JPH0694598B2 - Method for removing impure metal ions in copper electrolyte - Google Patents

Method for removing impure metal ions in copper electrolyte

Info

Publication number
JPH0694598B2
JPH0694598B2 JP4235336A JP23533692A JPH0694598B2 JP H0694598 B2 JPH0694598 B2 JP H0694598B2 JP 4235336 A JP4235336 A JP 4235336A JP 23533692 A JP23533692 A JP 23533692A JP H0694598 B2 JPH0694598 B2 JP H0694598B2
Authority
JP
Japan
Prior art keywords
resin
metal ions
copper
impure metal
chelate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4235336A
Other languages
Japanese (ja)
Other versions
JPH05214576A (en
Inventor
雅文 守屋
臣男 井町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyoshi Oil and Fat Co Ltd
Original Assignee
Miyoshi Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyoshi Oil and Fat Co Ltd filed Critical Miyoshi Oil and Fat Co Ltd
Priority to JP4235336A priority Critical patent/JPH0694598B2/en
Publication of JPH05214576A publication Critical patent/JPH05214576A/en
Publication of JPH0694598B2 publication Critical patent/JPH0694598B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は銅電解液中の不純金属イ
オンの除去方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for removing impure metal ions from a copper electrolyte.

【0002】[0002]

【従来の技術】銅を精錬する方法としては、粗銅を陽極
に用い、純銅を陰極として用いて硫酸銅溶液を電解液と
して電解する方法が一般に行われている。しかしながら
この精錬方法の場合、電解の進行によって粗銅中に含有
されるビスマス、アンチモン、砒素、鉄等の銅以外の不
純物イオンが電解液中に溶出し、これら不純物イオンの
濃度が一定濃度以上となると導電率を低下させ、電解効
率の低下をきたすとともに得られる電気銅の純度低下を
きたす。
2. Description of the Related Art As a method for refining copper, a method in which crude copper is used as an anode and pure copper is used as a cathode and a copper sulfate solution is used as an electrolytic solution for electrolysis is generally used. However, in the case of this refining method, bismuth contained in crude copper, antimony, arsenic, impurity ions other than copper such as iron are eluted into the electrolytic solution by the progress of electrolysis, and the concentration of these impurity ions becomes a certain concentration or more. It lowers the conductivity, lowers the electrolysis efficiency, and lowers the purity of the obtained electrolytic copper.

【0003】このため銅電解液の浄液を行う必要があ
り、従来から銅電解液の浄液方法としては、主として脱
銅脱砒素電解(以下、脱銅脱ピ電解と略称する。)が行
われている。
For this reason, it is necessary to purify the copper electrolytic solution, and as a conventional method for purifying the copper electrolytic solution, decopperization and dearsenic deelectrolysis (hereinafter referred to as decopperization and depyrogenization electrolysis) is mainly performed. It is being appreciated.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、脱銅脱
ピ電解では砒素及び鉄の除去は可能であるものの、ビス
マス、アンチモン等の不純金属イオンは除去することが
できず、電気銅の純度向上を望み難いとともに、ビスマ
ス、アンチモンが銅電解液中に存在すると脱銅脱ピ電解
の電力効率に低下をきたすという問題があり、銅電解液
中のビスマス、アンチモン等を除去し得る簡易な方法の
開発が望まれていた。
However, although arsenic and iron can be removed by decopperization without copper removal, impure metal ions such as bismuth and antimony cannot be removed, and the purity of electrolytic copper can be improved. In addition to being difficult to hope for, there is a problem that the power efficiency of decopperization and depyrolysis is reduced when bismuth and antimony are present in the copper electrolytic solution.Therefore, a simple method for removing bismuth, antimony, etc. in the copper electrolytic solution Was desired.

【0005】本発明は上記の点に鑑みなされたもので、
キレート樹脂を用いて銅電解液中に含まれるビスマス、
アンチモン等の不純金属イオンを除去する方法を提供す
ることを目的とする。
The present invention has been made in view of the above points,
Bismuth contained in the copper electrolyte using a chelate resin,
It is an object of the present invention to provide a method for removing impure metal ions such as antimony.

