JPS61227190A - Method for removing impurity metallic ion in copper electrolyte - Google Patents

Method for removing impurity metallic ion in copper electrolyte

Info

Publication number
JPS61227190A
JPS61227190A JP60066198A JP6619885A JPS61227190A JP S61227190 A JPS61227190 A JP S61227190A JP 60066198 A JP60066198 A JP 60066198A JP 6619885 A JP6619885 A JP 6619885A JP S61227190 A JPS61227190 A JP S61227190A
Authority
JP
Japan
Prior art keywords
resin
electrolyte
group
salt
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60066198A
Other languages
Japanese (ja)
Other versions
JPH055901B2 (en
Inventor
Masafumi Moriya
雅文 守屋
Tomio Imachi
井町 臣男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyoshi Yushi KK
Miyoshi Oil and Fat Co Ltd
Original Assignee
Miyoshi Yushi KK
Miyoshi Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyoshi Yushi KK, Miyoshi Oil and Fat Co Ltd filed Critical Miyoshi Yushi KK
Priority to JP60066198A priority Critical patent/JPS61227190A/en
Publication of JPS61227190A publication Critical patent/JPS61227190A/en
Publication of JPH055901B2 publication Critical patent/JPH055901B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To adsorb away the impurities in an electrolyte for refining of electric copper in which the impurities accumulate by bringing a specifically composed porous type chelate resin into contact with said electrolyte. CONSTITUTION:The electrolyte consisting essentially of CuSO4 and H2SO4 is electrolyzed with blister copper as an anode and thin electric copper sheet as a cathode. The concn. of the impurities such as Bi, Sb, As and Fe contained in the blister copper of the anode increases in this stage. As a result, the electrolyzing efficiency decreases and the quality of the electric copper is deteriorated. The electrolyte is brought into contact with the chelate resin of the porous type consisting either of a divinyl benzene copolymer or epoxy resin or phenolic resin as a resin base material and contg. at least one of an amino alkylene phosphoric acid group or the salt thereof or iminoalkylene phosphoric acid group or the salt thereof and amidoxy group as a functional group in order to remove the above-mentioned impurities. Bi, Sb, As, Fe, etc., as the impurities except Cu are adsorbed away and the electrolyte is cleaned up.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は銅電解液中の不純金属イオンの除去方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for removing impure metal ions in a copper electrolyte.

”〔従来の技術〕 銅を精練する方法としては、粗銅を陽極に用い、純銅を
陰極として用いて硫酸銅溶液を電解液として電解する方
法が一般に行われている。しかしながらこの精練方法の
場合、電解の進行によって粗銅中に含有されるビスマス
、アンチモン、砒素、鉄等の銅以外の不純物イオンが電
解液中に溶出し、これら不純物イオンの濃度が一定濃度
以上となると導電率を低下させ、電解効率の低下をきた
すとともに得られる電気銅の純度低下をきたす。このた
め銅電解液の浄液を行う必要があり、従来から銅電解液
の浄液方法として主として脱銅脱砒素電解(以下、脱銅
脱ピ電解と略称する。)が行われている。
[Prior Art] A commonly used method for refining copper is to use blister copper as an anode, pure copper as a cathode, and electrolyze copper sulfate solution as an electrolyte.However, in the case of this refining method, As the electrolysis progresses, impurity ions other than copper, such as bismuth, antimony, arsenic, and iron, contained in the blister copper elute into the electrolyte, and when the concentration of these impurity ions exceeds a certain concentration, the conductivity decreases and the electrolysis This results in a decrease in efficiency and a decrease in the purity of the obtained electrolytic copper.For this reason, it is necessary to purify the copper electrolyte, and traditionally, the main method for purifying copper electrolyte is decoppering and dearsenization (hereinafter referred to as decopper removal and dearsenization). (abbreviated as copper de-pin electrolysis) is being carried out.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、脱銅脱ピ電解では砒素及び鉄の除去は可
能であるものの、ビスマス、アンチモン等の不純金属イ
オンは除去することはできず、電気銅の純度向上が望み
難いとともにビスマス、アンチモンが銅電解液中に存在
すると脱銅脱ピ電解の電力効率に低下をきたすという問
題があり、銅電解液中のビスマス、アンチモン等を除去
し得る簡易な方法の開発が望まれていた。
However, although it is possible to remove arsenic and iron in decoppering and decoupling electrolysis, impurity metal ions such as bismuth and antimony cannot be removed, and it is difficult to expect to improve the purity of electrolytic copper. There is a problem in that their presence in the solution lowers the power efficiency of decoppering and decoppering electrolysis, and there has been a desire to develop a simple method that can remove bismuth, antimony, etc. from the copper electrolyte.

本発明は上記の点に鑑みなされたもので、キレート樹脂
を用いて銅電解液中に含まれるビスマス、アンチモン等
の不純金属イオンを除去する方法を提供することを目的
とする。
The present invention was made in view of the above points, and an object of the present invention is to provide a method for removing impure metal ions such as bismuth and antimony contained in a copper electrolyte using a chelate resin.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは上記課題を解決するため鋭意研究した結果
、特定の樹脂母体を有し、かつアミノアルキレン燐酸基
またはその塩、イミノアルキレン燐酸基またはその塩、
アルキレン燐酸基またはその塩、燐酸基またはその塩あ
るいはアミドオキシム基のうち少なくとも1種を官能基
として有するキレート樹脂を用いることによって銅電解
液中のビスマス、アンチモン等の不純金属イオンを効果
的に分離することができることを見出し本発明を完成す
るに至った。
The present inventors have conducted intensive research to solve the above problems, and have found that the present inventors have a specific resin matrix, an aminoalkylene phosphate group or a salt thereof, an iminoalkylene phosphate group or a salt thereof,
Impure metal ions such as bismuth and antimony in copper electrolyte can be effectively separated by using a chelate resin having at least one of alkylene phosphate group or its salt, phosphoric acid group or its salt, or amidoxime group as a functional group. The inventors have discovered that it is possible to do this and have completed the present invention.

