JPS61227368A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS61227368A
JPS61227368A JP60066685A JP6668585A JPS61227368A JP S61227368 A JPS61227368 A JP S61227368A JP 60066685 A JP60066685 A JP 60066685A JP 6668585 A JP6668585 A JP 6668585A JP S61227368 A JPS61227368 A JP S61227368A
Authority
JP
Japan
Prior art keywords
electrode
film
thermoplastic resin
fuel cell
ribbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60066685A
Other languages
Japanese (ja)
Inventor
Kiyotaro Iyasu
巨太郎 居安
Nobuyoshi Umiga
信好 海賀
Hideyuki Nara
奈良 英幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60066685A priority Critical patent/JPS61227368A/en
Publication of JPS61227368A publication Critical patent/JPS61227368A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To maintain stable performance of a fuel cell over a long period by using a thermoplastic resin film in each rib electrode so as to prevent its warping. CONSTITUTION:A thermoplastic resin film 4 is heated and pressed into a peripheral region in the end section 2a of the rib electrode 2 of each cell unit to form a gas seal section having an I-shaped cross section. Due to the I-shaped cross section, this gas seal section has minimal stress concentration and therefore warping of the rib electrode 2 is almost prevented as compared to the conventional rib electrode thereby maintaining stable performance over a long period. Since the film 4 does not protrude from the end surface of the electrode base as distinct from the conventional method of directly sealing the end surface, rib electrodes 2 can be easily stacked together.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、特にリブ付電極の端部周辺部における気密性
を向上させ得ようにした燃料電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel cell in which airtightness can be improved, particularly around the ends of ribbed electrodes.

(発明の技術的背景とその問題点〕 従来、燃料の有しているエネルギーを直接電気エネルギ
ーに変換する装置として燃料電池が知られている。リブ
付電極型の燃料電池スタック10は、第6図に示すよう
に、電解質としてリン酸を含浸したマトリックス1をは
さんで互いに直行する方向に溝5が規則的に複数本平行
に設けられた通常炭素材から成る一対のリブ付電極2を
配置して単位セル6を構成し、この単位セル6をセパレ
ーター3を介して複数積層して構成している。
(Technical background of the invention and its problems) Fuel cells are conventionally known as devices that directly convert energy contained in fuel into electrical energy.The ribbed electrode type fuel cell stack 10 As shown in the figure, a pair of ribbed electrodes 2 made of normal carbon material are arranged with a matrix 1 impregnated with phosphoric acid as an electrolyte sandwiched by a plurality of grooves 5 regularly arranged in parallel in directions perpendicular to each other. A unit cell 6 is constructed by stacking a plurality of unit cells 6 with separators 3 interposed therebetween.

ところでリブ付電極2は平均径数10ミクロン程度の細
孔を有する多孔質体であるために、第7図に示す様にリ
ークAにより流体燃料Bおよび流体酸化剤Cとがクロス
オーバーを起し、ついには。
By the way, since the ribbed electrode 2 is a porous body having pores with an average diameter of about 10 microns, the leakage A causes crossover between the fluid fuel B and the fluid oxidizer C, as shown in FIG. ,Finally.

燃料゛電池の運転ができなくなる危険性がある。このた
め、両端部からガス拡散漏洩を防止するためにガスシー
ルがほどこされている。このシール方法の一つとして、
リブ付電極2の端部2aに耐熱、耐リン酸性のフィルム
を加熱圧入する方法がある。
There is a risk that the fuel cell will not be able to operate. For this reason, gas seals are provided from both ends to prevent gas diffusion and leakage. As one of these sealing methods,
There is a method in which a heat-resistant, phosphoric acid-resistant film is heated and press-fitted onto the end portion 2a of the ribbed electrode 2.

