JPH053230B2 - - Google Patents

Info

Publication number
JPH053230B2
JPH053230B2 JP58183744A JP18374483A JPH053230B2 JP H053230 B2 JPH053230 B2 JP H053230B2 JP 58183744 A JP58183744 A JP 58183744A JP 18374483 A JP18374483 A JP 18374483A JP H053230 B2 JPH053230 B2 JP H053230B2
Authority
JP
Japan
Prior art keywords
piezoelectric effect
ceramic
driving
support
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58183744A
Other languages
Japanese (ja)
Other versions
JPS6077684A (en
Inventor
Hisashi Sugimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Sunac Corp
Original Assignee
Asahi Okuma Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Okuma Industrial Co Ltd filed Critical Asahi Okuma Industrial Co Ltd
Priority to JP58183744A priority Critical patent/JPS6077684A/en
Publication of JPS6077684A publication Critical patent/JPS6077684A/en
Publication of JPH053230B2 publication Critical patent/JPH053230B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/04Constructional details
    • H02N2/043Mechanical transmission means, e.g. for stroke amplification

Description

【発明の詳細な説明】 本発明は積層形の圧電効果セラミツクの歪を利
用して産業用ロボツトのアーム等の動作源に利用
できるようにしたアクチユエーターに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an actuator that can be used as a source of motion for an arm of an industrial robot or the like by utilizing the strain of a laminated piezoelectric ceramic.

例えば産業用ロボツトのアクチユエーターは、
一般にモータ或いは油圧・空圧機器を使用し、回
転或いは直線運動として出力するようにしてい
る。しかしながら、上記のアクチユエーターは大
形で且つ重いものになり勝ちである外、モータを
使用したものでは、回転の立上りが遅いため、応
答速度が遅く精度の点でも劣るという問題があ
り、また、油圧・空圧機器を使用したものでは、
シリンダ内のプランジヤやケーシング内のベーン
の摺動による摩擦損失或いは圧力流体の漏れ等が
あるため、応答速度が遅く精度も悪いという問題
がある。
For example, the actuator of an industrial robot is
Generally, a motor or hydraulic/pneumatic equipment is used to output rotational or linear motion. However, the above-mentioned actuators tend to be large and heavy, and those using motors have the problem of slow response speed and poor accuracy because the startup of rotation is slow. , those using hydraulic/pneumatic equipment,
Since there is friction loss due to sliding of the plunger in the cylinder and vanes in the casing, leakage of pressure fluid, etc., there is a problem of slow response speed and poor accuracy.

本発明は上記の事情に鑑みてなされたもので、
その目的は圧電効果セラミツクの歪を利用するこ
とにより、応答速度及び精度に優れる上、圧電効
果セラミツクの小さな歪を増幅して大きな変位と
して取り出すことができるアクチユエーターを提
供するにある。
The present invention was made in view of the above circumstances, and
The purpose is to provide an actuator that has excellent response speed and accuracy by utilizing the strain of piezoelectric effect ceramic, and can also amplify small strain of piezoelectric effect ceramic and extract it as a large displacement.