即ち本発明はジビニルベンゼン系共重合体、エポキシ樹
脂、フェノール樹脂、レゾルシン樹脂、塩化ビニル樹脂
のいずれかを樹脂母体とし、かつアミノアルキレン燐酸
基またはその塩、イミノアルキレン燐酸基またはその塩
、アルキレン燐酸基またはその塩、燐酸基またはその塩
あるいはアミドオキシム基のうち少なくとも1種を官能
基とするキレート樹脂に銅電解液を接触せしめ、不純金
属イオンを上記キレート樹脂に吸着せしめて除去するこ
とを特徴とする銅電解液中の不純金属イオンの除去方法
を要旨とするものである。
That is, the present invention uses any one of a divinylbenzene copolymer, an epoxy resin, a phenol resin, a resorcinol resin, and a vinyl chloride resin as a resin base, and an aminoalkylene phosphoric acid group or a salt thereof, an iminoalkylene phosphoric acid group or a salt thereof, an alkylene phosphoric acid The method is characterized in that a copper electrolyte is brought into contact with a chelate resin having at least one of a group or a salt thereof, a phosphoric acid group or a salt thereof, or an amidoxime group as a functional group, and impure metal ions are adsorbed onto the chelate resin and removed. The gist of this paper is a method for removing impure metal ions in a copper electrolyte.

本発明において用いられるキレート樹脂の樹脂母体とし
ては、ジビニルベンゼン系共重合体、エポキシ樹脂、レ
ゾルシン樹脂、フェノール樹脂、塩化ビニル樹脂のいず
れかが用いられ、ジビニルベンゼン系共重合体としては
スチレン−ジビニルベンゼン共重合体、アクリル酸メチ
ル−ジビニルベンゼン共重合体、メタクリル酸メチル−
ジビニルベンゼン共重合体、アクリロニトリル−ジビニ
ルベンゼン共重合体等が挙げられる。本発明におけるキ
レート樹脂は上記樹脂のいずれかを樹脂母体とし、かつ
アミノアルキレン燐酸基、イミノアルキレン燐酸基、ア
ルキレン燐酸基、燐酸基あるいはこれらの塩、例えばア
ルカリ金属塩、アルカリ土類金属塩等、またはアミドオ
キシム基の少なくとも1種を官能基として有するキレー
ト樹脂であるが、特にスチレン−ジビニルベンゼン共重
合体等のジビニルベンゼン系共重合体を樹脂母体とし、
かつアミノアルキレン燐酸基あるいはその塩と、イミノ
アルキレン燐酸基あるいはその塩を官能基として有する
キレート樹脂を用いることが好ましく、銅電解液中の不
純金属イオンを選択的に効率良く吸着できるとともに・
酸性の銅電解P中で樹脂が侵され難く、樹脂の繰り返し
使用が可能となる。またこれらの官能基を有するキレー
ト樹脂はゲル型であるより多孔質型(MR型)であるこ
とが好ましい。それは処理水中に有機物が存在している
場合、ゲル型のキレート樹脂は金属の吸着能が低下する
のに対し、MR型のキレート樹脂は吸着能が低下し難(
、かつ樹脂の再生時に起こる体積変化による樹脂破砕の
損失が少ないためである。
As the resin base of the chelate resin used in the present invention, any one of divinylbenzene copolymer, epoxy resin, resorcinol resin, phenol resin, and vinyl chloride resin is used, and as the divinylbenzene copolymer, styrene-divinyl Benzene copolymer, methyl acrylate-divinylbenzene copolymer, methyl methacrylate-
Examples include divinylbenzene copolymer, acrylonitrile-divinylbenzene copolymer, and the like. The chelate resin in the present invention uses any of the above resins as a resin base, and contains an aminoalkylene phosphate group, an iminoalkylene phosphate group, an alkylene phosphate group, a phosphoric acid group, or a salt thereof, such as an alkali metal salt, an alkaline earth metal salt, etc. or a chelate resin having at least one kind of amidoxime group as a functional group, in particular a divinylbenzene copolymer such as a styrene-divinylbenzene copolymer as a resin matrix,
In addition, it is preferable to use a chelate resin having an aminoalkylene phosphate group or its salt and an iminoalkylene phosphate group or its salt as a functional group, which can selectively and efficiently adsorb impure metal ions in the copper electrolyte.
The resin is not easily attacked in acidic copper electrolytic P, making it possible to use the resin repeatedly. Further, the chelate resin having these functional groups is preferably of a porous type (MR type) rather than a gel type. This is because when organic matter is present in the treated water, the adsorption ability of gel-type chelate resins for metals decreases, whereas the adsorption ability of MR-type chelate resins tends to decrease (
This is because there is less loss due to resin crushing due to volume changes that occur during resin regeneration.

