JPS61227492A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS61227492A
JPS61227492A JP60066466A JP6646685A JPS61227492A JP S61227492 A JPS61227492 A JP S61227492A JP 60066466 A JP60066466 A JP 60066466A JP 6646685 A JP6646685 A JP 6646685A JP S61227492 A JPS61227492 A JP S61227492A
Authority
JP
Japan
Prior art keywords
signal
circuit
pixel
difference
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60066466A
Other languages
Japanese (ja)
Other versions
JP2619355B2 (en
Inventor
Naoki Ozawa
直樹 小沢
Toshiyuki Akiyama
俊之 秋山
Kazuhiro Sato
和弘 佐藤
Shusaku Nagahara
長原 脩策
Itaru Mimura
三村 到
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60066466A priority Critical patent/JP2619355B2/en
Publication of JPS61227492A publication Critical patent/JPS61227492A/en
Application granted granted Critical
Publication of JP2619355B2 publication Critical patent/JP2619355B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To decrease remarkably color moires of a single board color camera by designing the titled device that a signal interpolation hardly causing a false signal is applied even to an object having a pattern changed in a width several times of the picture element interval of a solid-state image pickup element. CONSTITUTION:An output signal (a) when an image of a dark/light object is formed on a solid-state image pickup element 1 is fed sequentially to delay circuits 2a-2f connected in series. The delay quantity of each delay circuit is set equal to the sampling period of a picture element signal. B, G, R picture element signals obtained from output lines 3a-3g are processed by a subtraction circuit 4, an amplifier circuit 5 having amplification factor of 1/3 and 2/3, an adder circuit 6, a division circuit 7, an adder circuit 8, a multiplication circuit 9 and an amplifier circuit 10 having an amplification factor of 1/2, and the output signal is fed to a gate circuit 11 together with a signal from an output line 3d. A signal from an oscillation circuit 12 synchronously with the drive pulse of the solid-state image pickup element 1 controls the gate circuit 11 to obtain the R, G, B signals with arranged phase where the sampling frequency shown in signals e-g is equal to the sampling frequency of the picture element and generation of an extreme false signals is suppressed.

Description

【発明の詳細な説明】 〔発明Q利用分野〕 本発明はカラー撮像装置にかかわシ、特に固体撮像素子
を用いた単板カラーカメラに好適な色モワレの軽減方法
および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of Invention Q] The present invention relates to a color imaging device, and particularly to a method and device for reducing color moire suitable for a single-chip color camera using a solid-state imaging device.

〔発明の背景〕[Background of the invention]

現在、ひとつの固体撮像素子からカラーのビデオ信号を
得る単板カラーカメラが実用に供せられている。とうし
たカメラでは固体撮像素子の各画素に透過光の異なる数
種の色フィルタを周期的に対応させることによって複数
の色信号を得ている。
Currently, single-chip color cameras that obtain color video signals from a single solid-state image sensor are in practical use. In such a camera, a plurality of color signals are obtained by periodically associating several types of color filters with different transmitted light to each pixel of a solid-state image sensor.

したがって各色信号の空間的サンプリング周波数は画素
のサンプリング周波数の数分の1に低下するので色モワ
レが発生しやすい。
Therefore, the spatial sampling frequency of each color signal is lowered to a fraction of the pixel sampling frequency, and color moire is likely to occur.

単板カラーカメラの色モワレを軽減する方法としてたと
えば特開昭54−131819号公報に示されるものが
ある。
A method for reducing color moire in a single-panel color camera is disclosed in, for example, Japanese Patent Laid-Open No. 131819/1983.

この方法では次のような動作を行なう。たとえば第1図
に示す色フィルタを、各フィルタ片が固体撮像素子の画
素に1対1で対応するよう組み合わせると第2図(a)
に示す信号が得られる。これを分離して得た第2図6)
〜(d)に示すR,G、B信号では、たとえば時刻t1
にはR信号が得られるがG、B信号は得られず、時刻t
!にはG信号が得られるがR1B信号は得られない。そ
こでたとえば時刻t1ではR1の大きさがReとUSの
どちらに近いかを比較し、Roに近ければGoとB。
This method performs the following operations. For example, if the color filters shown in Figure 1 are combined so that each filter piece corresponds to a pixel of a solid-state image sensor on a one-to-one basis, Figure 2 (a)
The signal shown is obtained. Figure 2 obtained by separating this 6)
For the R, G, and B signals shown in ~(d), for example, at time t1
An R signal is obtained at t, but G and B signals are not obtained, and at time t
! The G signal is obtained, but the R1B signal is not obtained. For example, at time t1, the magnitude of R1 is compared to see whether it is closer to Re or US, and if it is closer to Ro, it is Go or B.

で、またR鵞に近いかどちらにも近くなければGl と
BtでG、B信号を補間する。こうした動作でR,G、
B信号を補間すると第2図(e)〜@に示すようにサン
プリング周波数が高く、位相のそろった3信号が得られ
る。この結果画素の繰シ返しく周期)に比べて変化の間
隔が十分大きな被写体の境界部・では本来得られるべき
信号がほぼ正しく補間されるので、こうした境界部で発
生する色モワレが軽減される。
Then, if it is close to R or neither, G and B signals are interpolated using Gl and Bt. With these actions, R, G,
When the B signal is interpolated, three signals with a high sampling frequency and the same phase are obtained as shown in FIG. 2(e) to @. As a result, at the boundaries of objects where the interval of change is sufficiently large compared to the repeating period of pixels, the signal that should originally be obtained is interpolated almost correctly, reducing color moire that occurs at these boundaries. .