本発明は、筒状の胴体の端部に蓋体を設けて成
り、蓋体に支持孔を有した支持部を設けると共
に、胴体の内面部に支承部を設けた基体と、軸状
をなし、外面部に支承部を設けた出力部と、一方
の端部に作動部を往復動可能に設けた筒体内に該
筒体の底部と作動部との間に位置するようにして
圧電効果セラミツク板を積層状態に収納して成
り、電圧の印加により生ずるこれら圧電効果セラ
ミツク板の歪によつて作動部を筒体の軸方向に変
位させる駆動体とを備え、前記出力部とその支承
部が前記基体内に位置するようにして前記支持部
の支持孔に軸方向に往復動可能に嵌合支持し、前
記駆動体を前記基体内に前記出力部の往復移動方
向と直交する方向に対し傾けて配設して、該駆動
体の筒体の底部側及び前記作動部を前記胴体の支
承部及び出力部の支承部に回動可能に連結し、前
記圧電効果セラミツク板に電圧を印加したときの
前記作動部の変位により、前記駆動体が傾き角の
変化を伴つて回動しつつ前記出力部を基体に対し
て移動させる構成としたことしたことを特徴とす
るものである。
The present invention comprises a lid body provided at the end of a cylindrical body, a support part having a support hole provided in the lid body, and a base body provided with a support part on the inner surface of the body, and a shaft-shaped body. , a piezoelectric effect ceramic is placed between the bottom of the cylinder and the actuating part in a cylinder, which has an output part provided with a support part on the outer surface part, and an actuating part provided in one end so as to be reciprocally movable. A driving body is formed by storing plates in a stacked state and displaces the actuating part in the axial direction of the cylindrical body by the distortion of these piezoelectric effect ceramic plates caused by the application of voltage, and the output part and its supporting part are The drive body is positioned within the base and is fitted and supported in a support hole of the support portion so as to be able to reciprocate in the axial direction, and the drive body is tilted within the base in a direction perpendicular to the reciprocating direction of the output unit. and the bottom side of the cylindrical body of the driving body and the actuating part are rotatably connected to the supporting part of the body and the supporting part of the output part, and when a voltage is applied to the piezoelectric effect ceramic plate. According to the displacement of the actuating part, the driving body rotates with a change in inclination angle, and the output part is moved relative to the base body.

以下本発明の一実施例を図面に基づいて説明す
る。
An embodiment of the present invention will be described below based on the drawings.

まず本実施例において使用する積層形の圧電効
果セラミツクについて第1図を参照して説明す
る。この圧電効果セラミツク1は、近時、日本電
気株式会社により開発実用化されたもので、圧電
効果セラミツク板2(以下単にセラミツク板2と
称する)と内部電極板3とを交互に積層一体化し
て焼結した素子を所望の形状・大きさに切断し、
全周面に露出した内部電極板3を左右両側面にお
いて一層おきに絶縁材4により電気的に絶縁する
と共に、左右両側面に外部電極5及び6を形成し
て構成したものである。従つて、内部電極板3は
一層おきに外部電極板5及び6に電気的に接続さ
れている。本圧電効果セラミツク1は従来の圧電
効果セラミツクとは異なり、印加電圧が低くても
(例えば100Vでも)或る量以上の歪を発生し、電
圧を繰返し印加しても全く劣化しない(実験によ
れば、電圧パルスを5億回以上連続的に印加して
も劣化は何らみとめられなかつた。)という特徴
を有する。反面、本圧電効果セラミツク1は従来
の圧電効果セラミツクと同様に積層厚を余り厚く
することは困難で、9mm程度が限界とされてい
る。ちなみに本圧電効果セラミツク1のセラミツ
ク板2としては、マグネシウム・ニオブ酸鉛とチ
タン酸鉛の二成分固溶体セラミツク、(1−X)
Pb(Mg1/3Nb2/3)O3−PbTiO3、のうち例え
ばXが0.35近くのものが使用されている。
First, the laminated piezoelectric effect ceramic used in this embodiment will be explained with reference to FIG. This piezoelectric effect ceramic 1 has recently been developed and put into practical use by NEC Corporation, and is made by laminating piezoelectric effect ceramic plates 2 (hereinafter simply referred to as ceramic plates 2) and internal electrode plates 3 in an integrated manner. Cut the sintered element into the desired shape and size,
The internal electrode plate 3 exposed on the entire circumferential surface is electrically insulated by an insulating material 4 every other layer on both the left and right sides, and external electrodes 5 and 6 are formed on both the left and right sides. Therefore, the internal electrode plates 3 are electrically connected to the external electrode plates 5 and 6 every other layer. Unlike conventional piezoelectric ceramics, this piezoelectric ceramic 1 generates a certain amount of strain even when the applied voltage is low (for example, 100 V), and does not deteriorate at all even when voltage is repeatedly applied (experiments have shown that For example, no deterioration was observed even when voltage pulses were continuously applied over 500 million times. On the other hand, in the present piezoelectric effect ceramic 1, as with conventional piezoelectric effect ceramics, it is difficult to increase the layer thickness too much, and the limit is about 9 mm. By the way, the ceramic plate 2 of the piezoelectric effect ceramic 1 is a binary solid solution ceramic of magnesium/lead niobate and lead titanate (1-X).
Among Pb(Mg1/3Nb2/3)O 3 -PbTiO 3 , for example, one in which X is close to 0.35 is used.