上記キレート樹脂としては例えば、■スチレンージビニ
ルベンゼン共重合体にクロロメチルエーテルを反応せし
めてクロロメチル化した後、アンモニアあるいはエチレ
ンジアミン、ジエチレントリアミン、トリエチレンテト
ラミン、テトラエチレンペンタミン、ペンタエチレンへ
キサジン等のポリアルキレンポリアミンを反応せしめて
1級または2級アミノ基を導入し、しかる後ホルムアル
デヒド、アセトアルデヒド等のアルデヒドと亜燐酸とを
作用せしめて上記1級あるいは2級アミノ基部分にアミ
ノアルキレン燐酸基あるいはイミノアルキレン燐酸基を
形成したキレート樹脂;■りロロメチル化したスチレン
−ジビニルベンゼン共重合体に塩化アルミニウムの存在
下に三塩化燐を作用せしめてジビニルベンゼンのベンゼ
ン核部分にメチレン燐酸基(あるいはメチレン燐酸基と
燐酸基)を形成したキレート樹脂:■塩化ヒビニル樹脂
ポリアルキレンポリアミンを作用させて1級あるいは2
級アミノ基を導入した後、アルデヒドと亜燐酸とを作用
させてアミノ基部分にアミノアルキレン燐酸基あるいは
イミノアルキレン燐酸基を形成したキレート樹脂;■ア
クリル酸メチルージビニルベンゼン共重合体あるいはメ
タクリル酸メチル−ジビニルベンゼン共重合体のメチル
エステル基部分にポリアルキレンポリアミンを作用させ
た後、アルデヒドと亜燐酸とを作用させて上記メチルエ
ステル基部分に導入されたポリアルキレンポリアミンの
アミノ基部分にアミノアルキレン燐酸基あるいはイミノ
アルキレン燐酸基を形成したキレート樹脂;■ポリアル
キレンポリアミンにアルデヒドと亜燐酸とを作用せしめ
てアミノアルキレン燐酸基あるいはイミノアルキレン燐
酸基を有する化合物を得、この化合物をアルデヒドの存
在下にフェノールあるいはレゾルシンと反応せしめて得
られる、アミノアルキレン燐酸基あるいはイミノアルキ
レン燐酸基を有し、フェノール樹脂あるいはレゾルシン
樹脂を樹脂母体とするキレート樹脂;■スチレンージビ
ニルベンゼン共重合体に塩化アルミニウム存在下に三塩
化燐を作用せしめてベンゼン核に官能基として燐酸基を
導入したキレート樹脂;■あるいは上記■〜■の樹脂の
ナトリウム塩、カリウム塩等のアルカリ金属塩やカルシ
ウム塩、マグネシウム塩等のアルカリ土類金属塩;■ク
ロロメチル化したスチレン−ジビニルベンゼン共重合体
にアンモニアあるいはポリアルキレンポリアミンを反応
せしめた後、アクリロニトリルを反応せしめ更にヒドロ
キシルアミンを反応せしめてアミドオキシム基を導入し
たキレート樹脂;■アクリロニトリルージビニルベンゼ
ン共重合体にヒドロキシルアミンを反応せしめてアミド
すキシム基を導入したキレート樹脂;[相]ポリアルキ
レンポリアミンにアクリロニトリルを反応せしめた後、
硬化剤とともにビスエポキシ化合物を反応せしめて硬化
させ、次いでヒドロキシルアミンを反応せしめて得られ
るアミドオキシム基を官能基として有し、エポキシ樹脂
を樹脂母体とするキレート樹脂等が挙げられる。これら
のキレート樹脂のうちでも上記■のキレート樹脂が好ま
しく、特にクロロメチル化したスチレン−ジビニルベン
ゼン共重合体にポリアルキレンポリアミンを反応せしめ
た後、アルデヒドと亜燐酸とを作用せしめて1級アミノ
基、2級アミノ基部分に官能基としてアミノアルキレン
燐酸基、イミノアルキレン燐酸基を形成したキレート樹
脂が好ましい。
Examples of the above-mentioned chelate resin include: (1) After chloromethylation is performed by reacting styrene-divinylbenzene copolymer with chloromethyl ether, ammonia, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexazine, etc. A primary or secondary amino group is introduced by reacting a polyalkylene polyamine, and then an aldehyde such as formaldehyde or acetaldehyde is reacted with phosphorous acid to introduce an aminoalkylene phosphoric acid group or an imino group into the primary or secondary amino group. Chelate resin with an alkylene phosphate group formed; ■ Phosphorous trichloride is applied to a di-lolomethylated styrene-divinylbenzene copolymer in the presence of aluminum chloride to form a methylene phosphate group (or Chelate resin with phosphoric acid group formed: ■Hvinyl chloride resin Polyalkylene polyamine is reacted with primary or secondary
Chelate resin in which an amino alkylene phosphate group or an iminoalkylene phosphate group is formed on the amino group by introducing a class amino group and then reacting with aldehyde and phosphorous acid; ■ Methyl acrylate-divinylbenzene copolymer or methyl methacrylate - After reacting a polyalkylene polyamine with the methyl ester group portion of the divinylbenzene copolymer, amino alkylene phosphoric acid is applied to the amino group portion of the polyalkylene polyamine introduced into the methyl ester group portion by acting with an aldehyde and phosphorous acid. chelate resin having an aminoalkylene phosphate group or an iminoalkylene phosphate group; ■ A polyalkylene polyamine is reacted with an aldehyde and phosphorous acid to obtain a compound having an aminoalkylene phosphate group or an iminoalkylene phosphate group, and this compound is treated with phenol in the presence of an aldehyde. Alternatively, a chelate resin having an aminoalkylene phosphate group or an iminoalkylene phosphate group and having a phenol resin or a resorcinol resin as a resin matrix obtained by reacting with resorcinol; A chelate resin in which a phosphoric acid group is introduced as a functional group into a benzene nucleus by the action of phosphorus chloride; ■ or an alkali metal salt such as sodium salt or potassium salt of the resins described in ■ to ■ above, or an alkaline earth salt such as a calcium salt or magnesium salt. Metal salt; ■ Chelate resin in which an amidoxime group is introduced by reacting a chloromethylated styrene-divinylbenzene copolymer with ammonia or polyalkylene polyamine, then reacting with acrylonitrile, and then reacting with hydroxylamine; ■ Acrylonitrile A chelate resin in which an amidosoxime group is introduced by reacting a divinylbenzene copolymer with hydroxylamine; [Phase] After reacting a polyalkylene polyamine with acrylonitrile,
Examples include chelate resins having an amide oxime group as a functional group obtained by reacting a bisepoxy compound with a curing agent for curing, and then reacting with hydroxylamine, and using an epoxy resin as a resin base. Among these chelate resins, the above-mentioned chelate resin (①) is preferable; in particular, a chloromethylated styrene-divinylbenzene copolymer is reacted with a polyalkylene polyamine, and then an aldehyde and a phosphorous acid are reacted to form a primary amino group. , chelate resins in which an aminoalkylene phosphate group or an iminoalkylene phosphate group is formed as a functional group in the secondary amino group portion are preferred.