【0007】本発明者等は上記課題を解決するため鋭意
研究した結果、特定の樹脂母体を有し、かつアミドオキ
シム基を官能基として有するキレート樹脂を用いること
によって銅電解液中のビスマス、アンチモン等の不純金
属イオンを効果的に分離することができることを見出し
本発明を完成するに至った。
The inventors of the present invention have conducted extensive studies to solve the above problems, and as a result, by using a chelating resin having a specific resin matrix and having an amidoxime group as a functional group, bismuth and antimony in a copper electrolytic solution can be obtained. The inventors have found that it is possible to effectively separate impurities such as impure metal ions, and have completed the present invention.

【0008】[0008]

【課題を解決するための手段】即ち本発明の銅電解液中
の不純金属イオンの除去方法は、ジビニルベンゼン系共
重合体、エポキシ樹脂、フェノール樹脂、レゾルシン樹
脂、塩化ビニル樹脂のいずれかを樹脂母体とし、かつア
ミドオキシム基を官能基とするキレート樹脂に銅電解液
を接触せしめ、不純金属イオンを上記キレート樹脂に吸
着せしめて除去することを特徴とする。本発明におい
て、キレート樹脂は多孔質型の樹脂が好ましい。
That is, the method for removing impure metal ions in a copper electrolytic solution of the present invention uses a resin selected from divinylbenzene copolymer, epoxy resin, phenol resin, resorcin resin and vinyl chloride resin. It is characterized in that a copper electrolyte is brought into contact with a chelate resin which is a matrix and has an amidooxime group as a functional group, and impure metal ions are adsorbed to the chelate resin to be removed. In the present invention, the chelate resin is preferably a porous resin.

【0009】本発明において用いられるキレート樹脂の
樹脂母体としては、ジビニルベンゼン系共重合体、エポ
キシ樹脂、レゾルシン樹脂、フェノール樹脂、塩化ビニ
ル樹脂のいずれかが用いられ、ジビニルベンゼン系共重
合体としては、スチレン−ジビニルベンゼン共重合体、
アクリル酸メチル−ジビニルベンゼン共重合体、メタク
リル酸メチル−ジビニルベンゼン共重合体、アクリロニ
トリル−ジビニルベンゼン共重合体等が挙げられる。
As the resin matrix of the chelate resin used in the present invention, any one of a divinylbenzene copolymer, an epoxy resin, a resorcin resin, a phenol resin and a vinyl chloride resin is used, and as the divinylbenzene copolymer, , Styrene-divinylbenzene copolymer,
Examples thereof include a methyl acrylate-divinylbenzene copolymer, a methyl methacrylate-divinylbenzene copolymer, an acrylonitrile-divinylbenzene copolymer and the like.

【0010】本発明で用いるキレート樹脂は上記いずれ
かの樹脂を樹脂母体とし、かつアミドオキシム基を官能
基として有するキレート樹脂である。このキレート樹脂
はゲル型であるより多孔質型(MR型)であることが好
ましい。それは処理水中に有機物が存在している場合、
ゲル型のキレート樹脂は金属の吸着能が低下するのに対
し、MR型のキレート樹脂は吸着能が低下し難く、かつ
樹脂の再生時に起こる体積変化による樹脂破砕の損失が
少ないためである。
The chelate resin used in the present invention is a chelate resin having any of the above resins as a resin matrix and having an amidoxime group as a functional group. The chelate resin is preferably a porous type (MR type) rather than a gel type. If organic matter is present in the treated water,
This is because the gel-type chelate resin has a reduced ability to adsorb metals, whereas the MR-type chelate resin does not have a reduced ability to adsorb, and there is little loss of resin crushing due to volume changes that occur during resin regeneration.

