JPS6122765B2 - - Google Patents

Info

Publication number
JPS6122765B2
JPS6122765B2 JP52129182A JP12918277A JPS6122765B2 JP S6122765 B2 JPS6122765 B2 JP S6122765B2 JP 52129182 A JP52129182 A JP 52129182A JP 12918277 A JP12918277 A JP 12918277A JP S6122765 B2 JPS6122765 B2 JP S6122765B2
Authority
JP
Japan
Prior art keywords
throttle valve
frequency
angle
subtraction counter
counting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52129182A
Other languages
Japanese (ja)
Other versions
JPS5356062A (en
Inventor
Yuurugen Shumitsuto Peetaa
Purutsuibiira Berunto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JPS5356062A publication Critical patent/JPS5356062A/en
Publication of JPS6122765B2 publication Critical patent/JPS6122765B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/02Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • G01D5/202Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by movable a non-ferromagnetic conductive element
    • G01D5/2026Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by movable a non-ferromagnetic conductive element constituting a short-circuiting element
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/60Analogue/digital converters with intermediate conversion to frequency of pulses

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Technology Law (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】 本発明は、内燃機関に供給される噴射パルスの
持続時間を算定するための、内燃機関の絞り弁位
置に非直線的に依存するデイジタルな基本負荷制
御量を決定する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The invention determines a digital basic load control variable that is non-linearly dependent on the throttle valve position of the internal combustion engine for determining the duration of the injection pulse supplied to the internal combustion engine. Regarding equipment.

本発明は、所定の構造の誘導発生器およびすで
に存在する付属の電子回路が存在し、かつこのれ
らを使用するということに基いており、例えば自
動車に関する分野に基いており、かつこの誘導発
生器の周波数として存在する出力量を、所望の非
直線関係の媒介を行う別のデイジタル出力量を発
生するために使用する。誘導発生器は、強磁性材
料製のU字形磁心上に巻かれたコイルから成り、
その際U字形の両方の脚部に短絡リングが付属し
ており、このリングは、測定すべき移動行程に依
存して両方の脚部に沿つて可動である。短絡リン
グは、U字形磁心を通る全磁束を実際に行程に比
例して変えるので、発生器コイルのインダクタン
スも行程に比例して変化する。この時このインダ
クタンスは、電子発振器回路の一部として使用さ
れる。最も簡単な場合この発振器は、ヒステリシ
ス特性を有する比較器、行程に比例してインダク
タンスが変化する発生器コイルおよび比較器の入
力端子に出力が帰還する積分器の直列回路から成
る。この発振器は、のこぎり波電圧を発生し、そ
の際インダクタンスの大きさが、積分電圧の上昇
時間および下降時間を決めるので、出力周波数の
周期が行程に依存して変化する。本発明による回
路は、この周波数を使用し、かつこの周波数をさ
らに絞り弁角度と燃料噴射パルスの幅との間の非
直線関係を生じるように処理する。
The invention is based on the existence and use of an inductive generator of a certain construction and an associated electronic circuit that already exists, for example in the field of automobiles, and that this inductive generator The output quantity present as the frequency of the device is used to generate another digital output quantity that mediates the desired non-linear relationship. An induction generator consists of a coil wound on a U-shaped magnetic core made of ferromagnetic material,
In this case, a shorting ring is attached to both legs of the U-shape, which ring is movable along both legs depending on the travel path to be measured. Since the shorting ring actually changes the total magnetic flux through the U-shaped core proportionally to stroke, the inductance of the generator coil also changes proportionally to stroke. This inductance is then used as part of an electronic oscillator circuit. In the simplest case, this oscillator consists of a series circuit of a comparator with hysteresis, a generator coil whose inductance varies proportionally to the stroke, and an integrator whose output is fed back to the input terminal of the comparator. This oscillator generates a sawtooth voltage, the magnitude of the inductance determining the rise and fall times of the integrated voltage, so that the period of the output frequency changes as a function of the stroke. The circuit according to the invention uses this frequency and processes it further to produce a non-linear relationship between the throttle angle and the width of the fuel injection pulse.