本発明において銅電解液と上記キレート樹脂とを接触せ
しめる方法としては、例えば銅電解液中にキレート樹脂
を浸漬せしめるか、浸漬しさらに攪拌するバッチ式方法
、キレート樹脂を充填したカラムに銅電解液を通過せし
めるカラム式方法等が挙げられ、またカラム式の場合に
は一過方式と循環方式があるがいずれの方式でもよく、
ざ、らに通液方法として上向流、下向流のいずれの方法
も採用できる。またカラム式においては、通液速度をS
 V O,5〜10でゆっくり通液し不純金属イオンを
吸着さセる方法、5VIO〜50で速く通液し吸着させ
る方法、あるいは銅電解液を循環させて不純金属イオン
を吸着させる方法等種々用いることができる。
In the present invention, methods for bringing the copper electrolyte and the chelate resin into contact include, for example, a batch method in which the chelate resin is immersed in the copper electrolyte, or is immersed and further stirred, and a copper electrolyte is placed in a column filled with the chelate resin. Column methods are available, and in the case of column methods, there are transient methods and circulation methods, but either method may be used.
In addition, either an upward flow method or a downward flow method can be adopted as a method for passing the liquid. In addition, in the column type, the liquid flow rate is set to S
Various methods are available, such as a method in which impure metal ions are adsorbed by passing the liquid slowly at V O of 5 to 10, a method in which the liquid is passed rapidly at V O to 50 to adsorb impure metal ions, or a method in which the copper electrolyte is circulated to adsorb impure metal ions. Can be used.

上記のようにしてキレート樹脂に吸着された銅電解液中
の不純金属イオンは、不純金属イオンを吸着したキレー
ト樹脂を溶離剤として1〜12N、好ましくは5〜8N
の塩酸、硝酸、燐酸等の酸を用いて処理して溶離し、回
収することができるが、特に塩酸を溶離剤として用いる
ことが好ましい。
The impure metal ions in the copper electrolyte adsorbed to the chelate resin as described above are removed by using the chelate resin adsorbing the impure metal ions as an eluent of 1 to 12N, preferably 5 to 8N.
Although it can be treated and eluted and recovered using an acid such as hydrochloric acid, nitric acid, or phosphoric acid, it is particularly preferable to use hydrochloric acid as the eluent.

キレート樹脂に吸着された不純金属イオンの溶離剤9こ
よる溶離方法としてはバッチ式、カラム式のいずれでも
良い。カラム式の場合、溶離剤の通液速度S V 0.
5〜5でゆっくり通液するか溶離剤を循環させて溶離す
ることができる。また得られた溶離液を次の溶離剤とし
て再使用すれば、溶離液中の不純金属イオン濃度を高め
ることができる。
The elution method using the eluent 9 for impure metal ions adsorbed on the chelate resin may be either a batch method or a column method. In the case of a column type, the eluent flow rate S V 0.
Elution can be carried out by slowly passing the solution or by circulating the eluent. Moreover, if the obtained eluent is reused as the next eluent, the concentration of impure metal ions in the eluent can be increased.

キレート樹脂より溶離せしめた不純金属イオンは、例え
ば電解等の方法によって金属として回収することもでき
る。また不純金属イオンを溶離した後のキレート樹脂は
再び銅電解液中の不純金属イオンの吸着用として繰り返
し用いることができる。
The impure metal ions eluted from the chelate resin can also be recovered as metal by a method such as electrolysis. Further, the chelate resin after eluting the impure metal ions can be used repeatedly to adsorb impure metal ions in the copper electrolyte.

〔実施例〕〔Example〕

以下、実施例を挙げて本発明を更に詳しく説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 スチレン924%とジビニルベンゼン8wt%を懸濁重
合して得られたスチレン−ジビニルベンゼン共重合体よ
りなるMR型の球状樹脂(10〜60メツシユ)をエチ
レンジクロリド中で膨潤させ、無水塩化亜鉛の存在下に
クロロメチルエーテルを反応させ、上記球状樹脂をクロ
ロメチル化した(塩素含有率:21.8wt%)。次い
で得られたクロロメチル化樹脂にジエチレントリアミン
(DETA)を反応させ、1級アミノ基及び2級アミノ
基を有するDETA型樹脂を得た。この樹脂にオルト亜
燐酸及びパラホルムアルデヒドを塩酸水溶液中で反応さ
せ、1級アミノ基及び2級アミノ基の部分をアミノメチ
レン燐酸基とイミノメチレン燐酸基とした官能基を持っ
たMR型のキレート樹脂を得た。このキレート樹脂のう
ち10〜48メツシユの樹脂0.5gを模擬電解液(銅
:50g#、遊離硫酸:200g/l、砒素:2.8g
/j!、鉄1.52g/lビスマス:0.23g/iア
ンチモン: 0.19 g/l) 500mlに添加し
、40℃で1.5時間攪拌した後樹脂を分離して模擬電
解液中のビスマス、アンチモン、鉄の残存tM 度1c
 原子吸光法により測定し、キレート樹脂への吸着量を
求めた。キレート樹脂1kg当たりの吸着量はビスマス
: 17.1 g/kg−R(樹脂1kg当たりの吸着
量の単位をg/kg−Rで示す。)、アンチモン:25
.6g/眩−R1鉄: 5.2 g/kg −Rであっ
た。
Example 1 An MR type spherical resin (10 to 60 mesh) made of a styrene-divinylbenzene copolymer obtained by suspension polymerization of 924% styrene and 8 wt% divinylbenzene was swollen in ethylene dichloride and anhydrous chlorinated. The spherical resin was chloromethylated by reacting chloromethyl ether in the presence of zinc (chlorine content: 21.8 wt%). Next, the obtained chloromethylated resin was reacted with diethylenetriamine (DETA) to obtain a DETA type resin having a primary amino group and a secondary amino group. This resin is reacted with orthophosphorous acid and paraformaldehyde in an aqueous hydrochloric acid solution, and the primary amino group and secondary amino group are converted into aminomethylene phosphate groups and iminomethylene phosphate groups. I got it. Of this chelate resin, 0.5 g of resin with 10 to 48 meshes was added to a simulated electrolyte solution (copper: 50 g, free sulfuric acid: 200 g/l, arsenic: 2.8 g.
/j! , iron 1.52 g/l bismuth: 0.23 g/i antimony: 0.19 g/l) was added to 500 ml, and after stirring at 40°C for 1.5 hours, the resin was separated and the bismuth in the simulated electrolyte was removed. Antimony, iron residual tM degree 1c
The amount of adsorption to the chelate resin was determined by measurement using atomic absorption spectrometry. The adsorption amount per kg of chelate resin is bismuth: 17.1 g/kg-R (the unit of adsorption amount per kg of resin is g/kg-R), antimony: 25
.. 6g/dazzle-R1 iron: 5.2 g/kg-R.