しかし画素の繰シ返し周期の数倍の間隔で変化するパタ
ーンをもった被写体では正しく補間できず、逆に色モワ
レが増加するという問題がある。
However, if the subject has a pattern that changes at an interval several times the pixel repetition period, interpolation cannot be performed correctly, and there is a problem in that color moire increases.

たとえば第1図の色フィルタに第3図に示す相対関係で
明暗の被写体を結像させると第4図(a)に示す信号が
得られる。これt−R,G、Bに分離して上述の従来処
理を施すと第4図(b)〜(d)の信号となる。これら
の信号を第3図の被写体と比べるとt3におけるG信号
は本来得られるべき信号と明らかに異なる。この結果t
3ではあたかも緑色の被写体を撮像したような信号とな
シ、再生画上でにせの色が発生する。
For example, when a bright and dark subject is imaged on the color filter shown in FIG. 1 in the relative relationship shown in FIG. 3, a signal shown in FIG. 4(a) is obtained. When this signal is separated into t-R, G, and B and subjected to the conventional processing described above, the signals shown in FIGS. 4(b) to 4(d) are obtained. Comparing these signals with the subject of FIG. 3, the G signal at t3 is clearly different from the signal that should originally be obtained. This result t
In No. 3, the signal appears as if a green object was imaged, and false colors appear on the reproduced image.

〔発明の目的〕[Purpose of the invention]

本発明の目的は固体撮像素子の画素の繰り厚し周期の数
倍の間隔で変化するパターンをもつ被写体に対してもに
せの色が発生しにくい信号補間を行なう単板カラーカメ
ラの色モワレ軽減方法を提供することにある。
The purpose of the present invention is to reduce color moire in a single-chip color camera by performing signal interpolation that prevents the generation of false colors even for objects with patterns that change at intervals several times the pixel thickness period of a solid-state image sensor. The purpose is to provide a method.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため本発明の固体カラー撮像装置は
、固体撮像素子から順次得られる複数の色信号をそれぞ
れ当該位相でサンプリングして分離し、任意の色信号の
特定時刻における信号とその前で得られる同一色信号と
の間の変化量および後で得られる同一色信号との間の変
化量を求め、特定時刻における他の色信号をその前後に
得られる当該色信号の大きさと得られる時刻差、および
上述の変化量から求めた信号で補間することに特徴があ
る。
In order to achieve the above object, the solid-state color imaging device of the present invention samples and separates a plurality of color signals sequentially obtained from a solid-state imaging device at each relevant phase, and a signal at a specific time of an arbitrary color signal and a signal before that. Find the amount of change between the same color signal obtained and the same color signal obtained later, and calculate the magnitude of the color signal obtained before and after the other color signal at a specific time and the time at which it is obtained. The feature is that interpolation is performed using a signal obtained from the difference and the amount of change described above.

〔発明の実施例〕[Embodiments of the invention]

以下、第5図に示す構成の実施例を用いて本発明の詳細
な説明する。
Hereinafter, the present invention will be explained in detail using an embodiment having the configuration shown in FIG.

第5図において固体撮像素子1には例えば第1図に示す
色フィルタを組み合わせているものとする。このとき第
3図に示す相対関係で明暗の被写体が結像すると出力か
らは第6図(a)に示す信号が得られる。これを直列に
接続した遅延回路2a。
In FIG. 5, it is assumed that the solid-state image sensor 1 is combined with the color filter shown in FIG. 1, for example. At this time, when a bright and dark subject is imaged in the relative relationship shown in FIG. 3, a signal shown in FIG. 6(a) is obtained from the output. The delay circuit 2a is connected in series.

2b、・・・・・・、2fに順次加える。ここで各遅延
回路の遅延量を画素信号のサンプリング周期に等しく設
定する。この結果たとえば時刻t6には出力線3a、3
b、・・・・・・、3gからそれぞれ時刻t6゜tS 
+ ”””e  ”0に得られたB、、G、、凡2゜B
t e Gl * Rt e B(lの画素信号が同時
に得られる。
Add to 2b, . . . , 2f sequentially. Here, the delay amount of each delay circuit is set equal to the sampling period of the pixel signal. As a result, for example, at time t6, the output lines 3a, 3
b, ..., 3g to time t6゜tS, respectively
+ ”””e”B obtained at 0, ,G,, approximately 2゜B
t e Gl * Rt e B(l pixel signals are obtained simultaneously.

なお第6図(a)の信号をサンプリングにより分離した
R、、G、B信号はそれぞれ第6図(b)〜(d)に示
すとおシである。ここで時刻t3に得られる信号を例に
とるとB信号ではB1が得られるがR信号、G信号は存
在しない。そこでまずBo−81間の被写体の変化が直
線的であると近似すると時刻tlおよび1.はB、−B
1間のそれぞれ了および1の位置に対応するから、これ
らの時刻でのB信号の大きさBa1 、 Ba2はそれ
ぞれ次のとおシである。
Note that the R, , G, and B signals obtained by separating the signal in FIG. 6(a) by sampling are shown in FIGS. 6(b) to 6(d), respectively. Here, taking the signal obtained at time t3 as an example, B1 is obtained for the B signal, but there are no R and G signals. First, if we approximate that the change in the subject between Bo and 81 is linear, then time tl and 1. is B, -B
1 and 1, respectively, so the magnitudes Ba1 and Ba2 of the B signal at these times are as follows.