このフィルムの加熱圧入方法は、第8図に示す様に、コ
の字型の熱可塑性樹脂フィルム4を、リブ付電極2の端
部に配置し、加熱しながら上下面からフィルムを圧入す
る方法で、比較的、簡単にシールすることができ、シー
ル性もすぐれている。
As shown in Fig. 8, this film is heated and press-fitted by placing a U-shaped thermoplastic resin film 4 at the end of the ribbed electrode 2, and press-fitting the film from the top and bottom while heating. It can be sealed relatively easily and has excellent sealing properties.

しかし、この方法で形成したフィルムは、加熱圧入後の
温度の低下に従って電極に反りが発生する。
However, in the film formed by this method, the electrode warps as the temperature decreases after heating and press-fitting.

この状態では電池の積層が困難となる。In this state, it becomes difficult to stack the batteries.

この反りの原因について種々調べた結果、フィルムと電
極基材との線熱膨張の差により、一部に応力が集中する
ために反りが発生することがわかった。この様に、従来
のシール方法を用いた構造においては、長期にわたって
安定したシール機能を維持することには問題があり、よ
り信頼性の高いシール構造が望まれていた。
As a result of various investigations into the causes of this warping, it was found that warping occurs because stress is concentrated in a portion due to the difference in linear thermal expansion between the film and the electrode base material. As described above, structures using conventional sealing methods have problems in maintaining a stable sealing function over a long period of time, and a more reliable sealing structure has been desired.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、リブ付電極端部のガスシール構造を改
良し、信頼性を向上させた燃料電池を提供することにあ
る。
An object of the present invention is to provide a fuel cell with improved reliability by improving the gas seal structure of the ribbed electrode end.

〔発明の概要〕[Summary of the invention]

本発明による燃料電池は、電解質を含浸したマトリック
スを挟んで流体燃料または斜体酸化剤が通るリブ状の流
通路が形成された一対のリブ付電極を配置して単位セル
を構成し、この単位セルをセパレーターを介して複数積
層して構成した燃料電池スタックにおいて、上記リブ付
電極の端部周辺部に1型に加熱圧入して熱可塑性樹脂フ
ィルムを形成したことにより、リブ付電極端部からのリ
ーフを防止し、かつ熱可塑性樹脂フィルムによる応力集
中が起らないようにしたことを特徴とする。
In the fuel cell according to the present invention, a unit cell is constructed by arranging a pair of ribbed electrodes in which a rib-like flow path through which a fluid fuel or a diagonal oxidizer passes, sandwiching a matrix impregnated with an electrolyte. In a fuel cell stack constructed by laminating a plurality of layers with separators interposed therebetween, a thermoplastic resin film is formed by heating and press-fitting mold 1 around the end of the ribbed electrode, thereby reducing the amount of water from the end of the ribbed electrode. It is characterized by preventing leaves and preventing stress concentration from occurring due to the thermoplastic resin film.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面に示す一実施例について説明する。 An embodiment of the present invention shown in the drawings will be described below.

第1図は本発明による燃料電池における単位セルのリブ
付電極2の構成例を示したものである。すなわち単位セ
ル6におけるリブ付電極この端部2aの周辺部に、熱可
塑性樹脂フィルム4を1型に加熱、圧入、してガスシー
ル部を構成するようにしたものである。ここで、熱可塑
性樹脂フィルム4としては、耐圧、耐リン酸性を有する
ものであれば良く、好ましくはPTFE、PFA、FE
P等のフッ素系樹脂である。その厚さとしては、0.0
1〜1閣程度のものを使用する。
FIG. 1 shows an example of the configuration of a ribbed electrode 2 of a unit cell in a fuel cell according to the present invention. That is, a thermoplastic resin film 4 is heated and press-fitted into the periphery of the end portion 2a of the ribbed electrode in the unit cell 6 to form a gas seal portion. Here, the thermoplastic resin film 4 may be any material as long as it has pressure resistance and phosphoric acid resistance, and is preferably made of PTFE, PFA, or FE.
It is a fluororesin such as P. Its thickness is 0.0
Use one of about 1 to 1 kaku.

一方、リブ付電極2の端部2aに熱可塑性樹脂フィルム
4を、■型に加熱、圧入する方法としては。
On the other hand, as a method of heating and press-fitting the thermoplastic resin film 4 into the end portion 2a of the ribbed electrode 2 in a ■ shape.

例えば第2図に示す様にリブ付電極2の端部にスリット
7を設け、熱可塑性樹脂フィルム4をその略中心がスリ
ット7に位置するように上下面に配置し、フィルム4部
分をフィルムの融点以上に加熱して熔融させた後、上下
面から2〜35kg/a#の圧力で1分間以上加圧する
。加圧により、熔融したフィルムはスリット7内に入り
、さらにスリット7の周辺および残肉部分にも含浸し、
ついには上下面からのフィルム4が面としてつなガる。
For example, as shown in FIG. 2, a slit 7 is provided at the end of the ribbed electrode 2, and a thermoplastic resin film 4 is placed on the upper and lower surfaces so that its approximate center is located in the slit 7. After melting by heating above the melting point, pressure is applied from the upper and lower surfaces at a pressure of 2 to 35 kg/a# for 1 minute or more. By applying pressure, the melted film enters the slit 7 and further impregnates the periphery of the slit 7 and the remaining thickness,
Finally, the films 4 from the upper and lower surfaces are connected as a surface.

また、同時に一部のフィルムは上下面の表面から含浸し
、左右の電極基材で固定されるため、フィルムの収縮応
力を残した状態ではあるが結果的には。
At the same time, part of the film is impregnated from the top and bottom surfaces and fixed by the left and right electrode base materials, so the shrinkage stress of the film remains, but as a result.

上下、左右のバランスのとれた1型となる。It is a type 1 that is well balanced vertically and horizontally.

このように、熱可塑性樹脂フィルム4を、応力集中の少
ない■型に加熱、圧入してシールすることにより、従来
のものと比べて反りはほとんど見られず長期的にも安定
した性能を維持できることが確認できた。また、従来の
ように端面を直接シールする方式ではないため、フィル
ム4による出張りはなく、端面は電極基材そのものの直
角、平行が保たれているため積層しやすい利点がある。
In this way, by heating, press-fitting and sealing the thermoplastic resin film 4 into the shape with less stress concentration, it is possible to maintain stable performance over a long period of time with almost no warpage compared to conventional films. was confirmed. In addition, since the end face is not directly sealed as in the conventional method, there is no protrusion due to the film 4, and the end face is kept perpendicular and parallel to the electrode base material itself, so there is an advantage that lamination is easy.

ここで、スリット7の幅は0.01〜1■程度である。Here, the width of the slit 7 is about 0.01 to 1 square.

1−以上ではフィルム4の収縮が大きく、スリット7の
上部のフィルム部にくぼみが生じる。
If it is 1- or more, the shrinkage of the film 4 is large, and a depression is formed in the film portion above the slit 7.

さらに電極の反り、および割れも発生する恐れがある。Furthermore, there is a risk that the electrode may warp and crack.

また、 0.01m以下ではフィルム4の入る量が少な
くシールが不充分となる。スリット7の深さは、電極の
残肉が0.2m以上になる程度の深さである。
Furthermore, if the length is less than 0.01 m, the amount of film 4 that can be inserted will be small and the seal will be insufficient. The depth of the slit 7 is such that the remaining thickness of the electrode is 0.2 m or more.

なお、実施例の第2図では、スリット7が上下面の二方
向から、お互いに等しい幅、深さで行なったが、異なる
幅、深さでも良い。また、電極2の残肉2′が0.2m
5t以上ならば、スリット7は片面からだけでも良く、
同様の効果が得られるゆ熱可塑性樹脂フィルム4を1型
に加熱、圧入する位置は端部内ならどこでも良く、好ま
しくは端面と溝5との中央付近である。また、スリット
7を複数設け、フィルムを加熱、圧入すれば、さらにシ
ール効果が向上することに言までもない。
In the embodiment shown in FIG. 2, the slits 7 are formed from two directions on the upper and lower surfaces with the same width and depth, but they may have different widths and depths. Also, the remaining thickness 2' of the electrode 2 is 0.2 m.
If it is 5t or more, slit 7 can be made only from one side,
The thermoplastic resin film 4, which produces the same effect, may be heated and press-fitted into the mold 1 at any position within the end, preferably near the center between the end face and the groove 5. Moreover, it goes without saying that the sealing effect will be further improved if a plurality of slits 7 are provided and the film is heated and press-fitted.

次に熱可塑性樹脂フィルム4を形成する他の実流側につ
いて説明する。第2図の実施例では、フィルム4が電極
基材の残肉部分2′に含浸してシールするものであるが
、第3の実施例では、電極基材を介さず、上下面のフィ
ルム4が直接、面としてつながりシールするものである
。リブ付電極2の端部を2分割し、その分割した辺が中
心になる様に、熱可塑性フィルム4を上下面に配置し加
熱、圧入する方法である。フィルム4は、上下面から、
分割した面に沿って、その周辺に含浸しながら流れ、最
後に上下面のフィルムが面としてつながりシールされる
と同時に2分割した端部2aを一体化する。また、一部
は、上下面の表面から含浸して1型を形成する。2分割
する位置は、H型が形成できるならばどこでも良いが好
ましくは、端面と溝との中央付近である。
Next, the other actual flow side for forming the thermoplastic resin film 4 will be explained. In the embodiment shown in FIG. 2, the film 4 impregnates and seals the remaining thickness 2' of the electrode base material, but in the third embodiment, the film 4 on the upper and lower surfaces is impregnated without intervening the electrode base material. are directly connected as a surface and sealed. This is a method in which the end of the ribbed electrode 2 is divided into two parts, and thermoplastic films 4 are placed on the upper and lower surfaces so that the divided sides become the center, and heated and press-fitted. From the top and bottom of the film 4,
It flows along the divided surface while impregnating the periphery thereof, and finally the upper and lower films are connected as a surface and sealed, and at the same time, the two divided ends 2a are integrated. In addition, a part is impregnated from the upper and lower surfaces to form the first type. The position of dividing into two may be anywhere as long as an H-shape can be formed, but preferably near the center between the end face and the groove.

この方法では、分割面に沿ってフィルムが流れ、上下面
のフィルム同志が直接、面としてつながるのでシール性
は良好である。しかし、フィルム圧入時に分割した南端
部が移動しない様に、端面方向から押し付ける必要があ
る。
In this method, the film flows along the dividing plane, and the films on the upper and lower surfaces are directly connected to each other as a surface, so that the sealing performance is good. However, in order to prevent the divided southern end from moving when the film is press-fitted, it is necessary to press from the end face direction.

第4図はさらにシール性を確実にするため、あらかじめ
フィルムでシール面を確保したものでリブ付電極2の端
部を2分割し、分割した端部の相対する側に、あらかじ
めコの字型の熱可塑性樹脂フィルム4をお互いに配置し
、上下面から加熱、圧入する方法である。フィルムを熔
融後、圧入すれば圧入とほぼ同時にI型のシール構造が
形成されるとともに一体化されるため反りは起らない。
In Fig. 4, in order to further ensure the sealing performance, the end of the ribbed electrode 2 is divided into two parts using a film to secure the sealing surface in advance. In this method, the thermoplastic resin films 4 of 2 are placed on each other, heated and press-fitted from the upper and lower surfaces. When the film is melted and then press-fitted, an I-shaped seal structure is formed almost simultaneously with the press-fitting and is integrated, so no warpage occurs.

フィルムをコの字型に加工するのに時間を要するが、シ
ール性は、より確実である。
Although it takes time to process the film into a U-shape, the sealing performance is more reliable.

第5図はシール性と作業性を向上させるためあらかじめ
押し出し注型等によって作られた1型の熱可塑性樹脂フ
ィルム4を用い、リブ付電極2の端部と分割した端部と
をそれぞれ1型フィルムに挟み込み、加熱、圧入する方
法である。圧入とほぼ同時に1型のシール構造が形成さ
れるとともに両者が一体化される。この方法では、あら
かじめ押し出し注型等によって得られた1型のフィルム
が必要となるが作業性は良くシール性は完全である。
In Fig. 5, in order to improve sealing performance and workability, a thermoplastic resin film 4 of 1 type made in advance by extrusion casting, etc. is used, and the end of the ribbed electrode 2 and the divided end are each made of 1 type. This method involves sandwiching it between films, heating it, and press-fitting it. Almost simultaneously with press-fitting, a type 1 seal structure is formed and both are integrated. This method requires a type 1 film obtained in advance by extrusion casting or the like, but it is easy to work with and has perfect sealing properties.

〔発明の効果〕〔Effect of the invention〕

以上の様に、本発明によれば、端部に係るガスシール構
造の熱可塑性樹脂フィルムを形成したリブ付電極を用い
ることにより、熱可塑性フィルムによる反りはなく、結
果的には安定した性能を長期間維持できる。すなわち、
信頼性、寿命特性の向上を期待することができる。
As described above, according to the present invention, by using a ribbed electrode formed with a thermoplastic resin film having a gas-sealed structure at the end, there is no warpage caused by the thermoplastic film, and as a result, stable performance can be achieved. Can be maintained for a long time. That is,
Improvements in reliability and life characteristics can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の燃料電池に使用するリブ付電極端部
を示す斜視図、第2図ないし第5図は本発明に使用する
リブ付電極の端部に熱可塑性フィルムを形成する方法を
説明するためのそれぞれ異なる断面図、第6図は燃料電
池の構成例を示す縦断斜視図、第7図は従来の燃料電池
の電極端部の構成例を示す断面図、第8図は、従来の燃
料電池の電極端部の斜視図である。 1・・・マトリックス   2・・・リブ付電極3・・
・セパレーター 4・・・熱可塑性樹脂フィルム 5・・・ガス溝      6・・・単位セルフ・・・
スリット IO・・・燃料電池スタック (8733)  代理人 弁理士 猪 股 祥 晃(ほ
か1名) 第1図 第  3  図 第  4  図 第  5  図 第  6  図
FIG. 1 is a perspective view showing the end of the ribbed electrode used in the fuel cell of the present invention, and FIGS. 2 to 5 show a method of forming a thermoplastic film on the end of the ribbed electrode used in the present invention. 6 is a vertical perspective view showing an example of the structure of a fuel cell, FIG. 7 is a sectional view showing an example of the structure of an electrode end of a conventional fuel cell, and FIG. FIG. 2 is a perspective view of an electrode end of a conventional fuel cell. 1... Matrix 2... Ribbed electrode 3...
・Separator 4...Thermoplastic resin film 5...Gas groove 6...Unit self...
Slit IO...Fuel cell stack (8733) Agent Patent attorney Yoshiaki Inomata (and 1 other person) Figure 1 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 電解質を含浸したマトリックスを挟んで、流体燃料また
は流体酸化剤が通るリブ状の流通路が形成された一対の
リブ付電極を配置して単位セルを構成し、この単位セル
をセパレーターを介して複数積層して構成した燃料電池
スタックにおいて、前記リブ付電極の端部周辺部にガス
シールするためのI型に加熱圧入した熱可塑性樹脂フィ
ルムを形成したことを特徴とする燃料電池。
A unit cell is constructed by arranging a pair of ribbed electrodes in which a rib-like flow path is formed through which a fluid fuel or a fluid oxidizer passes, sandwiching a matrix impregnated with an electrolyte, and this unit cell is connected to a plurality of unit cells via a separator. 1. A fuel cell stack configured by stacking the ribbed electrodes, characterized in that a thermoplastic resin film heated and press-fitted into an I-shape for gas sealing is formed around the end of the ribbed electrode.
JP60066685A 1985-04-01 1985-04-01 Fuel cell Pending JPS61227368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60066685A JPS61227368A (en) 1985-04-01 1985-04-01 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60066685A JPS61227368A (en) 1985-04-01 1985-04-01 Fuel cell

Publications (1)

Publication Number Publication Date
JPS61227368A true JPS61227368A (en) 1986-10-09

Family

ID=13323030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60066685A Pending JPS61227368A (en) 1985-04-01 1985-04-01 Fuel cell

Country Status (1)

Country Link
JP (1) JPS61227368A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288382A (en) * 1985-06-14 1986-12-18 Hitachi Ltd Fuel cell
WO2002093672A2 (en) * 2001-05-15 2002-11-21 Hydrogenics Corporation Method of forming seals in fuel cells and fuel cell stacks
US7353085B2 (en) 2003-09-22 2008-04-01 Hydrogenics Corporation Electrolyzer cell stack system
US8419910B2 (en) 2003-09-22 2013-04-16 Hydrogenics Corporation Electrolyzer cell stack system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288382A (en) * 1985-06-14 1986-12-18 Hitachi Ltd Fuel cell
JPH0473267B2 (en) * 1985-06-14 1992-11-20 Hitachi Ltd
WO2002093672A2 (en) * 2001-05-15 2002-11-21 Hydrogenics Corporation Method of forming seals in fuel cells and fuel cell stacks
WO2002093672A3 (en) * 2001-05-15 2004-04-01 Hydrogenics Corp Method of forming seals in fuel cells and fuel cell stacks
US6852439B2 (en) 2001-05-15 2005-02-08 Hydrogenics Corporation Apparatus for and method of forming seals in fuel cells and fuel cell stacks
US7138202B2 (en) 2001-05-15 2006-11-21 Hydrogenics Corporation Apparatus for and method of forming seals in fuel cells and fuel stacks
US7210220B2 (en) 2001-05-15 2007-05-01 Hydrogenics Corporation Apparatus for and method of forming seals in fuel cells and fuel stacks
US7348092B2 (en) 2001-05-15 2008-03-25 Hydrogenics Corporation Apparatus for and method of forming seals in fuel cells and fuel stacks
US7353085B2 (en) 2003-09-22 2008-04-01 Hydrogenics Corporation Electrolyzer cell stack system
US8419910B2 (en) 2003-09-22 2013-04-16 Hydrogenics Corporation Electrolyzer cell stack system
US9580825B2 (en) 2003-09-22 2017-02-28 Hydrogenics Corporation Electrolyzer cell stack system

Similar Documents

Publication Publication Date Title
KR100531049B1 (en) Fuel cell assembly
JP3489181B2 (en) Unit cell of fuel cell and method of manufacturing the same
CN100394635C (en) Polymer electrolyte fuel cell
US7153602B2 (en) Fuel cell assembly
JP3079742B2 (en) Solid polymer electrolyte fuel cell
JP2001283893A (en) Solid polymer fuel cell stack
JP2008171613A (en) Fuel cells
JP6618762B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cell and production method thereof
JPH07235314A (en) Cell for solid high polymer fuel cell and its manufacture
JP2009105009A (en) Fuel cell and manufacturing method for fuel cell
JPS61227368A (en) Fuel cell
US20030162076A1 (en) Fuel cell assembly
JPH06295733A (en) Separator plate formed by layering fluorine resin
JP3838403B2 (en) Phosphoric acid fuel cell
JP2002093434A (en) Electrolyte layer/electrode joint body and fuel cell
JPS6210869A (en) Fuel cell
JPH0151027B2 (en)
JP2010015939A (en) Fuel cell
JPS6255874A (en) Sealing structure for fuel cell
JPH0615403Y2 (en) Fuel cell
JPS61253767A (en) Manufacture of fuel cell
JPS60241654A (en) Plate for fuel cell
JPS61116768A (en) Fuel cell
KR20240095293A (en) Electrochemical cell with membrane-electrode assembly, diffusion layer and distributor plate, and method of manufacturing the electrochemical cell
JPS6266575A (en) Fuel cell