実施例2 実施例1と同様のクロロメチル化樹脂にアンモニアを反
応させてアミノ化樹脂を得た。次いでこのアミノ化樹脂
にオルト6Mとトリオキシメチレンを反応させ、アミノ
メチレン燐酸基を官能基として有するキレート樹脂を得
た。この樹脂より分級した10〜48メツシユの樹脂0
.5gを実施例1と同様の模擬電解液500m1に添加
して実施例1と同様の条件で攪拌後、キレート樹脂への
不純金属イオンの吸着量を求めた。キレート樹脂への吸
着量は、ビスマス: 15.3 g/kg−R,アンチ
モン: 23.8 g/kg−R,鉄: 3.1 g/
kg−Rであった。
Example 2 The same chloromethylated resin as in Example 1 was reacted with ammonia to obtain an aminated resin. Next, this aminated resin was reacted with ortho-6M and trioxymethylene to obtain a chelate resin having an aminomethylene phosphate group as a functional group. 10 to 48 mesh resin classified from this resin 0
.. After adding 5 g to 500 ml of the same simulated electrolyte as in Example 1 and stirring under the same conditions as in Example 1, the amount of impure metal ions adsorbed to the chelate resin was determined. The adsorption amount to the chelate resin is bismuth: 15.3 g/kg-R, antimony: 23.8 g/kg-R, iron: 3.1 g/kg-R.
kg-R.

比較例1 スチレン−ジビニルベンゼン共重合体を樹脂母体とし、
イミノジ酢酸基を官能基として有するMR型の10〜4
8メツシユのキレート樹脂0.5gを実施例1と同様の
模擬電解液500m1に添加し、実施例1と同様の条件
で攪拌した後、キレート樹脂への不純金属イオンの吸着
量を求めた。このキレート樹脂に鉄は1.5g/kg−
R吸着されたが、ビスマス、アンチモンは吸着されなか
った。
Comparative Example 1 Using styrene-divinylbenzene copolymer as a resin matrix,
MR type 10-4 having iminodiacetic acid group as a functional group
8 meshes of 0.5 g of chelate resin were added to 500 ml of the same simulated electrolyte as in Example 1, and after stirring under the same conditions as in Example 1, the amount of impure metal ions adsorbed to the chelate resin was determined. This chelate resin contains 1.5g/kg of iron.
R was adsorbed, but bismuth and antimony were not.

実施例3 10〜50メツシユに粉砕したポリ塩化ビ丑ルをパーク
ロルエチレンにて膨潤させた後、トリエチレンテトラミ
ン(T E T A)と反応せしめてTETA型樹脂全
樹脂。この樹脂にアセトアルデヒドとオルト亜燐酸を反
応せしめ、アミノエチレン燐酸基及びイミノエチレン燐
酸基を官能基として有するキレート樹脂を得た。このキ
レート樹脂のうち10〜48メツシユの樹脂を用い、実
施例1で用いたと同様の模擬電解液を同様の条件にて処
理した。キレート樹脂に吸着された不純金属イオンは、
ビスマス: 13.8 g/kg−R,アンチモン: 
19.2 g/kg−R1鉄:3.8g/kg−Rであ
った。
Example 3 Polyvinyl chloride pulverized into 10 to 50 meshes was swollen with perchlorethylene and then reacted with triethylenetetramine (TETA) to obtain a TETA type resin. This resin was reacted with acetaldehyde and orthophosphorous acid to obtain a chelate resin having aminoethylene phosphoric acid groups and iminoethylene phosphoric acid groups as functional groups. Using 10 to 48 meshes of this chelate resin, the same simulated electrolyte as used in Example 1 was treated under the same conditions. Impure metal ions adsorbed on the chelate resin are
Bismuth: 13.8 g/kg-R, Antimony:
19.2 g/kg-R1 iron: 3.8 g/kg-R.

実施例4 アクリロニトリル(80wt%)とジビニルベンゼン(
20訂%)をトルエン存在下で懸濁重合してMR型の球
状樹脂を得た。次いでこの樹脂をヒドロキシルアミンと
反応させ、アミドオキシム基を官能基として有するキレ
ート樹脂を得た。この樹脂のうち10〜48メツシユの
樹脂を用い、実施例1で用いたと同様の模擬電解液を同
様の条件にて処理した。キレート樹脂への吸着量はビス
マス: 13.5 g/kg−R,アンチモン:21.
2g/kg−R1鉄:4.8g/kg−Rであった。
Example 4 Acrylonitrile (80wt%) and divinylbenzene (
20%) was suspension polymerized in the presence of toluene to obtain an MR type spherical resin. This resin was then reacted with hydroxylamine to obtain a chelate resin having an amidoxime group as a functional group. Using 10 to 48 meshes of this resin, the same simulated electrolyte as used in Example 1 was treated under the same conditions. The adsorption amount to the chelate resin is bismuth: 13.5 g/kg-R, antimony: 21.
2g/kg-R1 iron: 4.8g/kg-R.