さらに絞り角度をこの絞り弁角度に対して非直
線関係を有する周波数に変換する変換装置が公知
である。この公知の装置は、絞り弁によつて操作
される非直線分圧器を使用し、この分圧器は、絞
り弁角度に対して直線的に出力周波数の周期を変
えるように発振器に接続されている。この出力周
波数はカウンタに供給され、このカウンタは、到
来する初めの所定の数のパルスを抑圧する装置を
有する。この時発振器周波数と絞り弁角度との間
に所定の関係が得られる。公知の回路は、かなり
高価であり、かつ前記のような行程周波数変換の
ため機械的な分圧器を使用し、さらにこの公知の
回路は、絞り弁角度と噴射パルスの幅との間に所
望の非直線関係を生じることはできない。
Furthermore, conversion devices are known which convert the throttle angle into a frequency that has a non-linear relationship to the throttle valve angle. This known device uses a non-linear voltage divider operated by a throttle valve, which voltage divider is connected to an oscillator so as to vary the period of the output frequency linearly with respect to the throttle valve angle. . This output frequency is fed to a counter, which counter has a device for suppressing the first predetermined number of pulses that arrive. A predetermined relationship is then obtained between the oscillator frequency and the throttle valve angle. The known circuit is fairly expensive and uses a mechanical voltage divider for the stroke frequency conversion as described above; Non-linear relationships cannot occur.

それに対して特許請求の範囲に記載した特徴を
有する本発明による手段によれば、実際に誘導発
生器の出力周波数を評価する際に付加的な回路費
用なしに、所望の非直線関係が形成できるという
利点が得られ、その際発生器の外形に作用を及ぼ
すことによつて、例えばU字形磁心の脚部の経過
および広がりに作用を及ぼすことによつて、所望
の非直線関係にさらに近似させることができる。
In contrast, with the measures according to the invention having the features recited in the claims, the desired non-linear relationship can be formed without additional circuit outlay when evaluating the output frequency of an induction generator in practice. The advantage is that by influencing the contour of the generator, e.g. by influencing the course and extent of the legs of the U-shaped core, the desired non-linear relationship can be further approximated. be able to.

本発明のその他の利点は、使用された減算カウ
ンタを初期値にセツトすることによつて、必要な
0点シフトを行うことができる点にある。
Another advantage of the invention is that the necessary zero point shift can be accomplished by setting the used subtraction counter to an initial value.

最後に本発明において、所望の非直線関係を得
るため、発生器側での制御は不要であり、すなわ
ち誘導発生器の出力信号は、評価の際に非直線関
係が望ましくかつ必要な所でも同時に使用できる
ことは有利である。
Finally, in the present invention, in order to obtain the desired non-linear relationship, no control on the generator side is necessary, i.e. the output signal of the inductive generator is simultaneously It is advantageous to be able to use

