JPS61227413A - Differential amplifier circuit - Google Patents

Differential amplifier circuit

Info

Publication number
JPS61227413A
JPS61227413A JP60068249A JP6824985A JPS61227413A JP S61227413 A JPS61227413 A JP S61227413A JP 60068249 A JP60068249 A JP 60068249A JP 6824985 A JP6824985 A JP 6824985A JP S61227413 A JPS61227413 A JP S61227413A
Authority
JP
Japan
Prior art keywords
differential amplifier
input signal
phase
capacitor
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60068249A
Other languages
Japanese (ja)
Other versions
JPH0340529B2 (en
Inventor
Katsuya Ishikawa
勝哉 石川
Chikara Tsuchiya
主税 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60068249A priority Critical patent/JPS61227413A/en
Publication of JPS61227413A publication Critical patent/JPS61227413A/en
Publication of JPH0340529B2 publication Critical patent/JPH0340529B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)

Abstract

PURPOSE:To match the phase of an output signal with high accuracy by applying a signal being the result of voltage division to an input signal to a connecting point between both emitter resistors of a couple of transistors (TR) being components of a differential amplifier via a capacitor. CONSTITUTION:The input signal Vin is divided by a resistor R8 and fed to a connecting point between both emitter resistors RB1 and RB2 via capacitors C1 and Cc. Actually the divided input signal is fed to a buffer TR Q6 and a coupling capacitor Co. The capacitor C1 is selected so that its capacitance value is large enough to neglect its AC impedance. The output of the differential amplifier is balanced by adjusting the voltage dividing ratio. Even when the variance in the element characteristic of the differential amplifier subjected to circuit integration exists, it is possible to balance the amplitude and phase characteristics of the output signals.

Description

【発明の詳細な説明】 〔概 要〕 シングル入力の差動増幅回路であって、差動接続された
トランジスタの両エミッタ抵抗の接続点に入力信号を分
圧して結合容量を介して印加し、差動出力間の周波数特
性等のバランスを調整する。
[Detailed Description of the Invention] [Summary] This is a single-input differential amplifier circuit, which divides an input signal and applies the divided voltage to the connection point between both emitter resistors of differentially connected transistors via a coupling capacitor. Adjust the balance of frequency characteristics, etc. between differential outputs.

〔産業上の利用分野〕[Industrial application field]

本発明はシングル入力を差動出力化する回路に係り、特
に差動出力間の周波数特性のバランスを調整する回路構
成に関する。
The present invention relates to a circuit that converts a single input into differential outputs, and particularly relates to a circuit configuration that adjusts the balance of frequency characteristics between differential outputs.

〔従来の技術〕[Conventional technology]

シングル入力信号をそれと同相及び逆相の差動信号に変
換する方法として、差動回路の片方入力に信号を入れ、
もう一方をAC的に接地する方法がある。
As a method of converting a single input signal into a differential signal with the same phase and opposite phase, input the signal to one input of the differential circuit,
There is a way to ground the other end in an AC way.

第5図にその回路を示しておシ、トランジスタ(h 、
 Chで差動構成とし、VeI&t 1 、 Vaut
 Z K差動信号を出力する。入力はトランジスタQ1
のベースにVinのみから行ない、トランジスタQ、の
方は抵抗R4゜RIJで分圧してバイアスを与えている
が、交流的にみれば接地された形と表っている。バラン
スがとれた差動出力を得るために、負荷のR1,1,=
RIJ tエミッタ抵抗R11”RIHとなされる。さ
らに、振幅のみでなく位相特性がVeut 1とVOμ
t2で1800 ずれているつまり反対位相であること
が要求される。
Figure 5 shows the circuit.
Ch has a differential configuration, VeI & t 1 , Vout
Outputs ZK differential signal. Input is transistor Q1
The base of the transistor Q is biased by dividing it with a resistor R4°RIJ, but from an AC perspective, it appears to be grounded. To obtain a balanced differential output, the load R1,1,=
RIJ t emitter resistance R11''RIH.Furthermore, not only the amplitude but also the phase characteristics are Veut 1 and VOμ
It is required that the signals be out of phase by 1800 at t2, that is, have opposite phases.