実施例5 実施例1で用いたと同様のスチレン−ジビニルベンゼン
共重合体よりなるMR型の球状樹脂(粒度10〜60メ
ツシユ)に塩化アルミニウムの存在下で三塩化燐を反応
せしめ、燐酸基を官能基として有するキレート樹脂を得
た。この樹脂のうち10〜48メツシユの樹脂を用い、
実施例1に用いた模擬電解液につき実施例1と同条件で
処理を行った。キレート樹脂への吸着量は、ビスマス:
Og/kg−R,アンチモン: 10.8 g/kg 
−R。
Example 5 An MR type spherical resin (particle size 10 to 60 mesh) made of the same styrene-divinylbenzene copolymer used in Example 1 was reacted with phosphorus trichloride in the presence of aluminum chloride to functionalize the phosphoric acid groups. A chelate resin having this as a base was obtained. Using 10 to 48 mesh of this resin,
The simulated electrolyte used in Example 1 was treated under the same conditions as in Example 1. The amount of bismuth adsorbed to the chelate resin is:
Og/kg-R, antimony: 10.8 g/kg
-R.

鉄:Og/kg−Rであり、銅電解液中のアンチモンを
選択的に吸着した。
Iron: Og/kg-R, and antimony in the copper electrolyte was selectively adsorbed.

実施例6 実施例1と同様のクロロメチル化樹脂に塩化アルミニウ
ムの存在下で三塩化燐を反応させ、燐酸基とメチレン燐
酸基を官能基として有するキレート樹脂を得た。この樹
脂のうち10〜48メツシユの樹脂を用い、実施例1に
用いた模擬電解液につき実施例1と同様に処理を行ない
、キレート樹脂への吸着量を求めた。吸着量はビスマス
:Og/ kg −R、アンチモン12.6g/kg−
R,鉄:Og/kg−Rであり、銅電解液中のアンチモ
ンを選択的に吸着した。
Example 6 The same chloromethylated resin as in Example 1 was reacted with phosphorus trichloride in the presence of aluminum chloride to obtain a chelate resin having phosphoric acid groups and methylene phosphoric acid groups as functional groups. Using 10 to 48 meshes of this resin, the simulated electrolyte used in Example 1 was treated in the same manner as in Example 1 to determine the amount of adsorption onto the chelate resin. Adsorption amount is bismuth: Og/kg-R, antimony 12.6g/kg-
R, iron: Og/kg-R, and antimony in the copper electrolyte was selectively adsorbed.

実施例7 実施例1と同様のクロロメチル化樹脂にエチレンジアミ
ン(E D A)を反応させてEDA型樹脂を得た。次
いで得られたEDA型樹脂に、アクリロニトリルをミハ
エル付加し、更にヒドロキシルアミンを反応させてアミ
ドオキシム基を官能基として有するキレート樹脂を得た
。このうち10〜48メツシユの樹脂を用い実施例1に
用いた模擬電解液につき実施例1と同様に処理を行ない
、キレート樹脂への吸着量を求めたところ、ビスマス:
 14.5 g/kg−R,アンチモン:22.8g/
眩−R,鉄:3.9g/瞳−Rであった。
Example 7 The same chloromethylated resin as in Example 1 was reacted with ethylenediamine (EDA) to obtain an EDA type resin. Next, acrylonitrile was added to the obtained EDA type resin, and further reacted with hydroxylamine to obtain a chelate resin having an amidoxime group as a functional group. Of these, the simulated electrolyte solution used in Example 1 was treated in the same manner as in Example 1 using resins with 10 to 48 meshes, and the amount of adsorption to the chelate resin was determined. Bismuth:
14.5 g/kg-R, antimony: 22.8 g/
Dazzling-R, iron: 3.9 g/pupil-R.

実施例8 テトラエチレンペンタミンにオルト燐酸とホルムアルデ
ヒドを反応せしめて得た反応生成物にレゾルシンとホル
ムアルデヒドを反応せしめた後、ポリビニルアルコール
溶液中で懸濁重合してイミノメチレン燐酸基を官能基と
して有する球状キレート樹脂を得た。次に上記キレート
樹脂より分級した10〜48メツシユの樹脂を用い、実
施例1に用いた模擬電解液につき実施例1と同様の処理
を行った。キレート樹脂への不純金属イオンの吸着量は
、ビスマス: 13.5 g/ktr−R,アンチモン
: 20.5 g/kg−R,鉄:3.2g/kg−R
であった。
Example 8 A reaction product obtained by reacting tetraethylenepentamine with orthophosphoric acid and formaldehyde was reacted with resorcinol and formaldehyde, and then suspension polymerized in a polyvinyl alcohol solution to form a product having an iminomethylene phosphate group as a functional group. A spherical chelate resin was obtained. Next, the same treatment as in Example 1 was performed on the simulated electrolyte solution used in Example 1 using a 10 to 48 mesh resin classified from the above chelate resin. The adsorption amount of impure metal ions to the chelate resin is bismuth: 13.5 g/ktr-R, antimony: 20.5 g/kg-R, iron: 3.2 g/kg-R
Met.

実施例9 ペンタエチレンへキサジンにアクリロニトリルをミハエ
ル付加せしめて得た生成物と、メタキシレンジアミンを
ポリビニルアルコール中で懸濁重合して球状の硬化樹脂
を得た。次いで得られた樹脂にヒドロキシルアミンを反
応せしめてアミドオキシム基を官能基として有するキレ
ート樹脂を得た。このキレート樹脂より分級した10〜
48メツシユの樹脂を用い、実施例1に用いたのと同じ
模擬電解液につき実施例1と同様の処理を行った。
Example 9 A product obtained by Michael addition of acrylonitrile to pentaethylene hexazine and metaxylene diamine were suspension polymerized in polyvinyl alcohol to obtain a spherical cured resin. Next, the obtained resin was reacted with hydroxylamine to obtain a chelate resin having an amidoxime group as a functional group. 10~ classified from this chelate resin
The same treatment as in Example 1 was carried out using the same simulated electrolyte as used in Example 1 using 48 mesh resin.