同様にB+−B2間の被写体の変化が直線的であると近
似すると時刻t4.tsのB信号の大きさB a 4 
s B a @はそれぞれ次のとおりである。
Similarly, if it is approximated that the change in the subject between B+ and B2 is linear, time t4. Magnitude of B signal of ts B a 4
s B a @ are as follows.

Bo %B1問およびBt x13.間におけるB信号
、G信号の変化もB信号と同様直線的であると考えると
たとえば時刻tlで得られるR信号(Rs)とtlで得
られる几信号(R,,3)の間には次の関係を用いるこ
とができる。
Bo %B1 question and Bt x13. Considering that the changes in the B and G signals during that period are also linear like the B signal, for example, the relationship between the R signal (Rs) obtained at time tl and the signal (R,,3) obtained at tl is as follows. The following relationship can be used.

(1)、(5)式よシ几、3は次の関係を用いて求める
ことができる。
From equations (1) and (5), equation 3 can be obtained using the following relationship.

回春にして時刻t3におけるR信号(R−’a  )と
時刻t4で得られるR信号(Rz)の関係、および時刻
1.におけるG信号(G−s、 G−’s  )と時刻
t!および1.で得られるG信号(G1およびG雪)と
の関係は次のようになる。
The relationship between the R signal (R-'a) obtained at time t3 after rejuvenation and the R signal (Rz) obtained at time t4, and time 1. G signal (G-s, G-'s) at time t! and 1. The relationship with the G signal (G1 and G snow) obtained in is as follows.

ここで時刻t3におけるR信号(Rss)を時刻1Kに
得られるR1から近似したR a 3と時刻t4に得ら
れるR雪から近似したR、′3の平均値信号として求め
ることとすると次のとおりである。
Here, if the R signal (Rss) at time t3 is determined as the average value signal of R a 3 approximated from R1 obtained at time 1K and R, '3 approximated from R snow obtained at time t4, the following is obtained. It is.

・・・・・・・・・αO 同様に時刻t3におけるG信号(Gas)は次のとおシ
である。
. . . αO Similarly, the G signal (Gas) at time t3 is as follows.

・・・・・・・・・(11) 上述の説明は時刻t3に得るべき信号を例にとって行な
ったが、他の時刻に得るべき信号についてもR,、G、
Bの関係を各色信号が得られる頴序にしたがって入れか
えればG0,00式をそのまtあてはめることができる
(11) The above explanation was made using the signal to be obtained at time t3 as an example, but signals to be obtained at other times can also be expressed as R,, G,
By replacing the relationship of B according to the order in which each color signal is obtained, the G0,00 formula can be applied as is.

以上の信号処理を実現する一例である第5図の実施例で
は出力線3gから得られるたとえば時刻t6のBeを減
算回路4aの正極性入力に加え、出力線3dから得られ
るB、を負極性入力に加えび5bに加える。同様に出力
線3aから得られるBtを減算回路4bの正極性人力に
加え、B1 を負極性入力に加える。この結果得られる
減算回路4bの出力信号をそれぞれ一倍および1倍の増
幅率をもった増幅回路5Cおよび5dに加える。さらに
増幅回路5a、5b、5c、5dの出力信号をそれぞれ
出力線3dから得られるB1と共に加算回路6a、6b
、6c、6dに加える。
In the embodiment shown in FIG. 5, which is an example of realizing the above signal processing, Be obtained from the output line 3g, for example at time t6, is added to the positive polarity input of the subtraction circuit 4a, and B obtained from the output line 3d is input to the negative polarity. Add to input and add to 5b. Similarly, Bt obtained from the output line 3a is added to the positive polarity input of the subtraction circuit 4b, and B1 is added to the negative polarity input. The resulting output signals of the subtraction circuit 4b are applied to amplifier circuits 5C and 5d having an amplification factor of 1 and 1, respectively. Furthermore, the output signals of the amplifier circuits 5a, 5b, 5c, and 5d are added to the adder circuits 6a and 6b together with B1 obtained from the output line 3d, respectively.
, 6c, 6d.

ここで加算回路6bの出力信号を除算回路7aの除信号
入力に加え、一方被除算信号入力には出力線3fから得
られるR1を加える。また加算回路6Cの出力信号は除
算回路7bの除信号入力に加え、被除算信号入力には出
力線3Cから得られる信号を加える。こうして得られた
除算回路7aおよび7bの出力信号を加算回路8aで加
算し、出力線3dから得られるB1と共に乗算回路9a
に加え、さらに増幅率ユの増幅回路10aに加えれは出
力からは00式で表わされるR13に対応した信号が得
られる。
Here, the output signal of the adder circuit 6b is added to the division signal input of the divider circuit 7a, while R1 obtained from the output line 3f is added to the divider signal input. The output signal of the adder circuit 6C is added to the division signal input of the divider circuit 7b, and the signal obtained from the output line 3C is added to the divider signal input. The output signals of the division circuits 7a and 7b obtained in this way are added together by the addition circuit 8a, and together with B1 obtained from the output line 3d, the multiplication circuit 9a
In addition to this, a signal corresponding to R13 expressed by equation 00 is obtained from the output of the amplifier circuit 10a with an amplification factor of Y.

同様に加算回路6aの出力信号を除算回路7Cの除信号
入力に加えて被除算信号入力には出力線3eから得られ
るG1を加え、加算回路6dの出力信号を除算回路7d
の除信号入力に加えて被除算信号入力には出力線3bか
ら得られるG:を加える。除算回路7Cおよび7dの出
力信号を加算回路8bで加え合わせて出力線3dから得
られるBKと共に乗算回路9bに加え、増幅率iの増幅
回路10bを経れば出力からは00式で表わされるGt
3に対応した信号が得られる。
Similarly, the output signal of the adder circuit 6a is added to the division signal input of the divider circuit 7C, G1 obtained from the output line 3e is added to the divider signal input, and the output signal of the adder circuit 6d is added to the divider signal input of the divider circuit 7C.
In addition to the divided signal input, G: obtained from the output line 3b is added to the divided signal input. The output signals of the divider circuits 7C and 7d are added together in the adder circuit 8b, and are added to the multiplier circuit 9b together with BK obtained from the output line 3d. After passing through the amplifier circuit 10b with the amplification factor i, the output is Gt expressed by the formula 00.
A signal corresponding to 3 is obtained.

なお増幅回路10a、10bの出力信号は出力線3dか
ら得られる信号と共にゲート回路11a。
Note that the output signals of the amplifier circuits 10a and 10b are sent to the gate circuit 11a together with the signal obtained from the output line 3d.

11b、llcに加える。このとき固体撮像素子の駆動
パルスに同期した発振回路12からの信号でゲート回路
11a、11b、11Cを制御し、それぞれの出力から
B信号、G信号、R信号が分離して得られるようにする
11b, llc. At this time, the gate circuits 11a, 11b, and 11C are controlled by a signal from the oscillation circuit 12 synchronized with the driving pulse of the solid-state image sensor, so that the B signal, G signal, and R signal can be obtained separately from their respective outputs. .

以上の結果、第6図(a)の信号からは(e)〜(g)
に示すとおシサンプリング周波数が画素のサンプリング
周波数に等しく、位相のそろったR、B、G信号を得る
ことができる。これらの信号は時刻t6゜t7に対応し
たG信号等が本来得られるべき信号とは若干異なるが、
全体に第4図(C)に示した従来例のものに比べると極
端なにせ信号の発生がおさえられている。この結果再生
画上で発生するにせの色が軽減される。
As a result of the above, from the signal in Figure 6(a), (e) to (g)
In this case, the sampling frequency is equal to the pixel sampling frequency, and it is possible to obtain R, B, and G signals having the same phase. Although these signals are slightly different from the signals that should originally be obtained, such as the G signal corresponding to times t6 and t7,
Overall, generation of extremely false signals is suppressed compared to the conventional example shown in FIG. 4(C). As a result, false colors appearing on the reproduced image are reduced.

なお第5図に示す実施例はαO9αυ式を実現するため
の一方法であシ、たとえば第7図に示すように減算回路
4a、4bと加算回路6a、6b。
The embodiment shown in FIG. 5 is one method for realizing the αO9αυ formula, for example, as shown in FIG. 7, subtraction circuits 4a, 4b and addition circuits 6a, 6b are used.

5c、6dの機能を合わせもった加減算回路13a。Addition/subtraction circuit 13a has the functions of 5c and 6d.

13b、13C,13dを用いる方法など、G0゜00
式おるいはこれを変形した次式を満足するあらゆる構成
が可能である。
13b, 13C, 13d, etc., G0゜00
Any configuration that satisfies the formula or a modified version of the following formula is possible.

・・・・・・・・・QO’ ・・・・・・・・・αυ′ 第5図に示す実施例ではある時刻の信号をその前後に得
られる同色の信号から予測した値の平均として求めたが
、当該時刻と前後の信号が得られる時刻との差に対応し
た比率で加算する方法も有効である。
・・・・・・・・・QO' ・・・・・・・・・αυ′ In the example shown in Fig. 5, the signal at a certain time is calculated as the average of the values predicted from the signals of the same color obtained before and after that time. However, it is also effective to add the values at a ratio corresponding to the difference between the time and the time when the previous and subsequent signals are obtained.

たとえば時刻t3に対応するR信号を求めるに際して時
刻t3からR1の得られる時刻t1までの差がR雪の得
られる時刻t4までの差の2倍であることがらR1から
予測した(6)式に示すRa 3の1倍とR2から予測
した(7)式に示すR1′3の1倍を加算して求めたP
L*’3  を補間信号に用いる。同様に時刻t3に対
応するG信号を求めるにはGt測した(9)式に示すG
、′3の1倍を加算して求めたGA’sを補間信号に用
いる。この結果Rt’s。
For example, when calculating the R signal corresponding to time t3, since the difference from time t3 to time t1 when R1 is obtained is twice the difference from time t4 when R snow is obtained, equation (6) predicted from R1 is used. P calculated by adding 1 times Ra 3 shown and 1 times R1'3 shown in equation (7) predicted from R2
L*'3 is used as an interpolation signal. Similarly, to obtain the G signal corresponding to time t3, Gt is measured using the G signal shown in equation (9).
, '3 is added and GA's is used as an interpolation signal. As a result, Rt's.

GA’sはそれぞれ次式で表わされる。GA's are each expressed by the following formula.

・・・・・・・・・α2 ・・・・・・・・・(I3 α2.13式を実現するための実施例を第8図に示す。・・・・・・・・・α2 ・・・・・・・・・(I3 An example for realizing the α2.13 formula is shown in FIG.

第8図の実施例では出力線3fおよび3cから得られる
信号をそれぞれ増幅率1倍の増幅回路13aおよび増幅
率2倍の増幅回路13.bを介して除算回路7aおよび
7bの緑信号入力に加えると同時に、増幅回路10aの
増幅率を1倍に変更することによってα2式で示すRt
’sを得る。同様に出力線3eおよび3bから得られる
信号をそれぞれ増幅率2倍の増幅回路13Cおよび増幅
率1倍の増幅回路13dを介して除算回路7cおよび7
dの緑信号入力に加え、増幅回路10bの増幅率を丁に
変更してα2式に示すGt’sf得る。
In the embodiment shown in FIG. 8, the signals obtained from the output lines 3f and 3c are transmitted to an amplifier circuit 13a with an amplification factor of 1 and an amplifier circuit 13 with an amplification factor of 2 times. b to the green signal inputs of the divider circuits 7a and 7b, and at the same time, by changing the amplification factor of the amplifier circuit 10a to 1, the Rt expressed by the α2 formula is
's get. Similarly, the signals obtained from the output lines 3e and 3b are passed through an amplifier circuit 13C with a double amplification factor and an amplifier circuit 13d with a single amplification factor, respectively, to divider circuits 7c and 7.
In addition to inputting the green signal d, the amplification factor of the amplifier circuit 10b is changed to 0 to obtain Gt'sf shown by the α2 formula.

こうして得られたR、B、G信号は第6図(h)〜(j
)に示すとおりである。これらの信号は第5図に示す実
施例で得られる(e)〜(g)の信号と同様、本来得ら
れるべき信号に近いものである。また(1B、03式の
関係を満足すれば第8図に示すもの以外の構成、あるい
は変形した式に対応する構成が可能なことは第5図の実
施例と同様である。
The R, B, and G signals obtained in this way are shown in Fig. 6 (h) to (j
) as shown. These signals, like the signals (e) to (g) obtained in the embodiment shown in FIG. 5, are close to the signals that should originally be obtained. Similarly to the embodiment shown in FIG. 5, configurations other than those shown in FIG. 8 or configurations corresponding to modified expressions are possible as long as the relationships of equations (1B and 03 are satisfied).

また補間信号を合成する他の方法として、ある時刻の信
号をその前後に得られる同色の信号から予測した値と当
該時刻に得られる信号の大きさとその前後に得られる同
色信号の大きさの差に対応した係数とから求めることが
有効である。
Another method for synthesizing interpolated signals is the difference between the value of a signal at a certain time predicted from signals of the same color obtained before and after that time, the magnitude of the signal obtained at that time, and the magnitude of the same color signals obtained before and after that time. It is effective to find it from the coefficient corresponding to .

たとえば時刻t3に対応するR信号を求めるに際して時
刻t3に得られるB1と時刻1oに得られるBoとの差
(IBo  Bs1)およびBlと時刻t6に得られる
B2との差(IB鵞−B11)を求め、B1がBeある
いはBtのどちらにどれだけ近い値であるかを で表わす。これfi’ Rsから予測した(6)式に示
すRs 3とRsから予測した(7)式に示すR1′3
の係数に用いると時刻t3の補間信号R1“3は次式と
なる。
For example, when calculating the R signal corresponding to time t3, the difference between B1 obtained at time t3 and Bo obtained at time 1o (IBo Bs1) and the difference between Bl and B2 obtained at time t6 (IB-B11) are calculated. and express how close B1 is to Be or Bt. This fi' Rs3 shown in equation (6) predicted from Rs and R1'3 shown in equation (7) predicted from Rs
When used as the coefficient of , the interpolated signal R1 "3 at time t3 becomes the following equation.

・・・・・・・・・α荀 同様に時刻t3に対応するG信号(Gt“3)はGGl
から予測した(8)式に示すGa3と02から予測した
(9)式に示すG、′3に上述の係数を用いればよく、
次式のようになる。
......Similarly to αXun, the G signal (Gt"3) corresponding to time t3 is GGl
The above coefficients may be used for Ga3 shown in equation (8) predicted from 02 and G,'3 shown in equation (9) predicted from 02,
It becomes as follows.

・・・・・・・・・(is α4.α9を実現するための実施例を第9図に示す。・・・・・・・・・(is α4. An embodiment for realizing α9 is shown in FIG.

第9図において減算回路4a、4bの出力から得られる
たとえば時刻t6における信号を例にとるとBe−B5
およびBs  Btの差信号をそれぞれ絶対値回路14
a、14bに加えて絶対値信号に変換する。さらに絶対
値回路14a、14bの出力を加算回路15に加えると
同時にそれぞれ除算回路16aおよび16bの被除算信
号入力に加え、除信号入力には加算回路15の出力信号
を加えれば出力から の係数に対応した信号が得られる。さらに除算回路16
aの出力を除算回路7bの出力と共に乗算回路17bに
加え、得られた出力信号を加算回路8aに加える。同時
に除算回路16bの出力を除算回路7aの出力と共に乗
算回路17aに加え、この出力を加算回路8aに加える
。同様にして除算回路16aの出力を除算回路7dの出
力と共に乗算回路17dに加えて得られた出力と除算回
路16bの出力を除算回路7Cの出力と共に乗算回路1
7Cに加えて得られた出力とを加算回路8bK加える。
In FIG. 9, for example, the signal obtained from the outputs of the subtraction circuits 4a and 4b at time t6 is Be-B5.
and Bs Bt, respectively, to the absolute value circuit 14.
a, 14b and converted into an absolute value signal. Furthermore, the outputs of the absolute value circuits 14a and 14b are added to the adder circuit 15, and at the same time they are added to the divided signal inputs of the divider circuits 16a and 16b, respectively, and the output signal of the adder circuit 15 is added to the divider signal input. A corresponding signal is obtained. Furthermore, the division circuit 16
The output of a is applied to the multiplication circuit 17b together with the output of the division circuit 7b, and the obtained output signal is applied to the addition circuit 8a. At the same time, the output of the division circuit 16b is applied to the multiplication circuit 17a together with the output of the division circuit 7a, and this output is applied to the addition circuit 8a. Similarly, the output of the division circuit 16a is added to the multiplication circuit 17d together with the output of the division circuit 7d, and the obtained output and the output of the division circuit 16b are combined with the output of the division circuit 7C to the multiplication circuit 1.
7C and the obtained output are added to an adder circuit 8bK.

加算回路8a、8bの出力を出力線3dから得られた出
力と共に乗算回路9a、9bに加えれば出力からはα4
)、(15式で示されるR1“3゜Gi“3 が得られ
る。この際増幅回路IQa、10bの増幅率は1倍とす
るかあるいは省けば良い。
If the outputs of adder circuits 8a and 8b are added to multiplier circuits 9a and 9b together with the output obtained from output line 3d, α4 is obtained from the output.
), (R1"3°Gi"3 shown in equation 15 is obtained. At this time, the amplification factors of the amplifier circuits IQa and 10b may be set to 1 or may be omitted.

なお、検出器18は絶対値回路14a、14bの出力が
ともKOであった場合を検出し、このと、1 。
Note that the detector 18 detects the case where both the outputs of the absolute value circuits 14a and 14b are KO, and in this case, the output is 1.

き除算回路16a、16bの出力から 百 に対応する
信号が得られるよう制御する。
Control is performed so that a signal corresponding to 100 is obtained from the outputs of the division circuits 16a and 16b.

以上の動作で得られるR、、B、G信号は第6図[有]
)〜に)に示すとおり本来得られるべき信号にごく近い
ものとなるので再生画上でにせの色の発生を大幅に改善
することができる。また(14)、(151式の関係を
満足すれば、別の構成あるいは式を変形した他の構成で
同様の結果が得られることは第5図の実施例と同様であ
る。
The R, , B, and G signals obtained by the above operation are shown in Figure 6.
As shown in ) to ), the signal is very close to the signal that should originally be obtained, so it is possible to significantly reduce the occurrence of false colors on the reproduced image. Also, as long as the relationship (14) and (151) are satisfied, similar results can be obtained with another configuration or another configuration in which the formula is modified, as in the embodiment shown in FIG.

また第5図、第7〜9図の実施例において遅延回路2a
〜2fは直列接続としたが、第10図に示すように遅延
時間が画素のサンプリング周期の1倍〜6倍である遅延
回路193〜19ft−並列接続して用いることもでき
る。
Furthermore, in the embodiments of FIGS. 5 and 7 to 9, the delay circuit 2a
Although the delay circuits 193 to 2f are connected in series, the delay circuits 193 to 19ft whose delay time is 1 to 6 times the pixel sampling period may be connected in parallel as shown in FIG.

なお乗算回路、除算回路等はアナログ回路で実現するこ
とは回路的にむずかしいが、固体撮像素子1の出力をデ
ィジタル信号に変換することによってディジタル信号で
の演算処理が可能である。
Note that although it is circuit-wise difficult to implement the multiplication circuit, the division circuit, etc. with an analog circuit, arithmetic processing using the digital signal is possible by converting the output of the solid-state image sensor 1 into a digital signal.

また本発明の説明は第1図に示す色フィルタを例にとっ
て行なったが、数種の信号が顆次繰り返す時系列信号に
適用できることは明らかである。
Further, although the present invention has been described using the color filter shown in FIG. 1 as an example, it is clear that the present invention can be applied to time-series signals in which several kinds of signals repeat condylarly.

したがって第11図(a)、Φ)などの補色系フィルタ
を用いたもの、(C)、 (d)などの*b返しが3画
素以外のもの、(e)などの縦方向が同色でないもの、
(f)などの、1ラインおきに画素が水平方向にずれた
固体撮像索子に対応したものなどあらゆる色フィルタと
組み合わせた単板カラーカメラに適用可能である。
Therefore, those using complementary color filters such as (a) and Φ) in Fig. 11, those with *b return other than 3 pixels such as (C) and (d), and those that do not have the same color in the vertical direction such as (e) ,
It is applicable to a single-chip color camera combined with any color filter, such as one corresponding to a solid-state imaging element in which pixels are horizontally shifted every other line, such as (f).

〔発明の効果〕〔Effect of the invention〕

上述のように本発明によれば固体撮画素子の画素間隔の
数倍で変化するパターンをもった被写体に対してもKせ
信号が発生しにくい信号補間を行なうことができ、単板
カラーカメラの色モワレを大幅に軽減することができる
As described above, according to the present invention, it is possible to perform signal interpolation in which K signal is less likely to occur even for subjects with patterns that change at several times the pixel spacing of the solid-state pixel sensor, and a single-chip color camera Color moiré can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は単板カラー用フィルタの一例を示す図、第2図
は従来例の動作を説明するための信号の模式図、第3図
は従来例での問題点を指摘するための被写体の一例を示
す図、第4図は第3図に示す被写体で得られる信号の模
式図を示す図、第p図および第7図〜第10図は本発明
の実施例を示す図、第6図は本発明の実施例で得られる
信号の模式図を示す図、第11図は本発明が適用可能な
単板カラーカメラの色フィルタの例を示す図である。 4・・・減算回路、6・・・加算回路、7・・・除算回
路、8・・・加算回路、9・・・乗算回路、11・・・
ゲート回路、13・・・増幅回路、14・・・絶対値回
路、15・・・加算回路、16・・・除算回路、17・
・・乗算回路、18・・・蒸  1  図 冨  Z  目 りン  0.:・  、・′、;°゛、・  ・  。 冨 3 図 ′fJd   図 (d、) (、−7,、、、、−1:・ :百 5 図 尺   q6 基 6 図 (ML)B  ・旨 ・ミ          ミ・ 
二m″if基 7 囚 g4   ρ 夏g図 に   14i    υ ¥J lo 図 第11図
Figure 1 is a diagram showing an example of a single-plate color filter, Figure 2 is a schematic diagram of signals to explain the operation of the conventional example, and Figure 3 is a diagram of a subject to point out problems with the conventional example. FIG. 4 is a diagram showing a schematic diagram of a signal obtained from the subject shown in FIG. 3; FIG. 11 is a diagram showing a schematic diagram of a signal obtained in an embodiment of the present invention, and FIG. 11 is a diagram showing an example of a color filter of a single-chip color camera to which the present invention is applicable. 4... Subtraction circuit, 6... Addition circuit, 7... Division circuit, 8... Addition circuit, 9... Multiplication circuit, 11...
Gate circuit, 13... Amplification circuit, 14... Absolute value circuit, 15... Addition circuit, 16... Division circuit, 17.
...Multiplication circuit, 18... Steam 1 Zutomi Z Eyelin 0. :・ 、・′、;°゛、・ ・ . Tomi 3 Figure'fJd Figure (d,) (, -7,,,,, -1:・ :100 5 Scale q6 Group 6 Figure (ML)B ・effect ・Mimi・
2 m″if group 7 prisoner g4 ρ summer g figure 14i υ ¥J lo figure 11

Claims (1)

【特許請求の範囲】 1、少なくとも水平方向に画素を配置した撮像素子と透
過光がたがいに異なる複数種の微小光学色フィルタを上
記撮像素子の上記各画素に対応させて繰り返し配列させ
たフィルタとを用いた撮像装置において、上記撮像素子
から順次得られる上記画素の信号をそれぞれ上記複数種
の微小光学色フィルタに対応した複数系列の画素信号群
に分離し、上記複数系列の画素信号群から任意に選んだ
第1の画素信号群に属する特定の時刻に得られる第1の
画素信号と上記第1の画素信号群に属する上記第1の画
素信号の直前に得られる第2の画素信号と上記第1の画
素信号群に属する上記第1の画素信号の直後に得られる
第3の画素信号と上記複数系列の画素信号群のうちの上
記第1の画素信号群とは異なる第2の画素信号群に属す
る上記特定時刻の直前に得られる第4の信号と上記第2
の画素信号群に属する上記特定時刻の直後に得られる第
5の信号を得、上記第1の信号と上記第2の信号とから
求めた上記第4の信号が得られる第2の時刻に対応する
第6の信号と上記第1の信号との比と上記第4の信号と
から求めた第1の近似信号と上記第1の信号と上記第3
の信号とから求めた上記第5の信号が得られる第3の時
刻に対応する第7の信号と上記第1の信号との比と上記
第5の信号とから求めた第2の近似信号を得、上記第1
の近似信号と上記第2の近似信号とから上記第2の画素
信号群の上記第1の信号が得られる上記特定時刻に対応
する補間信号を求めることを特徴とした固体撮像装置。 2、上記第2の信号が得られる第4の時刻と上記特定時
刻との間の信号変化を直線近似することにより上記第1
の信号と上記第2の信号とから上記第6の信号を求め、
上記第3の信号が得られる第5の時刻と上記特定時刻と
の間の信号変化を直線近似することにより上記第1の信
号と上記第3の信号とから上記第7の信号を求めること
を特徴とした特許請求の範囲第1項記載の固体撮像装置
。 3、上記第1の近似信号と上記第2の近似信号との平均
値に対応する信号を上記補間信号とすることを特徴とし
た特許請求の範囲第1項記載の固体撮像装置。 4、上記第1の近似信号を上記第5の信号が得られる上
記第3の時刻と上記特定の時刻との差に対応した増幅率
で増幅した信号と上記第2の近似信号を上記第4の信号
が得られる上記第2の時刻と上記特定の時刻との差に対
応した増幅率で増幅した信号とを加算して上記補間信号
とすることを特徴とした特許請求の範囲第1項記載の固
体撮像装置。 5、上記第2の信号と上記第1の信号との第1の差と上
記第3の信号と上記第1の信号との第2の差を得、上記
第1の近似信号を上記第2の差を上記第1の差と上記第
2の差との和で除した大きさに対応した増幅率で増幅し
た信号と上記第2の近似信号を上記第1の差を上記第1
の差と上記第2の差との和で除した大きさに対応した増
幅率で増幅した信号とを加算して上記補間信号とするこ
とを特徴とした特許請求の範囲第1項記載の固体撮像装
置。 6、上記第1の差と上記第2の差がともに0であつたと
き上記第1の近似信号と上記第2の近似信号との加算信
号の1/2倍に対応した信号を上記補間信号とすること
を特徴とした特許請求の範囲第5項記載の固体撮像装置
[Scope of Claims] 1. An image sensor in which pixels are arranged at least in the horizontal direction, and a filter in which a plurality of types of micro optical color filters whose transmitted light differs from each other are repeatedly arranged in correspondence with each pixel of the image sensor. In the imaging device using the above, the pixel signals sequentially obtained from the image sensor are separated into a plurality of series of pixel signal groups corresponding to the plurality of types of micro optical color filters, and any one of the plurality of series of pixel signal groups is separated. a first pixel signal obtained at a specific time belonging to the first pixel signal group selected in , a second pixel signal obtained immediately before the first pixel signal belonging to the first pixel signal group, and the above. a third pixel signal obtained immediately after the first pixel signal belonging to the first pixel signal group; and a second pixel signal different from the first pixel signal group among the plurality of pixel signal groups the fourth signal obtained immediately before the specific time belonging to the group and the second signal belonging to the group;
A fifth signal obtained immediately after the specific time belonging to the pixel signal group of is obtained, and corresponds to a second time at which the fourth signal obtained from the first signal and the second signal is obtained. a first approximate signal obtained from the ratio of the sixth signal to the first signal and the fourth signal, the first signal and the third signal;
A second approximate signal obtained from the ratio of the first signal and the seventh signal corresponding to the third time at which the fifth signal obtained from the fifth signal is obtained. Obtained, the above 1st
An interpolation signal corresponding to the specific time at which the first signal of the second pixel signal group is obtained from the approximate signal and the second approximate signal is determined. 2. The first signal is obtained by linearly approximating the signal change between the fourth time when the second signal is obtained and the specific time.
Determine the sixth signal from the signal and the second signal,
The seventh signal is obtained from the first signal and the third signal by linearly approximating the signal change between the fifth time when the third signal is obtained and the specific time. A solid-state imaging device according to claim 1, characterized in that: 3. The solid-state imaging device according to claim 1, wherein the interpolation signal is a signal corresponding to an average value of the first approximation signal and the second approximation signal. 4. A signal obtained by amplifying the first approximate signal with an amplification factor corresponding to the difference between the third time at which the fifth signal is obtained and the specific time, and the second approximate signal are amplified by the fourth approximation signal. Claim 1, characterized in that the interpolation signal is obtained by adding the second time at which the signal is obtained and a signal amplified with an amplification factor corresponding to the difference between the specific time and the specific time. solid-state imaging device. 5. Obtain a first difference between the second signal and the first signal and a second difference between the third signal and the first signal, and convert the first approximate signal to the second signal. A signal amplified with an amplification factor corresponding to the magnitude obtained by dividing the difference by the sum of the first difference and the second difference, and the second approximate signal.
and a signal amplified by an amplification factor corresponding to the magnitude divided by the sum of the second difference and the interpolated signal is obtained by adding the signal amplified by an amplification factor corresponding to the magnitude divided by the sum of the difference and the second difference. Imaging device. 6. When the first difference and the second difference are both 0, a signal corresponding to 1/2 of the sum signal of the first approximation signal and the second approximation signal is used as the interpolation signal. A solid-state imaging device according to claim 5, characterized in that:
JP60066466A 1985-04-01 1985-04-01 Solid-state imaging device Expired - Lifetime JP2619355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60066466A JP2619355B2 (en) 1985-04-01 1985-04-01 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60066466A JP2619355B2 (en) 1985-04-01 1985-04-01 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JPS61227492A true JPS61227492A (en) 1986-10-09
JP2619355B2 JP2619355B2 (en) 1997-06-11

Family

ID=13316583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60066466A Expired - Lifetime JP2619355B2 (en) 1985-04-01 1985-04-01 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP2619355B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302660A (en) * 1987-06-02 1988-12-09 Toshiba Corp Input device for color picture
US6218072B1 (en) * 1997-11-20 2001-04-17 Taiyo Yuden Co., Ltd. Optical information recording medium
US6630956B1 (en) 1998-04-16 2003-10-07 Nec Corporation Device and method for processing color signals employing vector operation color space conversion means

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302660A (en) * 1987-06-02 1988-12-09 Toshiba Corp Input device for color picture
US6218072B1 (en) * 1997-11-20 2001-04-17 Taiyo Yuden Co., Ltd. Optical information recording medium
US6630956B1 (en) 1998-04-16 2003-10-07 Nec Corporation Device and method for processing color signals employing vector operation color space conversion means

Also Published As

Publication number Publication date
JP2619355B2 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
JPH0720265B2 (en) Video signal processing circuit
EP1187491B1 (en) Horizontal contour signal generation circuit in a color camera
JP2010211773A (en) Image process apparatus, image process method and computer program
JPH03124190A (en) Device and method for interpolating signal
JPS61227492A (en) Solid-state image pickup device
JPS5821989A (en) Color solid-state image pickup device
JPH05191830A (en) Motion-adaptation type y/c separator
JP3126743B2 (en) Signal interpolator
JPH11243554A (en) Signal interpolation method for single-plate color camera
JPH0715734A (en) Signal processing circuit for solid-state image pickup element
JPS6065681A (en) Dynamic information detecting system of picture
JPS58143675A (en) Solid-state image pickup device
JPS61193588A (en) Solid-state image pickup device
JPS62213496A (en) Solid-state image pickup device
JPH01143482A (en) Solid-state image pickup device
JPS63122390A (en) Color separating circuit
JPH09214989A (en) Signal interpolating method for image signal
JP3127871B2 (en) Color camera color signal processing apparatus and color camera color signal processing method
JPH08275185A (en) Contour correction circuit
JP2001086516A (en) Image pickup device
JPS6225589A (en) Detector circuit for moving vector
SU1686467A1 (en) Device for filtering of object images
JPH1098734A (en) Signal interpolating method for single-ccd color camera
JPH02166988A (en) Solid-state color camera
JPH0736625B2 (en) Motion detection circuit

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term