【0011】上記キレート樹脂としては、 クロロメチル化したスチレン−ジビニルベンゼン共重
合体にアンモニアあるいはポリアルキレンポリアミンを
反応せしめた後、アクリロニトリルを反応せしめ更にヒ
ドロキシルアミンを反応せしめてアミドオキシム基を導
入したキレート樹脂
Examples of the chelate resin include a chelate prepared by reacting chloromethylated styrene-divinylbenzene copolymer with ammonia or polyalkylene polyamine, then reacting with acrylonitrile and further reacting with hydroxylamine to introduce an amide oxime group. resin

【0012】アクリロニトリル−ジビニルベンゼン共
重合体にヒドロキシルアミンを反応せせしめてアミドオ
キシム基を導入したキレート樹脂
A chelate resin having an amidoxime group introduced by reacting acrylonitrile-divinylbenzene copolymer with hydroxylamine

【0013】ポリアルキレンポリアミンにアクリロニ
トリルを反応せしめた後、硬化剤とともにビスエポキシ
化合物を反応せしめて硬化させ、次いでヒドロキシルア
ミンを反応せしめて得られるアミドオキシム基を官能基
として有し、エポキシ樹脂を樹脂母体とするキレート樹
After reacting polyalkylenepolyamine with acrylonitrile, a bisepoxy compound is reacted with a curing agent to cure, and then hydroxylamine is reacted to obtain an amide oxime group as a functional group, and an epoxy resin is used as a resin. Chelating resin as a base

【0014】アクリル酸メチル−ジビニルベンゼン共
重合体等のアクリル酸アルキルエステル−ジビニルベン
ゼン共重合体に、ポリアルキレンポリアミンを反応せし
めた後、アクリロニトリルを反応せしめ、次いでヒドロ
キシルアミンを反応せしめてアミドオキシム基を導入し
たキレート樹脂等が挙げられる。
Acrylic acid alkyl ester-divinylbenzene copolymer such as methyl acrylate-divinylbenzene copolymer is reacted with polyalkylene polyamine, followed by reaction with acrylonitrile, and then with hydroxylamine to react with an amidoxime group. And a chelate resin into which is introduced.

【0015】本発明方法において銅電解液と上記キレー
ト樹脂とを接触せしめる方法としては、例えば銅電解液
中にキレート樹脂を浸漬せしめるか、浸漬せしめた後更
に攪拌するバッチ式方法、キレート樹脂を充填したカラ
ムに銅電解液を通過せしめるカラム式方法等が挙げられ
る。
In the method of the present invention, the method of bringing the copper electrolyte and the chelate resin into contact with each other includes, for example, immersing the chelate resin in the copper electrolyte solution, or a batch method in which the chelate resin is immersed and further stirred, and the chelate resin is filled. A column method in which a copper electrolytic solution is passed through the column is used.

【0016】カラム式方法の場合には一過方式と循環方
式があるが、いずれの方式でも良く、更に通液方法とし
て上向流、下向流のいずれの方法も採用できる。またカ
ラム式においては、通液速度SV0.5〜10でゆっくり
通液し、不純金属イオンを吸着させる方法、SV10〜
50で速く通液して吸着させる方法、あるいは銅電解液
を循環させて不純金属イオンを吸着させる方法等種々の
方法を採用することができる。
In the case of the column type method, there are a passing method and a circulation method, but either method may be used, and as the liquid passing method, either an upward flow or a downward flow method can be adopted. In the column type, a method of slowly passing a liquid at a flow rate of SV 0.5 to 10 to adsorb impure metal ions, SV10
Various methods such as a method of rapidly passing and adsorbing at 50 or a method of circulating a copper electrolytic solution to adsorb impure metal ions can be adopted.

【0017】上記のようにしてキレート樹脂に吸着され
た銅電解液中の不純金属イオンは、不純金属イオンを吸
着したキレート樹脂を溶離剤として1〜12N、好まし
くは5〜8Nの塩酸、硝酸、燐酸等の酸を用いて処理し
て溶離し、回収することができるが、特に塩酸を溶離剤
として用いることが好ましい。
Impurity metal ions in the copper electrolyte adsorbed on the chelate resin as described above are 1 to 12N, preferably 5 to 8N hydrochloric acid, nitric acid using the chelate resin adsorbing the impure metal ions as an eluent. Although it can be recovered by treating with an acid such as phosphoric acid to elute and collect, hydrochloric acid is particularly preferably used as an eluent.