キレート樹脂への吸着量は、ビスマス:11.8g/k
g  R,アンチモン:’17.9 g/kg−R,鉄
:3.1g/kg−Rであった。
The adsorption amount to the chelate resin is bismuth: 11.8g/k
g R, antimony: '17.9 g/kg-R, iron: 3.1 g/kg-R.

実施例10 アクリル酸メチル(90wt%)とジビニルベンゼン(
10wt%)を懸濁重合し、MR型の球状樹脂を得た。
Example 10 Methyl acrylate (90wt%) and divinylbenzene (
(10 wt%) was subjected to suspension polymerization to obtain an MR type spherical resin.

得られた球状樹脂にジエチレントリアミン(DETA)
を反応させてDETA型樹脂を得た。このDETA型樹
脂にアクリロニトリルをミハエル付加し、更にヒドロキ
シルアミンを反応させてアミドオキシム基を官能基とす
るキレート樹脂を得た。この樹脂のうち10〜48メツ
゛シユの樹脂を用い、実施例1で用いたと同じ模擬電解
液につき実施例1と同様の処理を行った。吸着量はビス
マス: 13.6 g/kg−R、アンチモン:19.
5g/kg−R1鉄:2.2g/kg−Rであった。
Diethylenetriamine (DETA) was added to the obtained spherical resin.
were reacted to obtain a DETA type resin. Acrylonitrile was added to this DETA type resin, and hydroxylamine was further reacted to obtain a chelate resin having an amidoxime group as a functional group. Of these resins, 10 to 48 mesh resins were used and the same simulated electrolyte as used in Example 1 was subjected to the same treatment as in Example 1. The adsorption amount is bismuth: 13.6 g/kg-R, antimony: 19.
5g/kg-R1 iron: 2.2g/kg-R.

実施例11 実施例1〜10で得た10〜48メツシユのキレート樹
脂および比較例1で用いたキレート樹脂100m1をそ
れぞれカラム(内径25mφ)に充填し、模擬電解液(
銅:45g/It、遊離硫酸:200 g/II、砒素
=2.8g/it、アンチモン:0.24g/l、ビス
マス:0.18g/l鉄:0゜54g/jりを40℃で
SV5にて1時間通液した。各キレート樹脂を充填した
カラムについて所定通液量(樹脂ll当たりの通液量:
単位を1/l−Rで示す。)毎に流出液のサンプルを採
取して流出液中のビスマス、アンチモン、鉄の4度を測
定した。所定の通液量に達した時の各金属イオンのキレ
ート樹脂への吸着量及び模擬電解液中の不純金属イオン
除去率を第1表に示す、また実施例1で得たキレート樹
脂については上記模擬電解液を、キレート樹脂を充填し
たカラムに通液した際の通液量と、流出液中の各金属イ
オン濃度との関係を第1図に示す。
Example 11 A column (inner diameter 25 mφ) was filled with 10 to 48 meshes of the chelate resin obtained in Examples 1 to 10 and 100 ml of the chelate resin used in Comparative Example 1, and a simulated electrolyte solution (
Copper: 45g/It, free sulfuric acid: 200g/II, arsenic = 2.8g/it, antimony: 0.24g/l, bismuth: 0.18g/l iron: SV5 at 40°C The solution was passed for 1 hour. A predetermined amount of liquid passed through a column packed with each chelate resin (amount of liquid passed per 1 liter of resin:
The unit is 1/l-R. ) Samples of the effluent were collected and the concentrations of bismuth, antimony, and iron in the effluent were measured. Table 1 shows the adsorption amount of each metal ion on the chelate resin and the removal rate of impure metal ions in the simulated electrolyte when a predetermined amount of liquid is passed. FIG. 1 shows the relationship between the amount of a simulated electrolytic solution passed through a column filled with a chelate resin and the concentration of each metal ion in the effluent.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明方法は特定の樹脂を樹脂母体
とし、かつアミノアルキレン燐酸基、イミノアルキレン
燐酸基、アルキレン燐酸基、燐酸基あるいはこれらの塩
、またはアミドオキシム基の少なくとも1種を官能基と
して有するキレート樹脂に銅電解液を接触せしめ、キレ
ート樹脂に銅電解液中の不純金属イオンを吸着せしめて
分離する方法であり、本発明方法によれば銅電解液中の
ビスマス、アンチモン等の従来の脱銅膜ビ電解では除去
できなかった不純金属を良好に吸着除去でき、電気銅の
純度のより向上を図ることができるとともに、銅電解液
中のビスマス、アンチモン等の不純金属イオンが除去さ
れる結果、脱銅膜ビ電解における電力効率を向上せしめ
ることができる等の効果を有する。
As explained above, the method of the present invention uses a specific resin as a resin base, and at least one of an aminoalkylene phosphate group, an iminoalkylene phosphate group, an alkylene phosphate group, a phosphoric acid group or a salt thereof, or an amidoxime group is added as a functional group. This is a method in which a copper electrolyte is brought into contact with a chelate resin having a copper electrolyte, and the impure metal ions in the copper electrolyte are adsorbed and separated by the chelate resin. It is possible to effectively adsorb and remove impurity metals that could not be removed by copper-removal film vinyl electrolysis, further improving the purity of electrolytic copper, and removing impurity metal ions such as bismuth and antimony in the copper electrolyte. As a result, it has effects such as being able to improve the power efficiency in copper-removal membrane electrolysis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1のキレート樹脂をカラムに充填して模
擬電解液を通液した際の通液量と、流出液中の不純金属
イオン濃度との関係を示すグラ1フである。
FIG. 1 is a graph showing the relationship between the amount of a simulated electrolytic solution passed through a column filled with the chelate resin of Example 1 and the concentration of impure metal ions in the effluent.