次に本発明に係るアクチユエーターを示す第2
図及び第3図において、7及び8は第1及び第2
の駆動体で、これらは上述の圧電効果セラミツク
の歪をある程度大きな変位として取出すためのも
ので、その具体的構成は第4図及び第5図に示さ
れている。即ち、第4図及び第5図において、9
は金属製の筒体で、この筒体9の一端側に形成さ
れた雌ねじ10に栓体(筒体9の底部)を兼ねる
コネクター11を螺合してロツクナツト12によ
り固定している。13は筒体9の中空内部に嵌着
された摩擦係数の小なる例えばポリアセタール樹
脂製の絶縁筒で、これの内部に円形もしくは小判
形に形成された前述の圧電効果セラミツク1を多
数積み重ね状態に収納しており、これら圧電効果
セラミツク1は接着剤により相互に結合されてい
て絶縁筒13に対して摺動自在になつている。1
4は電気抵抗の低い電線で、ここでは銅線を用い
ており、外部電極5及び6のうち同一極性どうし
の電極の一箇所ずつをロー付け等により電気的に
接続している。この電線14は圧電効果セラミツ
ク1間にたるみを残してロー付けされている。ま
た電線14は圧電効果セラミツク1を絶縁筒13
内に挿入した時に生ずる空間Sを利用して配線し
ている。そして、コネクター11側に位置する一
個の圧電効果セラミツク1の両外部電極5及び6
に接続されたリード線15及び16を筒体9外方
に導出し、以てリード線15及び16を電源に接
続したとき各圧電効果セラミツク1が電源に対し
並列に接続されるようにしている。尚、17は圧
電効果セラミツク1とコネクター11との間に設
けたセラミツク製の絶縁板である。18は作動部
としてのプランジヤで、このプランジヤ18を筒
体9の他端部内方に摺動自在に挿入し、その挿入
端をセラミツク製の絶縁板19を介して圧電効果
セラミツク1に当接させている。
Next, a second diagram showing the actuator according to the present invention is shown.
In the figure and FIG. 3, 7 and 8 are the first and second
These drive bodies are for extracting the distortion of the piezoelectric effect ceramic described above as a relatively large displacement, and their specific configuration is shown in FIGS. 4 and 5. That is, in FIGS. 4 and 5, 9
is a metal cylindrical body, and a connector 11 which also serves as a stopper (bottom of the cylindrical body 9) is screwed into a female thread 10 formed at one end of the cylindrical body 9, and is fixed with a lock nut 12. Reference numeral 13 is an insulating cylinder made of, for example, polyacetal resin, which has a small coefficient of friction and is fitted into the hollow interior of the cylinder 9. Inside this cylinder, a large number of the piezoelectric effect ceramics 1 described above each having a circular or oval shape are stacked. These piezoelectric effect ceramics 1 are bonded to each other with an adhesive so that they can freely slide on the insulating cylinder 13. 1
Reference numeral 4 denotes a low electrical resistance electric wire, in which a copper wire is used, and the external electrodes 5 and 6 having the same polarity are electrically connected to each other by brazing or the like. This electric wire 14 is brazed to the piezoelectric effect ceramic 1 with a slack left between them. In addition, the electric wire 14 is made of piezoelectric ceramic 1 with an insulating tube 13.
Wiring is done using the space S that is created when it is inserted inside. Both external electrodes 5 and 6 of one piezoelectric effect ceramic 1 located on the connector 11 side
Lead wires 15 and 16 connected to the cylindrical body 9 are led out to the outside of the cylindrical body 9, so that when the lead wires 15 and 16 are connected to a power source, each piezoelectric effect ceramic 1 is connected in parallel to the power source. . Note that 17 is a ceramic insulating plate provided between the piezoelectric effect ceramic 1 and the connector 11. Reference numeral 18 denotes a plunger as an actuating part, and this plunger 18 is slidably inserted inside the other end of the cylinder 9, and its insertion end is brought into contact with the piezoelectric ceramic 1 through an insulating plate 19 made of ceramic. ing.

而して本発明のアクチユエーターは上述のよう
に構成された駆動体から取出される変位を更に大
きく増幅して出力するもので、第2図及び第3図
中、20はアクチユエーターの基体であり、筒状
例えば短円筒状をなす胴体21の図示上下両側に
蓋体22及び23をねじ24により締結して構成
されている。25は出力部たる出力軸であり、上
側の蓋体22の中央にこの出力軸25を支持する
ための支持部たる円筒状の軸受26が設けられて
いる。上記出力軸25は、この軸受26の支持
孔、すなわち軸受26の中空内部に通されること
により、該軸受26に軸方向たる上下方向に往復
動可能に嵌合支持されている。そして、基体20
内に位置された出力軸25の下端部にはロツド2
7が螺合手段により連結一体化されている。28
は胴体21の内周面に突設された環状凸部で、こ
れの上面側及び下面側には支承部としての半球状
の凹部29及び30が例えば六個ずつ等間隔に形
成されている。31は出力軸25の下部位に各凹
部29に対応してこれらよりも上方に位置するよ
うに形成された支承部としての半球状の凹部、3
2はロツド27の下方部に各凹部30に対応して
これらよりも下方に位置するように形成された半
球状の凹部である。そして、前記第1及び第2の
駆動体7及び8は夫々六個ずつ基体20内に上下
の位置関係をもつて共に放射状に配設され、中心
側のプランジヤ18の球状先端部が夫々凹部31
及び32に嵌合されていると共にコネクター11
の球状先端部が夫々凹部29及び30に嵌合され
ている。この結果、両駆動体7,8は出力軸25
の往復動方向と直交する方向に対して傾いて配設
されることとなり、第1の駆動体7については中
心側のプランジヤ18側が斜め上方に傾いた状態
で両端部が夫々出力軸25及び胴体21に回動可
能に連結された形態になされ、第2の駆動体8に
ついては中心側のプランジヤ18側が斜め下方に
傾いた状態で両端部が夫々ロツド27及び胴体2
1に回動可能に連結された形態になされている。
The actuator of the present invention further amplifies and outputs the displacement taken out from the drive body configured as described above, and in FIGS. 2 and 3, 20 indicates the actuator. It is constructed by fastening lids 22 and 23 with screws 24 to both upper and lower sides in the drawing of a body 21 which is a base body and has a cylindrical shape, for example, a short cylinder shape. Reference numeral 25 denotes an output shaft as an output portion, and a cylindrical bearing 26 as a support portion for supporting the output shaft 25 is provided at the center of the upper lid 22. The output shaft 25 is passed through the support hole of the bearing 26, that is, the hollow interior of the bearing 26, so that the output shaft 25 is fitted and supported by the bearing 26 so as to be able to reciprocate in the axial direction, that is, the up and down direction. And the base 20
The lower end of the output shaft 25 located inside the rod 2
7 are connected and integrated by screwing means. 28
is an annular convex portion projecting from the inner circumferential surface of the body 21, and on the upper and lower surfaces of the annular convex portion, for example, six hemispherical concave portions 29 and 30 as supporting portions are formed at equal intervals. Reference numeral 31 denotes a hemispherical recess as a support portion formed in the lower part of the output shaft 25 so as to correspond to each recess 29 and to be located above these.
2 is a hemispherical recess formed in the lower part of the rod 27 so as to correspond to each recess 30 and to be located below these. The first and second driving bodies 7 and 8, six each, are arranged radially in the base body 20 in a vertical positional relationship, and the spherical tip of the plunger 18 on the center side is connected to the recess 31, respectively.
and 32 and the connector 11
The spherical tips of are fitted into the recesses 29 and 30, respectively. As a result, both drive bodies 7 and 8 are connected to the output shaft 25.
The first drive body 7 is arranged obliquely with respect to the direction perpendicular to the reciprocating direction of the first drive body 7, and the center plunger 18 side is tilted obliquely upward, and both ends are connected to the output shaft 25 and the body, respectively. The second drive body 8 is rotatably connected to the rod 27 and the body 2 with the center plunger 18 side tilted diagonally downward.
1 and is rotatably connected to the main body.

次に上記構成の作用を説明するに、本実施例に
おいては第1及び第2の駆動体7及び8に交互に
通電することを基本とする。まず第1の駆動体7
に通電すると、その各圧電効果セラミツク1に所
定の電圧が印加され、各圧電効果セラミツク1が
積み重ね方向に伸長する如く歪む。この歪みは圧
電効果セラミツク1個々では微少なものである
が、多数の圧電効果セラミツク1が積み重ね状態
に設けられていることから、プランジヤ18には
多数の圧電効果セラミツク1の歪の総和が作用
し、従つてプランジヤ18が圧電効果セラミツク
1に強く押圧されて、矢印A方向に進出するよう
に直線的に変位する。すると、第1の駆動体7が
上方に傾けて配設されていることから、プランジ
ヤ18の矢印A方向の変位により出力軸25を押
上げようとする分力が生じ、この結果、第1の駆
動体7が胴体21の凹部29を中心に矢印B方向
に回動しつつ出力軸25を矢印C方向に進出させ
るように直線的に変位させる。尚、この出力軸2
5の矢印C方向の変位により、第2の駆動体8は
プランジヤ18の筒体9内への押込みを伴つて胴
体21の凹部30を中心に矢印D方向に回動す
る。斯る出力軸25の進出後の状態を第2図に二
点鎖線で示す。次に第1の駆動体7を断電して第
2の駆動体8に通電すると、第1の駆動体7の圧
電効果セラミツク1は縮む如く元の状態に戻ると
共に、第2の駆動体8の圧電効果セラミツク1に
所定の電圧が印加されて歪み、前述したと同様に
してプランジヤ18が圧電効果セラミツク1に強
く押圧されて矢印E方向に進出するよう直線的に
変位する。すると、第2の駆動体8が下方に傾け
て配設されていることから、プランジヤ18の矢
印E方向の変位により出力軸25を押下げようと
する分力が生じ、この結果、第2の駆動体8が胴
体21の凹部30を中心に反矢印D方向に回動し
つつ出力軸25を反矢印C方向に後退させるよう
に変位せしめ、この出力軸25の反矢印C方向の
変位により、第1の駆動体7がプランジヤ18の
筒体9内への押込みを伴つて反矢印B方向に回動
し、全てが第2図に実線で示す元の状態に戻る。
斯くして、第1及び第2の駆動体7及び8に交互
に通電することにより、出力軸25が矢印C方向
及び反矢印C方向に往復動するものである。
Next, the operation of the above structure will be explained. In this embodiment, the first and second driving bodies 7 and 8 are basically energized alternately. First, the first driving body 7
When energized, a predetermined voltage is applied to each piezoelectric ceramic 1, and each piezoelectric ceramic 1 is distorted so as to expand in the stacking direction. This distortion is minute for each piezoelectric ceramic 1 individually, but since a large number of piezoelectric ceramics 1 are stacked, the sum of the distortions of the large number of piezoelectric ceramics 1 acts on the plunger 18. Therefore, the plunger 18 is strongly pressed against the piezoelectric ceramic 1 and is linearly displaced in the direction of arrow A. Then, since the first driving body 7 is disposed in an upwardly inclined manner, the displacement of the plunger 18 in the direction of arrow A generates a component force that tries to push up the output shaft 25, and as a result, the first driving body 7 The driving body 7 rotates in the direction of arrow B around the recess 29 of the body 21 and linearly displaces the output shaft 25 so as to advance in the direction of arrow C. Furthermore, this output shaft 2
5 in the direction of arrow C, the second driving body 8 rotates in the direction of arrow D around the recess 30 of the body 21 while pushing the plunger 18 into the cylinder 9. The state after the output shaft 25 is advanced is shown in FIG. 2 by a two-dot chain line. Next, when the first driving body 7 is turned off and the second driving body 8 is energized, the piezoelectric effect ceramic 1 of the first driving body 7 returns to its original state as if shrinking, and the second driving body 8 A predetermined voltage is applied to the piezoelectric effect ceramic 1 and it is distorted, and the plunger 18 is strongly pressed against the piezoelectric effect ceramic 1 and is linearly displaced in the direction of arrow E in the same manner as described above. Then, since the second driving body 8 is disposed in a downwardly inclined manner, the displacement of the plunger 18 in the direction of the arrow E generates a component force that tends to push down the output shaft 25. As a result, the second driving body 8 The driver 8 rotates in the direction opposite to the arrow D around the concave portion 30 of the body 21, and displaces the output shaft 25 so as to retreat in the direction opposite to the arrow C, and by this displacement of the output shaft 25 in the direction opposite to the arrow C, The first driving body 7 rotates in the opposite direction of arrow B as the plunger 18 is pushed into the cylinder 9, and everything returns to its original state as shown by the solid line in FIG.
In this way, by alternately energizing the first and second driving bodies 7 and 8, the output shaft 25 reciprocates in the direction of arrow C and the direction opposite to arrow C.

ところで、第1及び第2の駆動体7及び8のプ
ランジヤ18の変位量は比較的小さく、プランジ
ヤ18によつて産業用ロボツトのアーム等を直接
駆動することは実際上困難である。しかしなが
ら、本発明のアクチユエーターによれば、プラン
ジヤ18の変位を増幅して出力することができ
る。このことを第6図により原理的に説明する
に、駆動体は通電前O−Y1間にあり、通電によ
りプランジヤが進出するとOを中心に角度θだけ
回動してO−Y2間に位置するとし、そのときの
プランジヤの進出変位量をΔx、出力側の変位量
をyとすると、SINθ≒Δx/y従つてy≒Δx/
SINθとなる。然るにθは比較的小さく、SINθ≪
1であるため、プランジヤ18の変位量を増幅し
て出力軸25の大きな往復動変位として取出すこ
とができ、出力軸25によつて産業用ロボツトの
アーム等を直接駆動することができるものであ
る。
Incidentally, the amount of displacement of the plungers 18 of the first and second driving bodies 7 and 8 is relatively small, and it is actually difficult to directly drive an arm of an industrial robot or the like with the plungers 18. However, according to the actuator of the present invention, the displacement of the plunger 18 can be amplified and output. To explain this in principle with reference to Fig. 6, the driving body is located between O-Y 1 before energization, and when the plunger advances due to energization, it rotates by an angle θ around O and moves between O-Y 2 . SINθ≒Δx/y Therefore, y≒Δx/
becomes SINθ. However, θ is relatively small, and SINθ≪
1, the amount of displacement of the plunger 18 can be amplified and extracted as a large reciprocating displacement of the output shaft 25, and the output shaft 25 can directly drive an arm of an industrial robot, etc. .

尚、上記実施例では第1及び第2の駆動体7及
び8によつて出力軸25を矢印C方向及び反矢印
C方向に変位させるようにしたが、例えば第2の
駆動体8を省き、その代わりに出力軸25を反矢
印C方向に付勢するスプリングを設けてもよい。
In the above embodiment, the output shaft 25 is displaced in the direction of arrow C and the direction opposite to arrow C by the first and second driving bodies 7 and 8, but for example, the second driving body 8 may be omitted, Instead, a spring may be provided that biases the output shaft 25 in the opposite direction of arrow C.

本発明は以上の説明から明らかなように、駆動
体により圧電効果セラミツクの歪をある程度大き
な変位として取出し、更にその変位を増幅して出
力することができるので、産業用ロボツトのアー
ム等の駆動源としての利用が可能となる。しかも
圧電効果セラミツクの電歪効果を利用して出力部
を変位させる構成であるから、応答性が良く且つ
変位の精度も高いという種々の優れた効果を奏す
るものである。
As is clear from the above description, the present invention is capable of extracting the distortion of the piezoelectric effect ceramic as a relatively large displacement using the driving body, and further amplifying and outputting that displacement. It can be used as a. Furthermore, since the output section is displaced using the electrostrictive effect of the piezoelectric effect ceramic, various excellent effects such as good response and high displacement accuracy are achieved.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示し、第1図は圧電
効果セラミツクの概略を示す断面図、第2図及び
第3図はアクチユエーターの縦断面図及び部分平
面図、第4図は駆動体の縦断面図、第5図は第4
図中−線に沿う縦断面図、第6図は変位増幅
の原理図である。 図中、1は圧電効果セラミツク、2は圧電効果
セラミツク板、7,8は第1,第2の駆動体、9
は筒体、18はプランジヤ(作動部)、20は基
体、21は胴体、22は蓋体、25は出力軸(出
力部)、26は軸受(支持部)、29ないし32は
凹部(支承部)である。
The drawings show one embodiment of the present invention, and FIG. 1 is a sectional view schematically showing a piezoelectric effect ceramic, FIGS. 2 and 3 are longitudinal sectional views and partial plan views of an actuator, and FIG. 4 is a drive Longitudinal cross-sectional view of the body, Figure 5 is the 4th
FIG. 6, which is a longitudinal sectional view taken along the line - in the figure, is a diagram showing the principle of displacement amplification. In the figure, 1 is a piezoelectric effect ceramic, 2 is a piezoelectric effect ceramic plate, 7 and 8 are first and second driving bodies, and 9 is a piezoelectric effect ceramic plate.
18 is a cylinder body, 18 is a plunger (operating part), 20 is a base body, 21 is a body, 22 is a lid body, 25 is an output shaft (output part), 26 is a bearing (supporting part), 29 to 32 are recessed parts (supporting part) ).

Claims (1)

【特許請求の範囲】 1 筒状の胴体21の端部に蓋体22を設けて成
り、蓋体22に支持孔を有した支持部26を設け
ると共に、胴体21の内面部に支承部29又は3
0を設けた基体20と、 軸状をなし、外面部に支承部31又は32を設
けた出力部25と、 一方の端部に作動部18を往復動可能に設けた
筒体9内に該筒体9の底部11と作動部18との
間に位置するようにして圧電効果セラミツク板2
を積層状態に収納して成り、電圧の印加により生
ずるこれら圧電効果セラミツク板2の歪によつて
作動部18を筒体9の軸方向に変位させる駆動体
7又は8とを備え、 前記出力部25とその支承部31又は32が前
記基体20内に位置するようにして前記支持部2
6の支持孔に軸方向に往復動可能に嵌合支持し、 前記駆動体7又は8を前記基体20内に前記出
力部25の往復移動方向と直交する方向に対し傾
けて配設して、該駆動体7又は8の筒体9の底部
側及び前記作動部18を前記胴体21の支承部2
9又は30及び出力部25の支承部31又は32
に回動可能に連結し、 前記圧電効果セラミツク板2に電圧を印加した
ときの前記作動部18の変位により、前記駆動体
7又は8が傾き角の変化を伴つて回動しつつ前記
出力部25を基体20に対して移動させる構成と
したこと、 を特徴とするアクチユエーター。
[Claims] 1. A lid body 22 is provided at the end of a cylindrical body 21, a support part 26 having a support hole is provided in the lid body 22, and a support part 29 or 3
0, an output part 25 having a shaft shape and having a support part 31 or 32 on its outer surface, and a cylinder body 9 having an actuating part 18 reciprocably provided at one end thereof. The piezoelectric ceramic plate 2 is located between the bottom 11 of the cylinder 9 and the actuating part 18.
and a drive body 7 or 8 which displaces the actuating part 18 in the axial direction of the cylindrical body 9 by the distortion of the piezoelectric effect ceramic plates 2 caused by the application of voltage, and the output part 25 and its support portion 31 or 32 are located within the base body 20.
The driving body 7 or 8 is fitted and supported in the support hole 6 so as to be able to reciprocate in the axial direction, and the driving body 7 or 8 is arranged in the base body 20 so as to be inclined with respect to the direction orthogonal to the reciprocating direction of the output part 25, The bottom side of the cylindrical body 9 of the driving body 7 or 8 and the operating part 18 are connected to the supporting part 2 of the body 21.
9 or 30 and the support part 31 or 32 of the output part 25
When a voltage is applied to the piezoelectric effect ceramic plate 2, the actuating part 18 is displaced, and the driving body 7 or 8 is rotated with a change in inclination angle, and the output part is rotated. An actuator characterized in that the actuator is configured to move the actuator 25 relative to the base body 20.
JP58183744A 1983-09-30 1983-09-30 Actuator Granted JPS6077684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58183744A JPS6077684A (en) 1983-09-30 1983-09-30 Actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58183744A JPS6077684A (en) 1983-09-30 1983-09-30 Actuator

Publications (2)

Publication Number Publication Date
JPS6077684A JPS6077684A (en) 1985-05-02
JPH053230B2 true JPH053230B2 (en) 1993-01-14

Family

ID=16141214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58183744A Granted JPS6077684A (en) 1983-09-30 1983-09-30 Actuator

Country Status (1)

Country Link
JP (1) JPS6077684A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013208027A (en) * 2012-03-29 2013-10-07 Toyo Tire & Rubber Co Ltd Power generation element
JP2013208028A (en) * 2012-03-29 2013-10-07 Toyo Tire & Rubber Co Ltd Power generation unit

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326766U (en) * 1986-08-05 1988-02-22
US4912343A (en) * 1988-08-31 1990-03-27 Aura Systems, Inc. Electromagnetic actuator
US4952835A (en) * 1988-12-27 1990-08-28 Ford Aerospace Corporation Double saggital push stroke amplifier
JPH07335951A (en) * 1994-06-14 1995-12-22 Philips Japan Ltd Piezoelectric actuator
JP2002203997A (en) * 2000-12-28 2002-07-19 Denso Corp Piezoelectric actuator
CZ300287B6 (en) * 2001-07-17 2009-04-08 Acmos Chemie Gmbh & Co. Process for producing permanent separation layer facilitating removal of a molding from a mold by plasma polymerization on surface of the mold, a mold produced thereby and its use
JP5890721B2 (en) * 2012-03-29 2016-03-22 東洋ゴム工業株式会社 Power generation element
EP2743179B1 (en) 2012-12-17 2016-06-01 Airbus Defence and Space GmbH Actuator arrangement and control surface arrangement, especially for an aircraft
CN110957938B (en) * 2019-12-09 2020-09-15 西安交通大学 Positive-negative bidirectional micro-displacement amplification flexible mechanism and method based on shear type piezoelectric ceramics

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49129578A (en) * 1973-03-27 1974-12-11
JPS59175386A (en) * 1983-03-24 1984-10-04 Nec Corp Mechanical amplifying mechanism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49129578A (en) * 1973-03-27 1974-12-11
JPS59175386A (en) * 1983-03-24 1984-10-04 Nec Corp Mechanical amplifying mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013208027A (en) * 2012-03-29 2013-10-07 Toyo Tire & Rubber Co Ltd Power generation element
JP2013208028A (en) * 2012-03-29 2013-10-07 Toyo Tire & Rubber Co Ltd Power generation unit

Also Published As

Publication number Publication date
JPS6077684A (en) 1985-05-02

Similar Documents

Publication Publication Date Title
US6184609B1 (en) Piezoelectric actuator or motor, method therefor and method for fabrication thereof
JPH053230B2 (en)
CN1855686A (en) Ultrasonic motor
Meyer Jr et al. Displacement amplification of electroactive materials using the cymbal flextensional transducer
CN100399598C (en) Multilayer piezoelectric element and vibration-wave drive device
US20130140951A1 (en) Piezoelectric motor, drive unit, robot hand, robot, electronic component transporting apparatus, electronic component inspecting apparatus, and printer
Frank et al. Design and performance of a high-force piezoelectric inchworm motor
EP3089348A1 (en) Piezoelectric motor
CN110098317A (en) Stacked piezoelectric ceramic component and piezoelectric device
US20050275318A1 (en) Stacked type electro-mechanical energy conversion element and vibration wave driving apparatus
US7420321B2 (en) Heat efficient micromotor
JP2002538628A (en) Piezoelectric actuator
US11793080B2 (en) Ultrasonic actuator, and motor having such an ultrasonic actuator
JPH0449350B2 (en)
JPH0335515B2 (en)
JPH0520633B2 (en)
WO2010149199A1 (en) Electromechanical motor
JPH07245431A (en) Laminated piezoelectric substance
JP2000022231A (en) Piezoelectric device
JPH0724951Y2 (en) Drive
JP4991047B2 (en) Actuator
JPH04304173A (en) Method of assembling oscillator
JP2956316B2 (en) Driving method of piezoelectric actuator
JP4818853B2 (en) Ultrasonic motor element
TWI333442B (en) Piezoelectric gripping device