本発明の実施例を以下図面によつて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図に誘導発生器の機械的構造が示されてお
り、この誘導発生器は、発生器コイル1を有し、
このコイルは、U字形脚部1aおよび1bを有す
る強磁性磁心2の基部に巻かれている。短絡リン
グ3が、脚部1aおよび1bに沿つて移動可能に
配置されており、この短絡リングは、移動行程S
に相応するそれぞれの位置によつて、コイル1の
インダクタンスL(s)の値を決める。このよう
な発生器を第2図に示された回路に組込めば、こ
の回路は全体として発振器をなし、この発振器の
周波数は、コイル1のインダクタンスLの大きさ
によつて決まる。このような発振器の動作を簡単
に述べれば、コイル1の前に接続されヒステリシ
ス特性を有する比較器5の出力電圧は、インダク
タンスの大きさに応じて、従つて短絡リングの位
置に依存して上昇または下降し、その際後続の積
分器6によつてコイル1の出力端子における電圧
が高い程早く、発生器出力電圧の積分が行われ
る。比較器の上側閾値に達すると、この比較器の
出力電圧は、負の値へ反転し、かつ誘導発生器1
の出力電圧が相応して変化する。このようにして
形成された発振器8の出力端子7に生じる交流電
圧の周期と、移動行程S、またはこの特別な場合
内燃機関の絞り弁の角度αとの間に比例関係が得
られる。この関係は第3図に示されている。発振
器8は常に振動しているので、絞り弁の位置α=
0の際にも、最高周波数に相当する最小周期が生
じる。周期と周波数との間の相反関係のため、周
期が行程に比例した発振器出力電圧において、第
3図に示された絞り弁角度αに関する周波数fの
経過が生じる。
FIG. 1 shows the mechanical structure of an induction generator, which has a generator coil 1 and
This coil is wound around the base of a ferromagnetic core 2 having U-shaped legs 1a and 1b. A shorting ring 3 is disposed movably along the legs 1a and 1b, the shorting ring 3 having a travel path S
The value of the inductance L(s) of the coil 1 is determined by each position corresponding to . When such a generator is incorporated into the circuit shown in FIG. 2, the circuit as a whole constitutes an oscillator, the frequency of which is determined by the magnitude of the inductance L of the coil 1. Briefly describing the operation of such an oscillator, the output voltage of the comparator 5 connected before the coil 1 and having hysteresis characteristics increases depending on the magnitude of the inductance and therefore the position of the shorting ring. or down, with the subsequent integrator 6 integrating the generator output voltage faster the higher the voltage at the output terminal of the coil 1. When the upper threshold of the comparator is reached, the output voltage of this comparator flips to a negative value and the inductive generator 1
The output voltage of will change accordingly. A proportional relationship is obtained between the period of the alternating voltage present at the output terminal 7 of the oscillator 8 formed in this way and the travel stroke S or, in this particular case, the angle α of the throttle valve of the internal combustion engine. This relationship is shown in FIG. Since the oscillator 8 is constantly vibrating, the throttle valve position α=
Even at zero, a minimum period corresponding to the highest frequency occurs. Due to the reciprocal relationship between period and frequency, at an oscillator output voltage whose period is proportional to the stroke, the curve of frequency f with respect to the throttle valve angle α shown in FIG. 3 results.

燃料噴射の際に燃料噴射パルスの幅を決めるた
めに、絞り弁角度αの表示を入力量として使用し
たい時、行程Sまたは角度αと可能なデイジタル
値、例えば計数状態との間に非直線関係が必要な
ので、本発明の特徴に応じて、最も簡単な場合誘
導発生器に接続された発振器の周波数、すなわち
絞り弁角度αに比例する周期を有する周波数は、
所定の一定時間内に発振器によつてカウンタを制
御して、このカウンタにおいて数に変換され、こ
の時カウンタ内に形成された数から、出力量とし
てこの数の補数が形成される。
When it is desired to use the representation of the throttle valve angle α as an input quantity in order to determine the width of the fuel injection pulse during fuel injection, there is a non-linear relationship between the stroke S or the angle α and possible digital values, e.g. the counting state. According to the characteristics of the invention, in the simplest case the frequency of the oscillator connected to the induction generator, i.e. the frequency with a period proportional to the throttle valve angle α, is required:
A counter is controlled by an oscillator within a predetermined fixed time period, in which it is converted into a number, and from the number then formed in the counter, the complement of this number is formed as an output variable.