Claims (3)

【特許請求の範囲】[Claims] (1)ジビニルベンゼン系共重合体、エポキシ樹脂、フ
ェノール樹脂、レゾルシン樹脂、塩化ビニル樹脂のいず
れかを樹脂母体とし、かつアミノアルキレン燐酸基また
はその塩、イミノアルキレン燐酸基またはその塩、アル
キレン燐酸基またはその塩、燐酸基またはその塩あるい
はアミドオキシム基のうち少なくとも1種を官能基とす
るキレート樹脂に銅電解液を接触せしめ、不純金属イオ
ンを上記キレート樹脂に吸着せしめて除去することを特
徴とする銅電解液中の不純金属イオンの除去方法。
(1) Divinylbenzene copolymer, epoxy resin, phenol resin, resorcinol resin, or vinyl chloride resin as the resin base, and an aminoalkylene phosphate group or its salt, an iminoalkylene phosphate group or its salt, or an alkylene phosphate group or a salt thereof, a chelate resin having at least one of a phosphoric acid group, a salt thereof, or an amidoxime group as a functional group is brought into contact with a copper electrolyte, and impure metal ions are adsorbed to the chelate resin and removed. A method for removing impure metal ions from copper electrolyte.
(2)キレート樹脂がジビニルベンゼン系共重合体を樹
脂母体とし、かつイミノアルキレン燐酸基またはその塩
と、アミノアルキレン燐酸基またはその塩とを官能基と
して有する特許請求の範囲第1項記載の銅電解液中の不
純金属イオンの除去方法。
(2) The copper according to claim 1, wherein the chelate resin has a divinylbenzene copolymer as a resin base, and has an iminoalkylene phosphate group or a salt thereof and an aminoalkylene phosphate group or a salt thereof as functional groups. Method for removing impure metal ions in electrolyte.
(3)キレート樹脂が多孔質型の樹脂である特許請求の
範囲第1項または第2項記載の銅電解液中の不純金属イ
オンの除去方法。
(3) The method for removing impure metal ions in a copper electrolyte according to claim 1 or 2, wherein the chelate resin is a porous resin.
JP60066198A 1985-03-29 1985-03-29 Method for removing impurity metallic ion in copper electrolyte Granted JPS61227190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60066198A JPS61227190A (en) 1985-03-29 1985-03-29 Method for removing impurity metallic ion in copper electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60066198A JPS61227190A (en) 1985-03-29 1985-03-29 Method for removing impurity metallic ion in copper electrolyte

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4235336A Division JPH0694598B2 (en) 1992-08-11 1992-08-11 Method for removing impure metal ions in copper electrolyte

Publications (2)

Publication Number Publication Date
JPS61227190A true JPS61227190A (en) 1986-10-09
JPH055901B2 JPH055901B2 (en) 1993-01-25

Family

ID=13308908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60066198A Granted JPS61227190A (en) 1985-03-29 1985-03-29 Method for removing impurity metallic ion in copper electrolyte

Country Status (1)

Country Link
JP (1) JPS61227190A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947203A (en) * 1972-04-19 1974-05-07
JPS56133319A (en) * 1980-03-22 1981-10-19 Unitika Ltd Phenolic chelate resin, its production and adsorption treatment
EP0121337A1 (en) * 1983-03-03 1984-10-10 Unitika Ltd. Method for purification of sulfuric acid solution
JPS59208089A (en) * 1983-05-11 1984-11-26 Nippon Mining Co Ltd Method for removing bismuth and antimony from aqueous solution acidified with sulfuric acid
JPS6050192A (en) * 1983-08-27 1985-03-19 Unitika Ltd Purifying method of copper electrolyte
JPS61110800A (en) * 1984-11-06 1986-05-29 Nippon Mining Co Ltd Method for purifying copper electrolytic solution

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947203A (en) * 1972-04-19 1974-05-07
JPS56133319A (en) * 1980-03-22 1981-10-19 Unitika Ltd Phenolic chelate resin, its production and adsorption treatment
EP0121337A1 (en) * 1983-03-03 1984-10-10 Unitika Ltd. Method for purification of sulfuric acid solution
JPS59208089A (en) * 1983-05-11 1984-11-26 Nippon Mining Co Ltd Method for removing bismuth and antimony from aqueous solution acidified with sulfuric acid
JPS6050192A (en) * 1983-08-27 1985-03-19 Unitika Ltd Purifying method of copper electrolyte
JPS61110800A (en) * 1984-11-06 1986-05-29 Nippon Mining Co Ltd Method for purifying copper electrolytic solution

Also Published As

Publication number Publication date
JPH055901B2 (en) 1993-01-25

Similar Documents

Publication Publication Date Title
US4559216A (en) Method for purification of sulfuric acid solution
US5051128A (en) Elution process for gold-iodine complex from ion-exchange resins
JP2579773B2 (en) Purification method of alkaline solution
JPS61227190A (en) Method for removing impurity metallic ion in copper electrolyte
JPS60215721A (en) Method for recovering gallium
JPH03167160A (en) Purification of aqueous solution of quaternary ammonium hydroxide
US4157298A (en) Method for the removal of ferric ions from a concentrated aqueous zinc solution
JPH0694598B2 (en) Method for removing impure metal ions in copper electrolyte
JPH0549729B2 (en)
JPH01298200A (en) Method for removing impurity metal ion in spent nickel plating solution
US4298380A (en) Process for purifying low-melting metals from impurities
JPS5849620A (en) Recovery of gallium
JPS61215215A (en) Separation of gallium from aqueous solution of aluminate
JPH0548286B2 (en)
EP0609839B1 (en) Method for electrolyzing an alkali metal chloride
JPS61227888A (en) Separation of gallium from arsenic
JP3907937B2 (en) Method for treating boron-containing eluent containing alkali
JPS62228436A (en) Method for separating and recovering cobalt
US11512367B2 (en) Processes for the removal and recovery of cadmium from wet-process phosphoric acid
JPS6050192A (en) Purifying method of copper electrolyte
JPH0529607B2 (en)
RU2033440C1 (en) Method of extraction of copper from solution
JP2008038236A (en) Method of separating zinc from aqueous nickel chloride solution
JPS5836632A (en) Inorganic anion adsorbent, its manufacture, and adsorption treatment
JPH07831A (en) Refining of aqueous solution of inorganic salt

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees