 21 and swings. At the same time, the lever 13 at position 1 moves back due to the elasticity of the compression coil spring 21, as shown in FIG. The phase of the feed dog 171] is shifted by 115 pitches from the gear tooth 10, and the tooth tip of the feed dog 171] corresponds to the front slope of the engagement tooth 10 in the clockwise direction in FIG. In the forward movement, the tip of the tooth pushes the slope of the engagement tooth 10 and slides on the slope to move the engagement tooth 10 counterclockwise, thereby rotating the rotor 5 counterclockwise and feeding the tooth 171. When the tip of the tooth hits the root of the engagement tooth 10, the rotor 5 is at exactly 115 mm.
The pitch rotates, and in this state, the feed dog 17C at the adjacent position (2) is out of phase with the engaging tooth 10 by 115 pitches, so the actuator 30 at the position (2) is subsequently energized to rotate the feed dog 17c. At the same time, the rotor 5 rotates 115 pitches in the same direction again by cutting off the power to the actuator 30 at position H and retracting the feed dog 17b, and then energizing the actuator 30 at the adjacent position (3). to advance the feed dog 17d, cut off the power to the actuator 30 at position (3), and retreat the feed dog 17C, and further move the actuator 3 at position V
0 to move the feed dog 178 forward 4, and at the same time cut off the power to the actuator 30 at position 3 to move the feed dog 17 forward.
When d is moved backward, the rotor 5 rotates by 115 pitches.

このように、位置1、n、III、I%’及びVのアク
チュエータ30の通電と遮電とを一定のサイクルで繰り
返すことによって、ロータ5を第4図の反時計方向に1
15ピツチずつ間欠回転させることができ、所定の送り
歯17が係合歯10とかみ合つたところで、そのアクチ
ュエータ30を通電状態に保持すれば、ロータ5を任意
の回転角度で停+J−させることができる。
In this way, by repeating the energization and de-energization of the actuators 30 at positions 1, n, III, I%' and V in a constant cycle, the rotor 5 is moved 1 in the counterclockwise direction in FIG.
The rotor 5 can be rotated intermittently by 15 pitches, and when the predetermined feed dog 17 meshes with the engagement tooth 10, if the actuator 30 is kept energized, the rotor 5 can be stopped at an arbitrary rotation angle. I can do it.

また、レバー13を積層形の圧電セラミックを使用した
アクチュエータ30で駆動するようになっており、これ
らのアクチュエータ30は高速応答性に優れているから
、順次に位相のずれた高周波のパルス電圧を印加するこ
とにより、ロータ5を円滑に連続回転させることができ
る。
In addition, the lever 13 is driven by an actuator 30 using a laminated piezoelectric ceramic, and since these actuators 30 have excellent high-speed response, high-frequency pulse voltages with phase shifts are sequentially applied. By doing so, the rotor 5 can be smoothly and continuously rotated.

なお、上記実施例では、係合歯10が二等辺三角形にな
っていて、両側に斜面が形成されているから、レバー1
3を」二記実施例とは逆に第4図の時計方向に順次に駆
動すると、ロータ5を時計方向に115ピツチずつ回転
させることができるのであるが、ロータ5を一方向にの
み回転させれば良いときには、係合歯10を一側にのみ
斜面を有する鋸歯状としても良い。
In the above embodiment, since the engaging teeth 10 are in the form of an isosceles triangle and slopes are formed on both sides, the lever 1
If the rotor 5 is sequentially driven clockwise in FIG. 4, contrary to the second embodiment, the rotor 5 can be rotated clockwise by 115 pitches, but the rotor 5 can only be rotated in one direction. If necessary, the engaging teeth 10 may have a sawtooth shape with a slope on only one side.

また、送り歯17の装置個数は2個以上任意であって、
例えば、送り歯17を2個装置する場合には、係合歯1
0を鋸歯状として、前進しようとする送り歯17の歯先
が係合歯10の歯先と当たらないように装置すれば良い
Moreover, the number of devices of the feed dog 17 is arbitrary, two or more,
For example, when two feed teeth 17 are installed, the engaging tooth 1
0 may be serrated so that the tip of the feed dog 17 that is about to move forward does not come into contact with the tip of the engagement tooth 10.

発明の構成及び作用効果 上記実施例によって具体的に説明したように、本発明の
ステッピングモータは、ケーシング内の一端側に、出力
軸を突設した円板形のロータを回転自由に支持して、該
ロータの一面に一側若しくは両側に斜面を有する多数の
歯を放射状に周設し、前記ロータの前記一面との対応位
置に、前記歯に係合する係合部を有し、かつ、前記ロー
タの軸線方向に沿って進退自由な複数の押圧体を、前記
歯に対する位相を異ならせて放射状に装置するとともに
、電圧の印加により歪を生ずる積層形の圧電セラミック
を駆動源とする複数のアクチュエータの各作動端を前記
各押圧体に、各固定端を前記ケーシングの他端に夫々連
結し、前記各押圧体を順次に前進及び後退させて、該押
圧体の前進時に前記係合部で前記歯の斜面を押圧するこ
とにより前記ロータを一定角度ずつ回転させる構成とし
たことを要旨とするものであって、ロータの歯と位相が
ずれた位置にある押圧体を順次に前進させ、その押圧体
の係合部が直接にロータの歯の斜面を押してロータを回
転させるのであるからロータを一定角度ずつ確実に回転
させることができるとともに、ロータの歯と押圧体の係
合部との機械的な係合でロータの回転を停止させるので
あるから、ロータを任意の回転角度で確実に止めること
ができ、また、高速応答性に優れた積層形の圧電セラミ
ックを使用したアクチュエータで各押圧体を駆動するよ
うにしたから、順次に位相のずれた高周波のパルス電圧
を夫々のアクチュエータに印加することによって、ロー
タを円滑に連続回転させることができ、しかも、押圧体
の係合部に係合する歯を円板形のロータの一面に形成し
、押圧体をロータの軸線方向に沿って進退させるように
したから、押圧体を駆動するアクチュエータを、押圧体
とケーシングの他端側の間の空間に収納することができ
、押圧体をロータの中心方向に向けて駆動する場合に比
べて構造が簡単となるとともに、変位量を大きくとるた
めに圧電セラミックの積層枚数を多くして全長を長くし
たアクチュエータを使用しても、モータが径方向に大き
くなるのを回避し得る6効果を奏する。
Structure and Effects of the Invention As specifically explained in the above embodiments, the stepping motor of the present invention has a disc-shaped rotor with an output shaft protruding from one end inside the casing, which is rotatably supported. , a large number of teeth having slopes on one side or both sides are arranged radially around one surface of the rotor, and an engaging portion that engages with the teeth is provided at a position corresponding to the one surface of the rotor, and A plurality of pressing bodies, which can freely advance and retreat along the axial direction of the rotor, are arranged radially with different phases relative to the teeth, and a plurality of pressing bodies whose drive sources are laminated piezoelectric ceramics that generate distortion when voltage is applied are arranged. Each operating end of the actuator is connected to each of the pressing bodies, and each fixed end is connected to the other end of the casing, and each of the pressing bodies is sequentially advanced and retreated, so that when the pressing body moves forward, the engaging portion The gist is that the rotor is rotated by a constant angle by pressing the slopes of the teeth, and the pressing body, which is positioned out of phase with the teeth of the rotor, is sequentially advanced, and The engaging portion of the pressing body directly presses the slope of the teeth of the rotor to rotate the rotor, so the rotor can be reliably rotated by a certain angle, and the mechanical relationship between the teeth of the rotor and the engaging portion of the pressing body is Since the rotation of the rotor is stopped by a fixed engagement, the rotor can be reliably stopped at any rotation angle.In addition, each pressing body is controlled by an actuator using laminated piezoelectric ceramic with excellent high-speed response. By applying phase-shifted high-frequency pulse voltages to each actuator in sequence, the rotor can be smoothly and continuously rotated. Since teeth are formed on one surface of the disc-shaped rotor to move the pressing body forward and backward along the axial direction of the rotor, the actuator that drives the pressing body is placed between the pressing body and the other end of the casing. The structure is simpler than when the pressing body is driven toward the center of the rotor, and the total length is increased by increasing the number of laminated piezoelectric ceramics to achieve a large amount of displacement. Even if such an actuator is used, it is possible to avoid the motor from becoming larger in the radial direction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明ステッピングモータの一実施例の一部切
欠断面図、第2図はその縦断面図、第3図はアクチュエ
ータの断面図、第4図は係合歯と送り歯の位置関係を示
す一部切欠断面図、第5図は係合歯と送り歯のかみ合い
状態と非かみ合い状態を示す一部切欠平面図である。 1:ケーシング 5:ロータ 6:出力軸 10:係合
歯 13ニレバー 17:送り歯 30:アクチュエー
タ 3に固定子 32:作動f 33:圧電セラミック 寡10
Fig. 1 is a partially cutaway sectional view of an embodiment of the stepping motor of the present invention, Fig. 2 is a longitudinal sectional view thereof, Fig. 3 is a sectional view of the actuator, and Fig. 4 is the positional relationship between the engaging teeth and the feed dog. FIG. 5 is a partially cutaway sectional view showing the engagement tooth and the feed tooth in a meshed state and a non-meshed state. 1: Casing 5: Rotor 6: Output shaft 10: Engagement tooth 13 Nilever 17: Feed dog 30: Actuator 3: Stator 32: Operation f 33: Piezoelectric ceramic holder 10

Claims (1)

【特許請求の範囲】 1 ケーシング内の一端側に、出力軸を突設した円板形
のロータを回転自由に支持して、該ロータの一面に一側
若しくは両側に斜面を有する多数の歯を放射状に周設し
、前記ロータの前記一面との対応位置に、前記歯に係合
する係合部を有し、かつ、前記ロータの軸線方向に沿つ
て進退自由な複数の押圧体を、前記歯に対する位相を異
ならせて放射状に装置するとともに、電圧の印加により
歪を生ずる積層形の圧電セラミックを駆動源とする複数
のアクチユエータの各作動端を前記各押圧体に、各固定
端を前記ケーシングの他端に夫々連結し、前記各押圧体
を順次に前進及び後退させて、該押圧体の前進時に前記
係合部で前記歯の斜面を押圧することにより前記ロータ
を一定角度ずつ回転させる構成としたことを特徴とする
ステツピングモータ。 2 前記押圧体が、前記ケーシングの他端側に前記ロー
タの回転中心と同軸上に突設した支持柱に揺動自由に支
持したレバーであることを特徴とする特許請求の範囲第
1項記載のステツピングモータ。
[Scope of Claims] 1. A disk-shaped rotor with an output shaft protruding from one end inside a casing is rotatably supported, and one surface of the rotor is provided with a large number of teeth having slopes on one or both sides. A plurality of pressing bodies are disposed radially around the rotor, have engaging portions that engage with the teeth at positions corresponding to the one surface of the rotor, and are movable back and forth in the axial direction of the rotor. A plurality of actuators are arranged radially in different phases with respect to the teeth, and each actuator is driven by a laminated piezoelectric ceramic that generates distortion when a voltage is applied. Each of the actuating ends is connected to the pressing body, and each fixed end is connected to the casing. A configuration in which the rotor is rotated by a predetermined angle by being connected to the other end thereof, and by sequentially advancing and retracting each of the pressing bodies, and pressing the slope of the tooth with the engaging portion when the pressing body moves forward. A stepping motor characterized by: 2. Claim 1, characterized in that the pressing body is a lever that is swingably supported on a support column that protrudes from the other end of the casing and coaxially with the center of rotation of the rotor. stepping motor.
JP59141131A 1984-07-06 1984-07-06 Stepping motor Expired - Lifetime JPH0655035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59141131A JPH0655035B2 (en) 1984-07-06 1984-07-06 Stepping motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59141131A JPH0655035B2 (en) 1984-07-06 1984-07-06 Stepping motor

Publications (2)

Publication Number Publication Date
JPS6122775A true JPS6122775A (en) 1986-01-31
JPH0655035B2 JPH0655035B2 (en) 1994-07-20

Family

ID=15284884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59141131A Expired - Lifetime JPH0655035B2 (en) 1984-07-06 1984-07-06 Stepping motor

Country Status (1)

Country Link
JP (1) JPH0655035B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02142362A (en) * 1988-11-18 1990-05-31 Sumitomo Heavy Ind Ltd Actuator
JP2011529559A (en) * 2008-07-29 2011-12-08 フラム・アクチエンゲゼルシャフト Locking device for rotatable member
EP2499734A2 (en) * 2009-11-10 2012-09-19 Massachusetts Institute of Technology Phased array buckling actuator
JP2014130906A (en) * 2012-12-28 2014-07-10 Taiheiyo Cement Corp Piezoelectric actuator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02142362A (en) * 1988-11-18 1990-05-31 Sumitomo Heavy Ind Ltd Actuator
JP2011529559A (en) * 2008-07-29 2011-12-08 フラム・アクチエンゲゼルシャフト Locking device for rotatable member
US8899638B2 (en) 2008-07-29 2014-12-02 Flamm Gmbh Locking system for a rotatable part
EP2499734A2 (en) * 2009-11-10 2012-09-19 Massachusetts Institute of Technology Phased array buckling actuator
CN102714474A (en) * 2009-11-10 2012-10-03 麻省理工学院 Phased array buckling actuator
EP2499734A4 (en) * 2009-11-10 2014-05-07 Massachusetts Inst Technology Phased array buckling actuator
JP2014168376A (en) * 2009-11-10 2014-09-11 Massachusetts Institute Of Technology Displacement amplifier, method of controlling displacement direction of displacement amplifier, and rotation actuator
JP2014130906A (en) * 2012-12-28 2014-07-10 Taiheiyo Cement Corp Piezoelectric actuator

Also Published As

Publication number Publication date
JPH0655035B2 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
US9677547B2 (en) Impact drive type actuator
JPS61258679A (en) Rotor
JPH02129449A (en) Linear actuator device
JPS6122775A (en) Stepping motor
US3530322A (en) Step motor with variable tilt
JP6095193B1 (en) Needle advance / retreat means and winding machine
US3690191A (en) Device for converting a reciprocating motion into a stepwise rotary motion
US3548227A (en) Electromagnetic linear drives
US5341056A (en) Magnetostrictive motor system
US3217192A (en) Bidirectional electric pulse actuator
JP2966590B2 (en) Linear drive type piezoelectric motor
JPH0638715B2 (en) Stepping motor
US3372597A (en) Timer having an adjustable time interval and a rapid advance
JP2880837B2 (en) Planar drive type piezoelectric motor
US3018665A (en) Motion conversion mechanism
JPS60197175A (en) Stepping motor
JPS61177178A (en) Stepping motor with actuator with driving source of bimorph diezoelectric ceramic substance
JPS6331462A (en) Stepping motor
US3142009A (en) Angle control mechanism
JPH1080164A (en) Rotary type driving equipment using electro-mechanical transducer
US3436975A (en) Sequential timer
JP4393180B2 (en) Single axis actuator
JP3225211U (en) Clincher driving device used for electric C-type ring clincher
JPH0452072B2 (en)
JP2512162Y2 (en) Electric motor