JPH0638715B2 - Stepping motor - Google Patents

Stepping motor

Info

Publication number
JPH0638715B2
JPH0638715B2 JP59087068A JP8706884A JPH0638715B2 JP H0638715 B2 JPH0638715 B2 JP H0638715B2 JP 59087068 A JP59087068 A JP 59087068A JP 8706884 A JP8706884 A JP 8706884A JP H0638715 B2 JPH0638715 B2 JP H0638715B2
Authority
JP
Japan
Prior art keywords
rotor
actuator
rotation
center
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59087068A
Other languages
Japanese (ja)
Other versions
JPS60229681A (en
Inventor
久 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Sunac Corp
Original Assignee
Asahi Sunac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Sunac Corp filed Critical Asahi Sunac Corp
Priority to JP59087068A priority Critical patent/JPH0638715B2/en
Publication of JPS60229681A publication Critical patent/JPS60229681A/en
Publication of JPH0638715B2 publication Critical patent/JPH0638715B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/105Cycloid or wobble motors; Harmonic traction motors

Description

【発明の詳細な説明】 発明の目的 本発明は、ロータを一定角度ずつ回転させるようにした
ステツピングモータに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a stepping motor in which a rotor is rotated by a constant angle.

従来のステツピングモータとしては、例えば、ロータの
外周に複数個の鉄片を一定ピツチで設けるとともに、ス
テータの内周に、複数個の磁極をロータの鉄片に対する
ずれが一定角度ずつ順次に増加するように配置し、各磁
極を順次に励磁して鉄片を吸引することによつて、ロー
タを一定角度ずつ回転させるようにしたものが知られて
いるが、このように磁力でロータの鉄片を吸引してロー
タを回転させるステツピングモータでは、磁極と鉄片と
が機械的に係合するのではないから、ロータを回転させ
たときに、その慣性力に抗して磁極と鉄片とが整合する
位置で確実に停止させるのが困難であつて、確動性に欠
ける不具合があつた。
As a conventional stepping motor, for example, a plurality of iron pieces are provided on the outer circumference of the rotor with a constant pitch, and a plurality of magnetic poles are arranged on the inner circumference of the stator so that the deviation with respect to the iron piece of the rotor is sequentially increased by a certain angle. It is known that the rotor is rotated by a constant angle by sequentially exciting each magnetic pole by attracting iron pieces, but in this way magnetic force attracts the iron pieces of the rotor. In a stepping motor that rotates the rotor by rotating the rotor, the magnetic pole and the iron piece do not mechanically engage with each other.Therefore, when the rotor is rotated, the magnetic pole and the iron piece are aligned at a position that resists the inertial force of the rotor. It was difficult to stop it surely, and there was a defect that lacked certainty.

本発明は、叙上の点に鑑み完成されたものであつて、ロ
ータを一定角度ずつ確実に回転させることができる新規
な構造のステツピングモータを提供することを目的とす
る。
The present invention has been completed in view of the above points, and an object of the present invention is to provide a stepping motor having a novel structure that can reliably rotate a rotor at a constant angle.

実施例 以下、本発明の一実施例を添付図面に基づいて説明す
る。
Embodiment An embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図及び第2図において、1は中心孔2を有し、か
つ、外周面の全長にわたつて45度の間隔で8個の膨出
部3を放射状に突設した断面星形をなす筒状のボデイで
あつて、一対の脚5、5に水平姿勢で取り付けられてお
り、ボデイ1の中心孔2内には、外周面を楕円形に形成
した筒形のロータ6が、一端に突設した出力軸7をボデ
イ1の外部に突出させて同心に嵌装され、ベアリング8
及び9を介して水平軸周りの回転自由に支持されてお
り、このロータ6の外周面に中央部及び両端部に、夫々
ロータ6に固定される内輪11と可撓性を有する合成樹
脂製の外輪12との間に多数のボール13を介装してな
るベアリング10が嵌着され、さらにその外周に、可撓
性を有する金属薄板からなる環体15がロータ6の全長
にわたつて嵌装されている。
In FIGS. 1 and 2, 1 has a central hole 2 and has a star-shaped cross section in which eight bulges 3 are radially provided at intervals of 45 degrees over the entire length of the outer peripheral surface. A cylindrical body, which is attached to a pair of legs 5 and 5 in a horizontal posture, and in the center hole 2 of the body 1, a cylindrical rotor 6 having an elliptical outer peripheral surface is provided at one end. The protruding output shaft 7 is protruded to the outside of the body 1 and is concentrically fitted to the bearing 1.
And 9 are rotatably supported about a horizontal axis via the inner and outer peripheral surfaces of the rotor 6 and the inner ring 11 fixed to the rotor 6 and a flexible synthetic resin. A bearing 10 including a large number of balls 13 is fitted between the outer ring 12 and the outer ring 12, and a ring body 15 made of a flexible metal thin plate is fitted on the outer circumference of the bearing 10 over the entire length of the rotor 6. Has been done.

ボデイ1の各膨出部3の内周面には、夫々ロータ6の回
転中心を向いた案内溝17が全長にわたつて穿設され、
各案内溝17には、前記した環体15の外周面に係合可
能な押圧体18が、摩擦係数の小さい滑り板19、20
を介して、ロータ6の回転中心方向の進退自由に嵌装さ
れており、各押圧体18の下面には、押圧体18を駆動
するための伸縮可能な一対のアクチユエータ30、30
が、互いに逆向きの斜め姿勢で装置されており、押圧体
18の両端部に支持部22、22が斜めに向き合うよう
にして突設され、夫々の対応面に先細の支持孔23、2
3が穿設されているとともに、案内溝17の底部に固定
された固定体24の両端部に、支持部25、25が上記
支持部22、22とは逆の斜めに向き合うようにして穿
設され、夫々の対応面に先細の支持孔26、26が穿設
されていて、前記一対のアクチユエータ30、30は、
その先細の固定子41が固定体24の支持孔26に、同
じく先細の作動子48が押圧体18の支持孔23に嵌め
られており、また、各押圧体18の両端には、各押圧体
18に形成された押圧部27に内接するようにして、押
圧体18の復帰用の弾性力に優れた一対のリング28、
28が嵌合されている。
On the inner peripheral surface of each bulging portion 3 of the body 1, a guide groove 17 facing the center of rotation of the rotor 6 is bored over the entire length,
In each guide groove 17, a pressing body 18 engageable with the outer peripheral surface of the ring body 15 is provided with sliding plates 19 and 20 having a small friction coefficient.
Through which the rotor 6 is freely moved back and forth in the direction of the center of rotation, and a pair of extendable actuators 30, 30 for driving the pressing bodies 18 are mounted on the lower surface of each pressing body 18.
Of the pressing body 18, the supporting portions 22, 22 are provided so as to obliquely face each other, and the tapered supporting holes 23, 2 are provided on the corresponding surfaces.
3 is provided, and support portions 25, 25 are provided at both ends of a fixed body 24 fixed to the bottom of the guide groove 17 so that the support portions 25, 25 face diagonally opposite to the support portions 22, 22. The corresponding supporting surfaces 26, 26 are formed in the corresponding surfaces, and the pair of actuators 30, 30 are
The tapered stator 41 is fitted in the support hole 26 of the fixed body 24, and the similarly tapered actuator 48 is fitted in the support hole 23 of the pressing body 18, and the pressing bodies 18 are provided at both ends thereof. A pair of rings 28, which are inscribed in the pressing portion 27 formed on the 18 and are excellent in elastic force for returning the pressing body 18,
28 is fitted.

前記アクチユエータ30は、近似、日本電気株式会社に
より開発された積層形の圧電セラミツクを使用したもの
であつて、この圧電セラミツク31は、第4図に示すよ
うに、マグネシウム・ニオブ酸鉛とチタン酸鉛の二成分
固溶体セラミツク{(1−X)pb(Mg1/3Nb2/3)O
PbTiO}のうちのXが0.35近くのものからなるセ
ラミツク板32と内部電極板33とを交互に積層一体化
して焼結した素子を所望の形状、大きさに切断し、全周
面に露出した内部電極板33を上下両側面において一層
おきに絶縁材34で電気的に絶縁するとともに、上下両
側面に外部電極板35及び36を貼着して、内部電極板
33を一層おきに外部電極板35及び36に電気的に接
続した構造になり、印加電圧が低くても或る量以上の歪
を発生し、電圧を繰り返し印加しても全く劣化すること
がなく、しかも、応答速度が極めて速いという特徴を有
するものである。
Approximately, the actuator 30 uses a laminated piezoelectric ceramic developed by NEC Corporation, and the piezoelectric ceramic 31 is composed of lead magnesium niobate and titanic acid as shown in FIG. Lead binary solid solution ceramic {(1-X) pb (Mg1 / 3Nb2 / 3) O 3
PbTiO 3 } of which the X is close to 0.35 and the ceramic plate 32 and the internal electrode plate 33 are alternately laminated and integrated, and the sintered element is cut into a desired shape and size. The inner electrode plates 33 exposed on the upper and lower sides are electrically insulated by an insulating material 34 in every other layer, and the outer electrode plates 35 and 36 are attached to the upper and lower both sides to form the inner electrode plates 33 in every other layer. The structure is electrically connected to the external electrode plates 35 and 36. Even if the applied voltage is low, a certain amount of strain is generated, and even if the voltage is repeatedly applied, there is no deterioration at all, and the response speed is high. Is extremely fast.

本実施例のアクチユエータ30は、第3図及び第4図に
示すように、一端に前記固定子41を、他端に開口部4
2を形成した金属製の角筒40の内周面に、摩擦係数が
小さく、かつ、絶縁性に優れたテフロン等の合成樹脂製
のライナ43を形成し、方形に形成された前記圧電セラ
ミツク31を多数個重ね合わせ、セラミツク製の絶縁板
44を介してライナ43内に摺動自由に嵌装し、個々の
圧電セラミツク31の外部電極板35及び36のうちの
同一極性同士の電極板を電線50で接続して、開口部4
2側の両外部電極板35及び36に接続されたリード線
45、46を角筒40に形成された挿通孔51を通して
外部へ導くとともに、角筒40の開口部42内に前記し
た作動子48を摺動自由に嵌装して、セラミツク製の絶
縁板49を介して圧電セラミツク31に結合した構造に
なり、アクチユエータ30に通電して各圧電セラミツク
31に電圧を印加することによつて、各圧電セラミツク
31が重ね合わせ方向に伸び、その歪の総和で作動子4
8が押されて前進し、通電を遮断すると、圧電セラミツ
ク31が縮み、作動子48が角筒40内へ後退するよう
になつており、このアクチユエータ30に高周波のパル
ス電圧を印加することにより、作動子48が高速度で往
復運動する。
As shown in FIGS. 3 and 4, the actuator 30 of this embodiment has the stator 41 at one end and the opening 4 at the other end.
2 is formed on the inner peripheral surface of the metal square tube 40 formed with 2 and made of a synthetic resin liner 43 such as Teflon having a small friction coefficient and an excellent insulating property. A plurality of them are stacked and fitted in the liner 43 freely through an insulating plate 44 made of ceramic, and the electrode plates of the same polarity among the external electrode plates 35 and 36 of the individual piezoelectric ceramics 31 are electrically connected. Connect at 50, opening 4
The lead wires 45 and 46 connected to the two external electrode plates 35 and 36 on the second side are guided to the outside through the insertion holes 51 formed in the square tube 40, and the actuator 48 is provided in the opening 42 of the square tube 40. Has a structure in which the piezoelectric ceramics 31 are slidably fitted and coupled to the piezoelectric ceramics 31 via an insulating plate 49 made of ceramics. By energizing the actuator 30 and applying a voltage to each piezoelectric ceramics 31, The piezoelectric ceramic 31 extends in the stacking direction, and the sum of the strains causes the actuator 4 to move.
When 8 is pushed to move forward and cut off the energization, the piezoelectric ceramic 31 contracts and the actuator 48 retracts into the rectangular tube 40. By applying a high frequency pulse voltage to the actuator 30, The actuator 48 reciprocates at a high speed.

なお、このアクチユエータ30の作動子48の変位置は
比較的小さく、その変異量だけでは、押圧体18に要求
される移動ストロークを得るのは困難であるが、本実施
例では、アクチユエータ30が、その固定子41を固定
体24の支持孔26に、作動子48を押圧体18の支持
孔23に夫々嵌めて、押圧体18の進退方向に対して斜
め姿勢で支持され、かつ、押圧体18が滑り板19、1
9を案内としてロータ6の回転中心方向への進退のみが
可能となつていることから、アクチユエータ30が伸張
すると案内溝17の長さ方向の伸びが規制されて作動子
48がロータ6の回転中心方向に逃げるように作用する
ことによつて、作動子48の僅かな変位量を増幅して押
圧体18を必要なストロークだけ押し上げるようにして
いる。
The displacement position of the actuator 48 of the actuator 30 is relatively small, and it is difficult to obtain the moving stroke required for the pressing body 18 only by the displacement amount, but in the present embodiment, the actuator 30 The stator 41 is fitted in the support hole 26 of the fixed body 24, and the actuator 48 is fitted in the support hole 23 of the pressing body 18, respectively, and is supported in an oblique posture with respect to the advancing / retreating direction of the pressing body 18, and the pressing body 18 is also supported. Is a sliding plate 19, 1
Since the rotor 6 can only be moved forward and backward in the direction of the rotation center of the rotor 6 when the actuator 9 is extended, the extension of the guide groove 17 in the longitudinal direction is restricted, so that the actuator 48 moves the rotation center of the rotor 6. By acting so as to escape in the direction, a slight displacement amount of the actuator 48 is amplified to push up the pressing body 18 by a necessary stroke.

このことを第5図によつて説明するに、アクチユエータ
30が通電前に角度θだけ傾いてOY1間にあり、通電
により作動子48が進出することによつてOを中心に回
動してOY2間に位置するとし、その作動子48の進出
変位置を△x、押圧体18の押上変位量を△y、また、
アクチユエータ30の歪率をρして、△xと△yの比を
求めると、 の関係式が得られ、ここで、ρ=8×10-4、θ=1゜
とした場合に、△y/△x=32.74となり、押圧体
18の押上変位量△yは、作動子48の進出変位量△x
の32.74倍となる。
This will be described with reference to FIG. 5, in which the actuator 30 is tilted by an angle θ before energization and is between OY1, and when the actuator 48 advances due to energization, the actuator 48 rotates about O to rotate OY2. If the operator 48 is located between them, the advancing change position of the actuator 48 is Δx, the pushing-up displacement amount of the pressing body 18 is Δy, and
When the distortion rate of the actuator 30 is ρ and the ratio of Δx and Δy is obtained, Then, when ρ = 8 × 10 −4 and θ = 1 °, Δy / Δx = 32.74, and the pushing displacement 18 of the pressing body 18 is Displacement amount of child 48 △ x
32.74 times that.

ちなみに、本実施例では、θ=2゜に設定されており、
このときの△y/△xを(1)式から求めると、22.
74となる。
Incidentally, in this embodiment, θ = 2 ° is set,
When Δy / Δx at this time is calculated from the equation (1), 22.
74.

このように、本実施例では、作動子48の変位量を増幅
して、押圧体18を、その先端が環体15をベアリング
10を介してロータ6の外周面の最も短径の部分に押し
付けることができる位置まで前進させるようになつてい
る。
As described above, in this embodiment, the displacement amount of the actuator 48 is amplified, and the tip of the pressing body 18 presses the ring body 15 through the bearing 10 against the shortest diameter portion of the outer peripheral surface of the rotor 6. It is designed to move forward to a position where it can.

また、本実施例では、アクチユエータ30が、互いに向
きを逆にして二本ずつ装置されているため、大きな駆動
力が得られるとともに、押圧体18をその進退方向に対
して傾くことなく真直ぐに駆動できるようになつてい
る。
Further, in the present embodiment, since the actuators 30 are installed two by two with their directions reversed, a large driving force can be obtained and the pressing body 18 can be driven straight without tilting with respect to its advancing / retreating direction. It's ready.

次に、本実施例の作用を第2図及び作動原理を示す第6
図に基づいて説明する。
Next, the operation of the present embodiment is shown in FIG. 2 and the sixth operation principle.
It will be described with reference to the drawings.

第2図及び第6図の(a)に示すように、互いに向き合
う位置IV及びVIIIの押圧体18が前進して、ロータ6の
短径部分が位置IV及びVIIIに整合し、長径部分がこれら
と90度ずれた位置II及びVIに整合した状態において、
位置IV及びVIIIと反時計方向に45度ずれた位置I及び
Vのアクチユエータ30に通電するとともに、位置IV及
びVIIIのアクチユエータ30の通電を遮断すると、位置
I及びVの押圧体18が弾性リング28を押圧しつつ前
進するとともに、位置IV及びVIIIの押圧体18が弾性リ
ング28の弾力で後退し、位置I及びVの押圧体18の
前進によつて、ロータ6の外周面の短径部分から反時計
方向に45度ずれた部分が、環体15及びベアリング1
0を介して押圧され、この部分はその接線が回転中心と
直角を成す方向に対して時計方向に傾いていて、ロータ
6に反時計方向の回転力を付与する接線方向の分力が生
ずることから、ロータ6が環体15の内周を滑つて反時
計方向に回転し、第6図の(b)に示すように、ロータ
6が45度回転し、その短径部分が位置I及びVに整合
して接線方向の分力がOとなるところで停止し、この状
態では、その隣りの位置II及びVIの押圧体18がロータ
6の短径部分から反時計方向に45度ずれているから、
引続いて、位置II及びVIのアクチユエータ30に通電し
て押圧体18を前進させるとともに、位置I及びVのア
クチユエータ30の通電を遮断して押圧体18を後退さ
せると、上記したと同様の作用によつて、第6図の
(c)に示すように、ロータ6がその短径部分が位置II
及びVIと整合するまで反時計方向に45度回転し、続い
て、その隣りの位置III及びVIIのアクチユエータ30に
通電して押圧体18を前進させるとともに、位置II及び
VIのアクチユエータ30の通電を遮断して押圧体18を
後退させると、第6図の(d)に示すように、ロータ6
がさらに同方向に45度回転する。
As shown in FIGS. 2 and 6 (a), the pressing bodies 18 at the positions IV and VIII facing each other are moved forward so that the minor diameter portion of the rotor 6 is aligned with the positions IV and VIII, and the major diameter portion is In the state of matching the positions II and VI, which are shifted by 90 degrees,
When the actuators 30 at the positions I and V, which are deviated from the positions IV and VIII by 45 degrees in the counterclockwise direction, are energized and the actuators 30 at the positions IV and VIII are de-energized, the pressing bodies 18 at the positions I and V cause the elastic ring 28. While pushing forward, the pushing bodies 18 at the positions IV and VIII are retracted by the elastic force of the elastic ring 28, and the pushing bodies 18 at the positions I and V move forward from the short diameter portion of the outer peripheral surface of the rotor 6. The part displaced by 45 degrees in the counterclockwise direction is the ring body 15 and the bearing 1.
0, the tangent line of this portion is inclined clockwise with respect to the direction perpendicular to the center of rotation, and a tangential component force that imparts a counterclockwise rotational force to the rotor 6 is generated. Thus, the rotor 6 slides on the inner circumference of the ring body 15 and rotates counterclockwise, and as shown in FIG. 6 (b), the rotor 6 rotates 45 degrees, and its minor axis portion is located at positions I and V. To stop at a point where the tangential component force becomes O, and in this state, the pressing bodies 18 at the positions II and VI adjacent thereto are deviated from the minor axis portion of the rotor 6 by 45 degrees in the counterclockwise direction. ,
Subsequently, when the actuator 30 at the positions II and VI is energized to move the pressing body 18 forward, and the actuator 30 at the positions I and V is de-energized to retract the pressing body 18, the same operation as described above is performed. Therefore, as shown in FIG. 6 (c), the rotor 6 has a minor axis portion at position II.
And VI until they are aligned with VI and VI, and then the actuators 30 at positions III and VII adjacent thereto are energized to move the pressing body 18 forward, and at positions II and II.
When the actuator body 30 of VI is de-energized and the pressing body 18 is retracted, as shown in FIG.
Further rotates 45 degrees in the same direction.

このように、互いに向き合う位置IとV、位置IIとVI、
位置IIIとVII及び位置IVとVIIIのアクチユエータ30の
通電と遮電とを繰り返すことによつて、ロータ6を反時
計方向に45度ずつ回転させることができ、ロータ6の
短径部分が所定の一対の位置に整合したところで、その
アクチユエータ30を通電状態に保持すれば、ロータ6
をその位置で停止状態に保持することができる。
Thus, positions I and V, positions II and VI, which face each other,
By repeating energization and interruption of electricity to the actuators 30 at positions III and VII and positions IV and VIII, the rotor 6 can be rotated counterclockwise by 45 degrees, and the minor axis portion of the rotor 6 has a predetermined diameter. When the actuator 30 is kept energized when it is aligned with the pair of positions, the rotor 6
Can be held stationary at that position.

また、押圧体18を積層形の圧電セラミツクを使用した
アクチユエータ30で駆動するようになつており、この
アクチユエータ30は高速応答性に優れているから、順
次に位相のずれた高周波のパルス電圧を印加することに
より、ロータ6を円滑に連続回転させることができる。
Further, the pressing body 18 is driven by an actuator 30 using a laminated piezoelectric ceramic. Since the actuator 30 is excellent in high-speed response, a high-frequency pulse voltage whose phase is sequentially shifted is applied. By doing so, the rotor 6 can be smoothly and continuously rotated.

なお、押圧体18を上記実施例とは逆に時計方向に順次
に駆動すると、ロータ6を時計方向に45度ずつ回転さ
せることができる。
Incidentally, when the pressing body 18 is sequentially driven in the clockwise direction, contrary to the above embodiment, the rotor 6 can be rotated in the clockwise direction by 45 degrees.

また、上記実施例のように、ロータ6の形状が楕円形で
あつてこれを一方向に回転させるには、ロータ3の外周
面の接線が同方向に傾いた部分を順次に押圧する必要が
あり、このためには、押圧体18を3個以上装置する必
要がある。なお、上記実施例のように、押圧体18の装
置個数を偶数個として、回転中心に対して対称位置にあ
る2個の押圧体18でロータ6を挾むようにすれば、ロ
ータ6の駆動力が大きく取れるとともに、ロータ6を押
圧したときにロータ6に曲げモーメントが作用しない利
点が得られる。
Further, as in the above embodiment, in order to rotate the rotor 6 in one direction and the rotor 6 has an elliptical shape, it is necessary to sequentially press the portions where the tangents of the outer peripheral surface of the rotor 3 are inclined in the same direction. Therefore, for this purpose, it is necessary to install three or more pressing bodies 18. As in the above-described embodiment, if the number of the pressing bodies 18 is an even number and the rotor 6 is sandwiched by the two pressing bodies 18 that are symmetrical with respect to the center of rotation, the driving force of the rotor 6 is increased. It is possible to obtain a large value and an advantage that no bending moment acts on the rotor 6 when the rotor 6 is pressed is obtained.

また、上記実施例では、ロータ6の外周面に形状を楕円
形としたが、これを、幾何学的に厳密な楕円形ではなく
て真円を扁平化した長円形や、あるいは、三角形の頂点
を円弧形としたおむすび形のように、回転中心に近い部
分と遠い部分とを、回転中心を向く直線との交点におけ
る接線のその直線と成す角度が連続的に変化する曲線で
接続した他の非円形のものに代えても良く、例えば、ロ
ータ6をおむすび形とした場合には、ロータ6は120
度の回転により原形と一致する対称形を成すのである
が、この場合にはロータ6を一回に回転させることがで
きる角度が60度未満であるために、ロータ6を一方向
に回転させるには、同じように3個以上の押圧体18が
必要である。
Further, in the above embodiment, the outer peripheral surface of the rotor 6 has an elliptical shape, but this is not an elliptical shape that is geometrically strict, but an oblong shape obtained by flattening a perfect circle or a vertex of a triangle. Like a rice ball shape with a circular arc shape, the part near the center of rotation and the part far from the center of rotation are connected by a curve in which the angle between the tangent at the intersection with the straight line facing the center of rotation and the straight line changes continuously. The non-circular shape may be replaced with, for example, when the rotor 6 is a rice ball shape, the rotor 6 is
Although the rotor 6 forms a symmetric shape that coincides with the original shape by rotating the rotor 6 degrees, in this case, since the angle at which the rotor 6 can be rotated at one time is less than 60 degrees, it is difficult to rotate the rotor 6 in one direction. Similarly, three or more pressing bodies 18 are required.

発明の構成及び作用効果 上記実施例によつて具体的に説明したように、本発明の
ステツピングモータは、回転中心に近い部分と遠い部分
とを、前記回転中心を向く直線との交点における接線の
該直線と成す角度が連続的に変化する曲線で接続した非
円形の外周面を有するロータ(6)を筒形のボデイ
(1)内に回転自由で支持し、該ボデイ(1)の内周面
に円周方向に間隔を空けて形成した3個以上の案内溝
(17)の各々に、前記ロータ(6)の前記回転中心方
向への進退可能な押圧体(18)を装置するとともに、
前記各案内溝(11)の奥に、電圧の印加により歪を生
ずる積層形の圧電セラミツクを駆動源として伸縮するこ
とによつて前記各押圧体(18)を各別に進退させるア
クチユエータ(30)を設け、かつ、該押圧体(18)
の前進時に前記ロータ(6)の外周面に前記曲線部にお
ける接線が同一方向に傾いた部分を順次に押圧するよう
に前記アクチユエータ(30)に電圧を印加する制御装
置を設けたことを要旨とするものであつて、ロータの外
周面の曲線部における接線が同方向に傾いた部分に対応
する位置にある押圧体を順次に前進させ、押圧体がその
部分を直後に押圧してロータを回転させるのであるか
ら、ロータを一方向に一定角度ずつ確実に回転させるこ
とができ、また、押圧体がロータの外周面の回転中心に
近い部分を押圧した状態の機械的係合によつてロータの
回転を停止させるのであるから、ロータを所定の位置で
確実に止めることができ、また、高速応答性に優れた積
層形の圧電セラミツクを使用したアクチユエータで各押
圧体を駆動するようにしたから、順次の位相のずれた高
周波のパルス電圧を夫々のアクチユエータに印加するこ
とによつて、ロータを円滑に連続回転させることがで
き、さらに、誘電障害や電波障害を生じない効果を奏す
る。
As described in detail with reference to the above embodiments, in the stepping motor of the present invention, the stepping motor of the present invention has a tangential line at a point of intersection between a portion close to the rotation center and a portion far from the rotation center with a straight line facing the rotation center. A rotor (6) having a non-circular outer peripheral surface connected by a curve whose angle formed by the straight line changes continuously, and the rotor (6) is rotatably supported in the cylindrical body (1), and In each of three or more guide grooves (17) formed on the circumferential surface at intervals in the circumferential direction, a pressing body (18) capable of advancing and retracting the rotor (6) in the direction of the rotation center is provided. ,
An actuator (30) for advancing and retracting each of the pressing bodies (18) by expanding and contracting by using a laminated piezoelectric ceramic that generates a strain by applying a voltage as a driving source is provided in the back of each of the guide grooves (11). Provided and the pressing body (18)
And a controller for applying a voltage to the actuator (30) so as to sequentially press the portions where the tangents of the curved portion are inclined in the same direction when the rotor (6) moves forward. That is, the pressing body at the position corresponding to the portion where the tangent line in the curved portion of the outer peripheral surface of the rotor inclines in the same direction is sequentially advanced, and the pressing body immediately pushes that portion to rotate the rotor. Therefore, the rotor can be surely rotated in one direction at a constant angle, and the rotor is mechanically engaged in a state where the pressing body presses a portion of the outer peripheral surface of the rotor near the rotation center. Since the rotation is stopped, the rotor can be reliably stopped at a predetermined position, and each pressing body is driven by an actuator using a laminated piezoelectric ceramic with excellent high-speed response. Since the, it can be smoothly continuous rotation Yotsute, the rotor in applying successive phase-shifted high frequency pulse voltage respectively in the actuator, further, an effect that does not cause dielectric failure or interference.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明ステツピングモータの一実施例の一部切
欠正面図、第2図はその一部切欠左側面図、第3図はア
クチユエータの断面図、第4図は圧電セラミツクの詳細
を示す第3図の部分拡大図、第5図はアクチユエータの
変位増幅の説明図、第6図はステツピングモータの作動
原理図である。 1:ボデイ、6:ロータ、18:押圧体、30:アクチ
ユエータ、31:圧電セラミツク
FIG. 1 is a partially cutaway front view of an embodiment of a stepping motor of the present invention, FIG. 2 is a partially cutaway left side view thereof, FIG. 3 is a sectional view of an actuator, and FIG. 4 shows details of a piezoelectric ceramic. 3 is a partially enlarged view of FIG. 3, FIG. 5 is an explanatory view of displacement amplification of an actuator, and FIG. 6 is an operation principle diagram of a stepping motor. 1: Body, 6: Rotor, 18: Pressing body, 30: Actuator, 31: Piezoelectric ceramic

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】回転中心に近い部分と遠い部分とを、前記
回転中心を向く直線との交点における接線の該直線と成
す角度が連続的に変化する曲線で接続した非円形の外周
面を有するロータ(6)を筒形のボデイ(1)内に回転
自由に支持し、該ボデイ(1)の内周面に円周方向に間
隔を空けて形成した3個以上の案内溝(17)の各々
に、前記ロータ(6)の前記回転中心方向への進退可能
な押圧体(18)を装置するとともに、前記各案内溝
(11)の奥に、電圧の印加により歪を生ずる積層形の
圧電セラミツクを駆動源として伸縮することによつて前
記各押圧体(18)を各別に進退させるアクチユエータ
(30)を設け、かつ、該押圧体(18)の前進時に前
記ロータ(6)の外周面の前記曲線部における接線が同
一方向に傾いた部分を順次に押圧するように前記アクチ
ユエータ(30)に電圧を印加する制御装置を設けたこ
とを特徴とするステツピングモータ。
1. A non-circular outer peripheral surface in which a portion close to the center of rotation and a portion far from the center of rotation are connected by a curve whose angle between the tangent line at the intersection with a straight line facing the center of rotation and the straight line changes continuously. The rotor (6) is rotatably supported in the tubular body (1), and three or more guide grooves (17) are formed on the inner peripheral surface of the body (1) at circumferential intervals. Each of them is provided with a pressing body (18) capable of advancing and retracting in the direction of the rotation center of the rotor (6), and at the back of each of the guide grooves (11), a laminated piezoelectric element that generates a strain by applying a voltage. An actuator (30) for advancing and retracting each of the pressing bodies (18) by expanding and contracting by using a ceramic as a driving source is provided, and the outer peripheral surface of the rotor (6) is advanced when the pressing bodies (18) advance. The part where the tangent line in the curved part is inclined in the same direction Then scan Tetsu ping motor, characterized in that a control unit for applying a voltage to the actuator (30) so as to press.
JP59087068A 1984-04-27 1984-04-27 Stepping motor Expired - Lifetime JPH0638715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59087068A JPH0638715B2 (en) 1984-04-27 1984-04-27 Stepping motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59087068A JPH0638715B2 (en) 1984-04-27 1984-04-27 Stepping motor

Publications (2)

Publication Number Publication Date
JPS60229681A JPS60229681A (en) 1985-11-15
JPH0638715B2 true JPH0638715B2 (en) 1994-05-18

Family

ID=13904623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59087068A Expired - Lifetime JPH0638715B2 (en) 1984-04-27 1984-04-27 Stepping motor

Country Status (1)

Country Link
JP (1) JPH0638715B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293978A (en) * 1986-06-11 1987-12-21 Canon Inc Rotating actuator
GB9812693D0 (en) * 1998-06-13 1998-08-12 Renishaw Plc Motor
KR101361903B1 (en) * 2013-08-30 2014-02-12 이종희 An ultrasonic motor

Also Published As

Publication number Publication date
JPS60229681A (en) 1985-11-15

Similar Documents

Publication Publication Date Title
RU2179363C2 (en) Piezoelectric drive or motor, procedure of its actuation and process of its manufacture
EP0449048B1 (en) Piezoelectric motor
US6208065B1 (en) Piezoelectric transducer and actuator using said piezoelectric transducer
EP0234274A2 (en) A linear actuator
US8018124B2 (en) Stick-slip piezoelectric motor
US6441536B2 (en) Wobble motor
EP0160707B1 (en) Piezoelectric stepping rotator
US4755705A (en) Piezoelectric motor
JPH0638715B2 (en) Stepping motor
JPH053230B2 (en)
US6459190B1 (en) Switched actuator control
JP2007166776A (en) Ultrasonic actuator and its driving method
JPH0655035B2 (en) Stepping motor
JPH0334306B2 (en)
JP2966590B2 (en) Linear drive type piezoelectric motor
JPH0440952B2 (en)
JPH0783620B2 (en) Stepping motor using an actuator driven by a bimorph type piezoelectric ceramic
JPH0524749B2 (en)
JPH05137353A (en) Plane driving piezoelectric motor
JPH0381119B2 (en)
CN113630037B (en) Motion resolution improving device and method for standing wave type piezoelectric motor
EP0370508A2 (en) Ultrasonic actuator
JP3173261B2 (en) Electrostatic actuator
JPS61106075A (en) Actuator using laminated piezoelectric ceramic as drive source and stepping motor utilizing the same
JP3183319B2 (en) Electrostatic actuator