正確に説明するため第4図を参照し、この図に
内燃機関の典形的な特性曲線が示されており、こ
の特性曲線は、回転速度nをパラメーラとして絞
り弁角度αに関する燃料噴射パルスの幅の関係を
示している。図示された曲線のこう配は、角度が
小さい際に最大であり、かつ角度αの増加と共に
減少する。角度を同じ大きさの量に分割すると、
角度が小さい際に比較的大きな量子化誤差が生
じ、この誤差は、同様に角度の増加と共に減少す
る。全範囲にわたつて量子化誤差を一定にするた
め、角度αと本発明により発生されるデイジタル
最終値との間に前記の非直線関係が必要であり、
その際所望の非直線性を決める場合、第4図の中
間の曲線に着目すると有利である。このような所
望の目標曲線の例となる曲線経過は、第5図に波
線で示されており、かつ符号を有する。第5図
にさらに行われた0点シフトも含めて、第3図の
計数周波数fが供給されるカウンタにおいて絞り
弁角度αに関する計数状態Yの経過が、曲線と
して実線で示されている。明らかに曲線の補数
は、ほぼ所望の目標曲線に一致している。この
補数は、所定の一定時間内にそれぞれ周波数f
によつて制御されるカウンタにおいて、または以
下に説明する第7図の回路による特別な実施例に
おいて、2進数Yの反転によつて得られる。
For a more precise explanation, reference is made to FIG. 4, which shows a typical characteristic curve of an internal combustion engine, which shows the characteristic curve of the fuel injection pulse with respect to the throttle valve angle α with the rotational speed n as a parameter. It shows the width relationship. The slope of the curve shown is greatest at small angles and decreases with increasing angle α. If we divide the angle into equal amounts, we get
A relatively large quantization error occurs at small angles, and this error similarly decreases with increasing angle. In order to keep the quantization error constant over the entire range, the aforementioned non-linear relationship is required between the angle α and the digital final value generated by the invention;
When determining the desired nonlinearity, it is advantageous to look at the intermediate curve in FIG. A curve profile that is an example of such a desired setpoint curve is shown in FIG. 5 with dashed lines and has a sign. The course of the counting state Y with respect to the throttle flap angle α in the counter to which the counting frequency f of FIG. 3 is supplied, including the zero-point shift that was further carried out in FIG. 5, is shown as a solid line as a curve. Clearly, the complement of the curve corresponds approximately to the desired target curve. This complement has a frequency f within a predetermined constant time.
or by the inversion of the binary number Y, in a special embodiment according to the circuit of FIG. 7 described below.

第7図において、第2図の発振器は8で示され
ており、この発振器は、行程または角度に比例し
た周期の出力周波数fを供給する。出力周波数
は、さらに説明する必要のない標本化および正規
化する段9を介して減算カウンタ11の計数入力
端子10に達し、この減算カウンタのセツト入力
端子12に、時限素子13から時間信号が供給さ
れ、その際この時間信号は、一定時間間隔の幅を
決め、この幅の間にその都度周波数fが減算カウ
ンタ11に入力計数される。時限素子13は、1
4における任意のトリガパルスによつてトリガで
きる。計数過程の開始の際に減算カウンタ10が
所定の計数状態にあるものとすれば、その都度計
数過程の最後に得られた計数状態(数Yに相当す
る)は、周波数が高くなる程、すなわち第3図に
相応して絞り弁角度が小さくなる程、小さくな
る。明らかに第5図の曲線に相応して所望の非
直線関係が得られ、その際0点シフトのため初期
値用メモリー15が減算カウンタ11に付属して
いれば有利である。この初期値は、計数過程の開
始時に初期計数状態Yoを生じ、この計数過程は
所定のように選択される。最大発生器周波数にお
いて、従つて絞り弁の角度αが0に等しい時、計
数状態Y=0に達するように、第6図に相応して
初期値Yoは、カウンタの桁数に応じて計数状態
(0000)が生じるようになつている。それからα
=90゜における最小周波数によつて減算カウンタ
11は、初期値Yoからちようと最大計数状態
(全計数出力端子に論理「1」が生じる)に達す
るまで減算計数される。さらに減算カウンタ11
に転送ゲード16が付属しており、この転送ゲー
ドは、新たな計数過程が開始する際または一定時
間間隔の経過後に最終計数状態に達した際にその
都度得られた計数状態を転送する。この時転送ゲ
ード16におけるこの数は、第5図の曲線の非
直線関係でその都度所定の絞り弁角度αに対応し
ている。
In FIG. 7, the oscillator of FIG. 2 is indicated at 8 and provides an output frequency f with a period proportional to the stroke or angle. The output frequency reaches the counting input 10 of a subtraction counter 11 via a sampling and normalization stage 9, which does not require further explanation, to the set input 12 of which a time signal is supplied from a timing element 13. In this case, this time signal determines the width of a fixed time interval, during which the frequency f is respectively input and counted into the subtraction counter 11. The timing element 13 is 1
It can be triggered by any trigger pulse in 4. If it is assumed that the subtraction counter 10 is in a predetermined counting state at the start of the counting process, the counting state (corresponding to the number Y) obtained at the end of the counting process in each case will change as the frequency increases, i.e. Corresponding to FIG. 3, the smaller the throttle valve angle, the smaller it becomes. It is clear that the desired non-linear relationship corresponding to the curve of FIG. This initial value results in an initial counting state Yo at the start of the counting process, which is selected in a predetermined manner. Corresponding to FIG. 6, the initial value Yo changes the counting state depending on the number of digits of the counter, so that at the maximum generator frequency, and therefore when the angle α of the throttle flap equals 0, the counting state Y=0 is reached. (0000) is now occurring. Then α
By means of the minimum frequency at =90°, the subtraction counter 11 is subtracted from the initial value Yo until reaching the maximum count state (logic ``1'' occurs at all count output terminals). Further subtraction counter 11
is associated with a transfer gate 16, which transfers the counting state obtained in each case when a new counting process is started or when the final counting state is reached after a certain time interval. This number at the transfer gate 16 then corresponds in each case to a predetermined throttle valve angle α in the non-linear relationship of the curve in FIG.