ところが、定電流バイアス回路を構成するトランジスタ
Qs 、 C4のうち、トランジスタQ* 、 (hの
共通エミッタ点に接続するトランジスタQsにはC8な
るストレーキャパシタが入る。それは集積回路ではNP
N )ランジスタのコレクタと基板(GND)間に構造
上ストレーキャパシタ(C8)として約1pF程度の寄
生容量が入るからである。
However, among the transistors Qs and C4 that constitute the constant current bias circuit, a stray capacitor C8 is inserted into the transistor Qs connected to the common emitter point of the transistors Q* and (h.
N) This is because a parasitic capacitance of about 1 pF is introduced as a stray capacitor (C8) between the collector of the transistor and the substrate (GND) due to the structure.

第5図の回路においては (h 、 (hにも図示のストレーキャパシタC8が入
るが、これはバランスしているから出力の位相ずれに関
与しない。
In the circuit of FIG. 5, the stray capacitor C8 shown in the figure is also included in (h, (h), but since it is balanced, it does not contribute to the phase shift of the output.

式(1)(2)から明らかなように低周波ではr。、t
l(逆相出力)mF+*t2(同相出力)は互いに利得
は等しく位相は1800異なっているが、高周波ではr
。ui2の方が利得の低下及び位相の遅れがi’out
 1に比べて大きくなシ、両者のバランスが悪くなって
しまう。
As is clear from equations (1) and (2), r at low frequencies. ,t
l (anti-phase output) mF + *t2 (in-phase output) have the same gain and phase difference of 1800, but at high frequency r
. ui2 has lower gain and phase delay than i'out
If it is larger than 1, the balance between the two will be poor.

これを改善する回路として、本発明者による先の提案の
第4図の構成がある。図において第5図と同一部分には
同一符号で指示しである。
As a circuit for improving this, there is a configuration shown in FIG. 4 proposed earlier by the present inventor. In the figure, the same parts as in FIG. 5 are indicated by the same reference numerals.

この回路は入力信号Vi、をストレーキャパシタC8と
ほぼ等しい値の結合容量C0を介して定電流バイアス回
路Q1のコレクタへ印加するものである。
This circuit applies an input signal Vi to the collector of a constant current bias circuit Q1 via a coupling capacitance C0 having approximately the same value as a stray capacitor C8.

なお、同回路において、トランジスタQ6は入力バツ7
アであ’)、Qwはこれに定電流バイアスするトランジ
スタであって本質的なものでない。
In addition, in the same circuit, the transistor Q6 is connected to the input
A') Qw is a transistor that applies a constant current bias to this, and is not essential.

Vi、と’out 1 s ’age 2の関係は次の
ようになる。
The relationship between Vi and 'out 1 s 'age 2 is as follows.

のごとく表わしている。It is expressed as follows.

co=C1lとすると、式(3)、(4)は等しくなり
、Vaut IVaaht2のバランスがとれることに
なる。
When co=C1l, equations (3) and (4) become equal, and Vout IVaaht2 is balanced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、第4図の回路では同相と逆相の位相マツチを高
精度に合わせる場合、構造の異なる2つの容量C8C0
の容量比を高精度で合せる必要があシ、例えばRt=3
にΩ、C8−1pF とすると、同相と逆相差180±
1度を実現するには、C0をCl1O±221以内で設
計しなければならなかった。しかし、これは実際上にお
いてはかなシ困難なことである。
However, in the circuit shown in Figure 4, when the in-phase and anti-phase phase matches are to be made with high precision, two capacitors C8C0 with different structures are required.
It is necessary to match the capacitance ratio with high precision, for example, Rt=3
Ω and C8-1pF, the in-phase and anti-phase difference is 180±
To achieve 1 degree, C0 had to be designed within Cl1O±221. However, this is difficult to achieve in practice.

本発明は、この問題を解決し、ラフな設計においても高
精度で位相合せすることを目的とする。
The present invention aims to solve this problem and achieve highly accurate phase matching even in a rough design.

〔問題点を解決する手段〕[Means to solve problems]

本発明においては、差動増幅器の一方を交流的に接地し
、もう一方に入力信号を加える差動増幅器において、差
動増幅器を構成する一対のトランジスタの両エミッタ抵
抗の接続点に前記入力信号を分圧した信号を容量を介し
て加えるごとくなす。
In the present invention, in a differential amplifier in which one side of the differential amplifier is AC grounded and an input signal is applied to the other side, the input signal is applied to the connection point between both emitter resistances of a pair of transistors constituting the differential amplifier. The voltage-divided signal is applied via the capacitor.

〔作 用〕[For production]

上記によれば、差動増幅器を構成する一対のトランジス
タの両エミッタ抵抗の接続点に入力信号を分圧して加え
る際、その分圧比を調整することにより差動増幅器の出
力(F、あt 1 、 Vaut2)を広範囲にわたっ
て調整可能になる。
According to the above, when an input signal is divided into voltages and applied to the connection point between both emitter resistors of a pair of transistors constituting a differential amplifier, the output (F, at 1 , Vout2) can be adjusted over a wide range.

〔実施例〕〔Example〕

第1図に本発明の一実施例の回路構成を表わしており、
先の第4図及び第5図と同一部分には同一符号で指示し
である。図において、第5図の回に加えている。なお実
際には図示のバッファのトランジスタQs e結合容量
C0を介して分圧入力信号が印加される。ここで容量C
rはその容量値が大きく交流インピーダンスが無視でき
る位小さくなし、抵抗R8の分圧比をkとする。。
FIG. 1 shows the circuit configuration of an embodiment of the present invention.
The same parts as in FIGS. 4 and 5 are designated by the same reference numerals. In the figure, it has been added to the times in Figure 5. Note that in reality, a divided voltage input signal is applied via the transistor Qse coupling capacitor C0 of the illustrated buffer. Here, the capacity C
Let r have a large capacitance value and be so small that the AC impedance can be ignored, and k is the voltage division ratio of the resistor R8. .

その時第1図の交流等価回路は第2図に表わすようにな
る。これを用いて、以下にVin + Vaut 1の
関係を求める。
At that time, the AC equivalent circuit of FIG. 1 becomes as shown in FIG. 2. Using this, the relationship between Vin + Vout 1 is determined below.

Veui 1 =−(R)1 /CB ) i#1また
、次の関係式も成シ立つ。
Veui 1 =-(R) 1 /CB ) i#1 Furthermore, the following relational expression also holds true.

Rml = R,、= R1t RLI = RLとす
ると(町(6)式はとなる。
If Rml = R, , = R1t RLI = RL, then the formula (6) becomes.

式(8)をrea寓について解くと、 となシ、式(9)を式(7)に代入すると’in e 
Vout 1の関係式が求まる。
Solving equation (8) for rea, we get 'in e', and substituting equation (9) into equation (7), 'in e
The relational expression for Vout 1 is found.

CCaCa”lCo + kR* Cm ) ’in一
方、Vaut2 についても同様にして次のように得ら
れる。
CCaCa"lCo + kR* Cm)'in Meanwhile, Vout2 can be obtained in the same manner as follows.

ここで抵抗8の分圧比に=0とすれば、従来回路(第5
図)と同じであ’) 、Vine Vautの関係は先
の(3)、(4)式に等しくなる。
Here, if the voltage division ratio of resistor 8 is set to 0, then the conventional circuit (fifth
The relationship between Vine Vout and Vine Vout is the same as that shown in Figure 1.

また、k←0(&≦1)とすると、αl、am)式から
明らかなように利得の差及び位相差が小さくなる。従っ
て、素子特性がばらついてもkを変えることにより 、
Vent 1とVaut2のバランスを調整することが
できる。
Furthermore, when k←0 (&≦1), the difference in gain and the phase difference become smaller, as is clear from the equation αl, am). Therefore, even if the element characteristics vary, by changing k,
The balance between Vent 1 and Vout 2 can be adjusted.

上記+111 an式をもとに08の値と、Vout 
1 、 Vout 2の位相差を最小にするkの値を以
下に示す。
Based on the above +111 an formula, the value of 08 and Vout
The value of k that minimizes the phase difference between 1 and Vout 2 is shown below.

条件として、 結合コンデンサ C6=2.0ρF エミツタ抵抗   4士3にΩ 周波数   f =4.2MHz とすると、次のようになる。As a condition, Coupling capacitor C6=2.0ρF Emitsuta resistance 4 to 3 Ω Frequency f = 4.2MHz Then, it becomes as follows.

ζこでCoを一定にしてCsが変わる場合に分圧比kを
調整するように示したが、その逆でC8が一定で00が
変わると考えても同様に分圧比にの調整でVaut 1
 + Vaut2の調整をとることができる。
ζHere, we have shown that the partial pressure ratio k should be adjusted when Cs changes while keeping Co constant, but even if we consider that C8 is constant and 00 changes, Vout 1 can be similarly adjusted by adjusting the partial pressure ratio.
+ Vout2 can be adjusted.

実際にはCS、C0の両方とも容量値にバラツキが生じ
、従来法では出力Vaut 1 、 Vout 2のバ
ランスをとることは容易でなかったが、本実施例では、
これが可能となる。
In reality, variations occur in the capacitance values of both CS and C0, and it was not easy to balance the outputs Vout 1 and Vout 2 in the conventional method, but in this example,
This becomes possible.

第1図においては信号分割(抵抗Rs )を集積回路外
で行なっているが、容量比Ccsとco)が確定してい
れば第5図のごとく信号分割CTo’f L RH)を
集積回路内部で行うようにしても良い。また、抵抗Rf
?、R□の比を集積回路形成後トリミングにより調整す
るようにしても良い。
In Fig. 1, the signal division (resistance Rs) is performed outside the integrated circuit, but if the capacitance ratio Ccs and co) is determined, the signal division CTo'f L RH) can be performed inside the integrated circuit as shown in Fig. 5. You may also do this using Also, the resistance Rf
? , R□ may be adjusted by trimming after forming the integrated circuit.

〔発明の効果〕〔Effect of the invention〕

以上から明らかなごとく、本発明によれば差動増幅器の
一方の入力を交流的に接地し、もう一方に入力信号を加
える差動増幅器において、両エミッタ抵抗の接地点に前
記入力信号を分圧した信号を加えるようにし、その際、
分圧比を調整することによって差動増幅器の出力のバラ
ンスをとることができる。特に本発明によれば、従来に
おいてはむずかしかった集積回路化された差動増幅器の
素子特性のバラツキがある場合においても前記入力信号
の分圧比の調整によシ出力信号の振幅及び位相特性のバ
ランスをとることが可能になる。
As is clear from the above, according to the present invention, in a differential amplifier in which one input of the differential amplifier is AC-grounded and an input signal is applied to the other, the input signal is applied to the ground point of both emitter resistors. Add a signal that is
By adjusting the voltage division ratio, the output of the differential amplifier can be balanced. In particular, according to the present invention, even if there are variations in the element characteristics of a differential amplifier integrated as an integrated circuit, which was difficult in the past, it is possible to balance the amplitude and phase characteristics of the output signal by adjusting the voltage division ratio of the input signal. It becomes possible to take

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の回路図、 第2図は本発明の実施例の等価回路回、第3図は本発明
の他の実施例の回路図、第4図は従来例の回路図、 第5図は他の従来例の回路図である。 Q、〜Q?・・・トランジスタ RIl、Rゎ・・・エミッタ抵抗 co・・・結合コンデンサ(容量) C8・・・ストレーキャパシタ
Fig. 1 is a circuit diagram of an embodiment of the present invention, Fig. 2 is an equivalent circuit diagram of an embodiment of the present invention, Fig. 3 is a circuit diagram of another embodiment of the invention, and Fig. 4 is a circuit diagram of a conventional example. FIG. 5 is a circuit diagram of another conventional example. Q, ~Q? ...Transistors RIl, Rゎ...Emitter resistance co...Coupling capacitor (capacitance) C8...Stray capacitor

Claims (1)

【特許請求の範囲】 差動増幅器の入力の一方を交流的に接地し、もう一方の
入力に入力信号を加える差動増幅回路において、 前記入力信号の分圧手段を備え、その分圧信号を結合容
量を介して差動増幅器の差動トランジスタの両エミッタ
抵抗の接続点に接続してなることを特徴とする差動増幅
回路。
[Claims] A differential amplifier circuit in which one of the inputs of the differential amplifier is AC grounded and an input signal is applied to the other input, comprising a voltage dividing means for the input signal, and a voltage dividing means for the input signal, and a voltage dividing means for dividing the input signal. A differential amplifier circuit characterized in that the differential amplifier circuit is connected to a connection point between both emitter resistors of a differential transistor of a differential amplifier via a coupling capacitor.
JP60068249A 1985-03-30 1985-03-30 Differential amplifier circuit Granted JPS61227413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60068249A JPS61227413A (en) 1985-03-30 1985-03-30 Differential amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60068249A JPS61227413A (en) 1985-03-30 1985-03-30 Differential amplifier circuit

Publications (2)

Publication Number Publication Date
JPS61227413A true JPS61227413A (en) 1986-10-09
JPH0340529B2 JPH0340529B2 (en) 1991-06-19

Family

ID=13368297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60068249A Granted JPS61227413A (en) 1985-03-30 1985-03-30 Differential amplifier circuit

Country Status (1)

Country Link
JP (1) JPS61227413A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5453718A (en) * 1993-09-24 1995-09-26 Mitsubishi Denki Kabushiki Kaisha Differential amplifier for reducing input capacitance without deterorating noise characteristics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5453718A (en) * 1993-09-24 1995-09-26 Mitsubishi Denki Kabushiki Kaisha Differential amplifier for reducing input capacitance without deterorating noise characteristics

Also Published As

Publication number Publication date
JPH0340529B2 (en) 1991-06-19

Similar Documents

Publication Publication Date Title
JPS6244443B2 (en)
JPS61227413A (en) Differential amplifier circuit
JPS5931048Y2 (en) low noise amplifier
JPH0478207B2 (en)
US4675616A (en) Second order all pass network
JPH06310938A (en) Phase shift circuit
JPS61285813A (en) Phase split circuit
EP0755115A1 (en) Active low pass filter
JPS6348980Y2 (en)
JPH10198909A (en) Magnetic information readout device
JPH04165801A (en) Differential amplifier circuit
JP2919487B2 (en) Integrator and active filter
JPS636887Y2 (en)
JPH0212745Y2 (en)
JPH0114726B2 (en)
JPH04172004A (en) Differential circuit
JPH0154884B2 (en)
JPS61169010A (en) Mutual conductance amplifier
JPS60261209A (en) Ic-converted stable resistance circuit
JPH0448019Y2 (en)
JPH0257730B2 (en)
JPH0619216Y2 (en) Active filter circuit
JP2736081B2 (en) Active filter circuit
JPH02288411A (en) Integrated filter circuit having band-pass characteristics
JPS5821223Y2 (en) radio receiver