第5図に応じて行われた目標曲線への近似が不
十分ならば、例えば平行に延びたU磁心の脚部を
曲げることによつて誘導発生器の形をわずかに変
え、これ以上の精密化および近似を行うことがで
きる。いかなる場合にも誘導発生器の外形を大幅
に「曲げ」かつ作用を及ぼして所望の非直線関係
を生じる必要はない。なぜならこのことは、非常
に正確、従つて高価な製造法を必要とし、この製
造法は、前記の比較的簡単な回路によつててぎわ
よく実現できるからである。さもなければ入力値
のデイジタル処理の際に可能な処置も、すなわち
その都度所望の方法でプログラム制御されかつそ
れから読出される固定値メモリーを介して非直線
性を導入するという処置も、無駄である。なぜな
らこのような処置は比較的高価でありかつ手間が
かかるからである。
If the approximation to the target curve made according to FIG. and approximations can be made. There is no need in any case to significantly "bend" and influence the geometry of the induction generator to produce the desired non-linear relationship. This is because this requires a very precise and therefore expensive manufacturing method, which can most often be realized with the relatively simple circuit described above. Otherwise, the possible measures during the digital processing of the input values, i.e. the introduction of non-linearities via a fixed value memory which is programmed in each case and read out from it in the desired manner, are also in vain. . This is because such procedures are relatively expensive and labor intensive.

本発明において、入力量を発生する系として使
われるような発振器と同じ誘導発生器は、例え点
火装置において、直線関係に対しても使用でき
る、という利点があり、直線関係のこの場合、公
知のように別のカウンタを、計数周波数よりずつ
と高い周波数で周期間に制御するために計数周波
数fの周期を使用して、発生された周波数の行程
に比例する周期を一定周波数で計数することも可
能である。この時それぞれの計数状態は、明らか
に移動行程または絞り弁角度αに比例している。
In the present invention, the same induction generator as the oscillator used as the system for generating the input quantity has the advantage that it can also be used for a linear relationship, for example in an ignition system. It is also possible to use the period of the counting frequency f to control another counter between periods at increasingly higher frequencies than the counting frequency, so as to count periods at a constant frequency that are proportional to the stroke of the generated frequency. It is possible. The respective counting state is then clearly proportional to the travel stroke or the throttle valve angle α.

しかし発振器系8が、行程に比例した周波数の
出力信号を供給するならば、直線関係で数に所望
のように変換する際、周波数が直接カウンタに供
給され、このカウンタの計数状態が、この時機械
的入力量に対して直線関係を有し、一方非直線関
係に対して、前記のように周期が利用できる。
However, if the oscillator system 8 supplies an output signal with a frequency proportional to the stroke, then during the desired conversion into numbers in a linear relationship, the frequency is directly supplied to the counter, and the counting state of this counter is then It has a linear relationship to the mechanical input quantity, while for non-linear relationships the period can be used as described above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、移動可能な短絡リングを有する誘導
発生器の機械的構造を示す図、第2図は、発振器
を形成するように別の電子回路素子に接続された
誘導発生器の略図、第3図は絞り弁角度αに関す
る発生器出力信号の周波数および周期を示す線
図、第4図は、内燃機関回転速度nをパラメータ
とした絞り弁角度に関する燃料噴射パルスの幅を
示す典型的な特性曲線の図、第5図は、誘導発生
器の出力周波数を供給するカウンタの計数状態Y
の経過を示す線図、第6図は、最大および最小周
波数による計数の際にセツトされた初期値で計数
過程を開始した場合の減算カウンタの計数状態Y
を示す線図、第7図は、絞り弁位置から取出され
る誘導発生器出力周波数と燃料噴射パルスの幅と
の間の非直線関係を得るために簡単に構成される
電子回路の実施例を示す図である。 1……誘導発生器、8……発振器、11……減
算カウンタ、13……時限素子、16……転送ゲ
ート。
1 shows the mechanical structure of an induction generator with a movable shorting ring; FIG. 2 is a schematic diagram of the induction generator connected to another electronic circuit element to form an oscillator; FIG. Fig. 3 is a diagram showing the frequency and period of the generator output signal with respect to the throttle valve angle α, and Fig. 4 is a typical characteristic showing the width of the fuel injection pulse with respect to the throttle valve angle with the internal combustion engine rotational speed n as a parameter. The diagram of the curve, FIG. 5, shows the counting state Y of the counter supplying the output frequency of the induction generator.
Figure 6 shows the counting state Y of the subtraction counter when the counting process is started with the initial value set during counting with the maximum and minimum frequencies.
FIG. 7 shows an example of an electronic circuit that is easily constructed to obtain a non-linear relationship between the induction generator output frequency taken from the throttle valve position and the width of the fuel injection pulse. FIG. 1... Induction generator, 8... Oscillator, 11... Subtraction counter, 13... Time element, 16... Transfer gate.

Claims (1)

【特許請求の範囲】 1 内燃機関に供給される噴射パルスの持続時間
を算定するための、内燃機関の絞り弁位置と非直
線的関係を有するデイジタルな基本負荷制御量を
決定する装置において、 a 測定すべき絞り弁の角度に比例する移動行程
を有する短絡リングを備えた誘導発生器が設け
られており、該誘導発生器を含む発振器8の出
力周波数fの周期長は絞り弁の角度に比例して
おり、 b 発振器8の出力周波fが供給される減算カウ
ンタ11が設けられており、該減算カウンタ
は、各計数過程の終了後に、各々絞り弁角度に
対し所望の非直線的関係にある計数状態を転送
するための転送ゲート16を備えており、 c それぞれの初期値Yoを含むメモリーが、減
算カウンタ11に付属しており、それぞれの計
数過程を開始する際、0点シフトのためのメモ
リーの内容が減算カウンタ11に転送される、 ことを特徴とする、絞り弁位置に非直線的に依存
するデイジタルな基本負荷制御量を決定する装
置。 2 トリガパルスによつてトリガされる時限素子
13が設けられており、この時限素子が、計数周
波数fによつて減算カウンタ11を制御する期間
を決める、特許請求の範囲第1項記載の装置。
[Scope of Claims] 1. A device for determining a digital basic load control variable having a non-linear relationship with a throttle valve position of an internal combustion engine for calculating the duration of an injection pulse supplied to the internal combustion engine, comprising: a An induction generator is provided with a short-circuit ring having a travel stroke proportional to the angle of the throttle valve to be measured, the period length of the output frequency f of the oscillator 8 containing the induction generator being proportional to the angle of the throttle valve. and b. A subtraction counter 11 is provided, to which the output frequency f of the oscillator 8 is fed, which subtraction counter is in the desired non-linear relationship to the respective throttle valve angle after the end of each counting process. A transfer gate 16 is provided for transferring the counting state, c A memory containing each initial value Yo is attached to the subtraction counter 11, and when starting each counting process, a memory for zero point shift is provided. Device for determining a digital basic load control variable non-linearly dependent on the throttle valve position, characterized in that the contents of the memory are transferred to a subtraction counter (11). 2. Device according to claim 1, characterized in that a timing element (13) triggered by a trigger pulse is provided, which timing element (13) determines the period for controlling the subtraction counter (11) by means of a counting frequency (f).
JP12918277A 1976-10-29 1977-10-27 Method and apparatus for transforming frequency or period proportional to transferring stroke into digital output having nonnlinear relation Granted JPS5356062A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19762649425 DE2649425A1 (en) 1976-10-29 1976-10-29 METHOD AND DEVICE FOR CONVERTING A FREQUENCY OR PERIOD DURATION PROPORTIONAL TO A SHIFTING TRAVEL INTO A NON-LINEAR DEPENDENT DIGITAL OUTPUT SIZE

Publications (2)

Publication Number Publication Date
JPS5356062A JPS5356062A (en) 1978-05-22
JPS6122765B2 true JPS6122765B2 (en) 1986-06-03

Family

ID=5991925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12918277A Granted JPS5356062A (en) 1976-10-29 1977-10-27 Method and apparatus for transforming frequency or period proportional to transferring stroke into digital output having nonnlinear relation

Country Status (5)

Country Link
JP (1) JPS5356062A (en)
DE (1) DE2649425A1 (en)
FR (1) FR2369542A1 (en)
GB (1) GB1586844A (en)
SE (1) SE7712106L (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2961608D1 (en) * 1978-11-02 1982-02-11 Bosch Gmbh Robert Alarm device, particularly for automotive vehicles

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2346333C2 (en) * 1973-09-14 1985-02-14 Robert Bosch Gmbh, 7000 Stuttgart Digital circuit arrangement for determining parameter-dependent numerical values
CH573104A5 (en) * 1973-11-20 1976-02-27 Bosch Gmbh Robert

Also Published As

Publication number Publication date
FR2369542A1 (en) 1978-05-26
FR2369542B1 (en) 1984-07-06
GB1586844A (en) 1981-03-25
JPS5356062A (en) 1978-05-22
SE7712106L (en) 1978-04-30
DE2649425A1 (en) 1978-09-21

Similar Documents

Publication Publication Date Title
US3898962A (en) Control system and devices for internal combustion engines
US3812710A (en) Electronic fuel consumption meter
US3973191A (en) Inductive displacement sensor apparatus
US3986006A (en) Fuel injection controlling system for an internal combustion engine
JPS6131643A (en) Fuel jet amount controller of internal combustion engine
US4009378A (en) Ignition timing control system for an internal combustion engine
SE436075B (en) DEVICE FOR MAGNETIC OR MAGNETIC INductive MATERIAL TESTING WITH SENSES, WHEN PROVIDED BY THE MATERIAL, GIVES AN ELECTRIC SIGNAL RELATED TO A SOME MATERIAL PROPERTY
US4059087A (en) Oil pressure detecting apparatus for internal combustion engines
US4349746A (en) Frequency generator
US4170040A (en) Digital computer for calculating the optimal richness of the air/fuel mixture for internal combustion engines
GB2063490A (en) Evaluation circuit for an inductive transducer
GB1563151A (en) Electronic ignition timing control device for internal combustion engines
EP0022259A1 (en) Ignition system for an internal combustion engine
US4573347A (en) Apparatus for measuring fuel injection advance angle in diesel engine
JPS6122765B2 (en)
GB1102792A (en) Alternator tachometer
US3832981A (en) Fuel injection control system
GB2053487A (en) Inductive differential position sensor
EP0232253A4 (en) Inductance systems
US4023159A (en) Non-linear analogue-digital converter
JPS5950121B2 (en) drive circuit
RU2194286C1 (en) Device measuring intensity of magnetic field
SU418850A1 (en)
SU491958A1 (en) Device for dividing voltages
SU419822A1 (en) METHOD OF MEASURING COERTSITIVE FORCE