【0018】キレート樹脂に吸着された不純金属イオン
の溶離剤による溶離方法としては、バッチ式、カラム式
のいずれでも良い。カラム式の場合、溶離剤の通液速度
SV0.5〜5でゆっくり通液するか溶離剤を循環させて
溶離することができる。また得られた溶離液を次の溶離
剤として再使用すれば、溶離液中の不純金属イオン濃度
を高めることができる。
The method for eluting the impure metal ions adsorbed on the chelate resin with an eluent may be either a batch type or a column type. In the case of the column type, the eluent can be slowly passed through at an eluent flow rate of SV 0.5 to 5 or can be circulated through the eluent to elute. Further, if the obtained eluent is reused as the next eluent, the concentration of impure metal ions in the eluent can be increased.

【0019】キレート樹脂より溶離せしめた不純金属イ
オンは、例えば電解等の方法によって金属として回収す
ることもできる。また不純金属イオンを溶離した後のキ
レート樹脂は再び銅電解液中の不純金属イオンの吸着用
として繰り返し用いることができる。
The impure metal ions eluted from the chelate resin can be recovered as a metal by a method such as electrolysis. Further, the chelating resin after elution of the impure metal ions can be repeatedly used again for adsorbing the impure metal ions in the copper electrolytic solution.

【0020】[0020]

【実施例】以下、実施例を挙げて本発明を更に詳細に説
明する。
EXAMPLES The present invention will be described in more detail with reference to examples.

【0021】実施例1 アクリロニトリル(80wt%)とジビニルベンゼン(2
0wt%)をトルエン存在下で懸濁重合してMR型の球状
樹脂を得た。次いで、この樹脂をヒドロキシルアミンと
反応させ、アミドオキシム基を官能基として有するキレ
ート樹脂を得た。
Example 1 Acrylonitrile (80 wt%) and divinylbenzene (2
0 wt%) was subjected to suspension polymerization in the presence of toluene to obtain an MR type spherical resin. Then, this resin was reacted with hydroxylamine to obtain a chelate resin having an amidoxime group as a functional group.

【0022】この樹脂のうち、10〜48メッシュの樹
脂0.5gを擬似銅電解液(銅:50g/リットル、砒
素:2.8g/リットル、鉄:0.52g/リットル、ビス
マス:0.23g/リットル、アンチモン:0.19g/リ
ットル、遊離硫酸:200g/リットル)500ミリリ
ットルに添加し、40℃で1.5時間攪拌した後、樹脂を
分離して擬似銅電解液の鉄、ビスマス、アンチモンの残
存濃度を原子吸光法により測定し、この結果からキレー
ト樹脂1kg当たりの吸着量(単位:g/kg−R)を求め
た。
Of this resin, 0.5 g of 10-48 mesh resin was added to a pseudo copper electrolyte (copper: 50 g / liter, arsenic: 2.8 g / liter, iron: 0.52 g / liter, bismuth: 0.23 g). Per liter, antimony: 0.19 g / liter, free sulfuric acid: 200 g / liter) and added to 500 ml and stirred at 40 ° C. for 1.5 hours, and then the resin is separated and the pseudo copper electrolyte solution of iron, bismuth and antimony is added. Was measured by an atomic absorption method, and the adsorption amount (unit: g / kg-R) per 1 kg of the chelate resin was determined from this result.

【0023】このキレート樹脂への不純金属イオンの吸
着量は、鉄:4.8g/kg−R、ビスマス:13.5g/kg
−R、アンチモン:21.2g/kg−Rであった。
The adsorption amount of the impure metal ions on the chelate resin is iron: 4.8 g / kg-R, bismuth: 13.5 g / kg.
-R, antimony: 21.2 g / kg-R.

【0024】実施例2 スチレン(92wt%)とジビニルベンゼン(8wt%)を
懸濁重合して得られたスチレン−ジビニルベンゼン共重
合体よりなるMR型の球状樹脂(10〜60メッシュ)
をエチレンジクロリド中で膨潤させ、無水塩化亜鉛の存
在下にクロロメチルエーテルを反応させ、上記球状樹脂
をクロロメチル化した(塩素含有率:21.8wt%)。
Example 2 MR type spherical resin (10-60 mesh) consisting of styrene-divinylbenzene copolymer obtained by suspension polymerization of styrene (92 wt%) and divinylbenzene (8 wt%)
Was swollen in ethylene dichloride and reacted with chloromethyl ether in the presence of anhydrous zinc chloride to chloromethylate the spherical resin (chlorine content: 21.8 wt%).

【0025】次いでこのクロロメチル化樹脂にエチレン
ジアミン(EDA)を反応させてEDA型樹脂を得た。
次いで得られたEDA型樹脂にアクリロニトリルをミハ
エル付加し、更にヒドロキシルアミンを反応させてアミ
ドオキシム基を官能基として有するキレート樹脂を得
た。このうちの10〜48メッシュの樹脂を用いて実施
例1で用いたと同様の擬似銅電解液を同様の条件で処理
した。
Next, the chloromethylated resin was reacted with ethylenediamine (EDA) to obtain an EDA type resin.
Next, Michael was added to the obtained EDA type resin with acrylonitrile and further reacted with hydroxylamine to obtain a chelate resin having an amidoxime group as a functional group. A pseudo copper electrolytic solution similar to that used in Example 1 was treated with a resin of 10 to 48 mesh among these, under the same conditions.

【0026】このキレート樹脂への不純金属イオンの吸
着量は、鉄:3.9g/kg−R、ビスマス:14.5g/kg
−R、アンチモン:22.8g/kg−Rであった。
The adsorption amount of the impure metal ions on the chelate resin is iron: 3.9 g / kg-R, bismuth: 14.5 g / kg.
-R, antimony: 22.8 g / kg-R.

【0027】実施例3 ペンタエチレンヘキサミンにアクリロニトロルをミハエ
ル付加せしめて得た生成物と、ビスフェノールAジグリ
シジルエーテル及びメタキシレンジアミンを、ポリビニ
ルアルコール中で懸濁重合して球状の硬化樹脂を得た。
次いで得られた樹脂にヒドロキシルアミンを反応せしめ
てアミドオキシム基を官能基として有するキレート樹脂
を得た。このキレート樹脂より分級した10〜48メッ
シュの樹脂を用い、実施例1と同様の擬似銅電解液を同
様にして処理した。
Example 3 A product obtained by Michael-adding acrylonitrol to pentaethylenehexamine, bisphenol A diglycidyl ether and metaxylenediamine were subjected to suspension polymerization in polyvinyl alcohol to obtain a spherical cured resin.
Then, the obtained resin was reacted with hydroxylamine to obtain a chelate resin having an amidoxime group as a functional group. Using a 10 to 48 mesh resin classified from this chelate resin, the same pseudo copper electrolytic solution as in Example 1 was treated in the same manner.

【0028】このキレート樹脂への不純金属イオンの吸
着量は、鉄:3.1g/kg−R、ビスマス:11.8g/kg
−R、アンチモン:17.9g/kg−Rであった。
The amount of impure metal ions adsorbed on this chelate resin is iron: 3.1 g / kg-R, bismuth: 11.8 g / kg.
-R, antimony: 17.9 g / kg-R.

【0029】実施例4 アクリル酸メチル(90wt%)とジビニルベンゼン(1
0wt%)を懸濁重合し、MR型の球状樹脂を得た。得ら
れた球状樹脂にジエチレントリアミン(DETA)を反
応させてDETA型樹脂を得た。このDETA型樹脂に
アクリロニトリルをミハエル付加し、更にヒドロキシル
アミンを反応させてアミドオキシム基を官能基として有
するキレート樹脂を得た。この樹脂のうち10〜48メ
ッシュを用い、実施例1と同様の擬似銅電解液を同様に
して処理した。
Example 4 Methyl acrylate (90 wt%) and divinylbenzene (1
0 wt%) was suspension polymerized to obtain an MR type spherical resin. The obtained spherical resin was reacted with diethylenetriamine (DETA) to obtain a DETA type resin. Acrylonitrile was added to this DETA-type resin by Michael and further reacted with hydroxylamine to obtain a chelate resin having an amide oxime group as a functional group. Using 10 to 48 mesh of this resin, the same pseudo copper electrolytic solution as in Example 1 was treated in the same manner.

【0030】このキレート樹脂への不純金属イオンの吸
着量は、鉄:2.2g/kg−R、ビスマス:13.6g/kg
−R、アンチモン:19.5g/kg−Rであった。
The amount of impure metal ions adsorbed on the chelate resin was iron: 2.2 g / kg-R, bismuth: 13.6 g / kg.
-R, antimony: 19.5 g / kg-R.

【0031】比較例1 スチレン−ジビニルベンゼン共重合体を樹脂母体とし、
イミノジ酢酸基を官能基として有するMR型のキレート
樹脂(10〜48メッシュ)0.5gを用い、実施例1と
同様の擬似銅電解液を同様にして処理した。このキレー
ト樹脂に鉄は1.5g/kg−R吸着されたが、ビスマス、
アンチモンは吸着されなかった。
Comparative Example 1 A styrene-divinylbenzene copolymer was used as a resin matrix,
The same pseudo copper electrolytic solution as in Example 1 was treated in the same manner with 0.5 g of MR type chelate resin (10 to 48 mesh) having an iminodiacetic acid group as a functional group. Iron was adsorbed on this chelating resin at 1.5 g / kg-R, but bismuth,
Antimony was not adsorbed.

【0032】実施例5 上記実施例1〜4及び比較例1で用いた10〜48メッ
シュのキレート樹脂100ミリリットルをを、それぞれ
カラム(内径20mmφ)に充填し、擬似銅電解液(銅:
45g/リットル、砒素:2.8g/リットル、鉄:0.5
4g/リットル、ビスマス:0.18g/リットル、アン
チモン:0.24g/リットル、遊離硫酸:200g/リ
ットル)を40℃でSV5にて1時間通液した。
Example 5 100 ml of the chelate resin of 10 to 48 mesh used in the above Examples 1 to 4 and Comparative Example 1 was filled in each column (inner diameter 20 mmφ), and the pseudo copper electrolytic solution (copper:
45 g / liter, arsenic: 2.8 g / liter, iron: 0.5
4 g / liter, bismuth: 0.18 g / liter, antimony: 0.24 g / liter, free sulfuric acid: 200 g / liter) were passed through SV5 at 40 ° C. for 1 hour.

【0033】各キレート樹脂を充填したカラムについて
所定通液量(樹脂1リットル当たりの通液量:単位をl
/l−Rで示す。)毎に流出液のサンプルを採取して流
出液中の鉄、ビスマス、アンチモンの濃度を測定した。
所定の通液量に達した時の各金属イオンのキレート樹脂
への吸着量(単位:g/l−R)及び擬似銅電解液中の
不純金属イオン除去率を表1に示す。
A predetermined amount of liquid to be passed through the column filled with each chelate resin (amount of liquid to be passed per liter of resin: unit is 1
/ L-R. Samples of the effluent were collected and the concentrations of iron, bismuth and antimony in the effluent were measured.
Table 1 shows the amount of each metal ion adsorbed on the chelate resin (unit: g / l-R) and the removal rate of the impure metal ions in the pseudo-copper electrolyte solution when the predetermined solution flow rate was reached.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】以上説明したように、本発明方法は特定
の樹脂を樹脂母体とし、かつアミドオキシム基を官能基
とするキレート樹脂に銅電解液を接触せしめ、キレート
樹脂に銅電解液中の不純金属イオンを吸着せしめて分離
する方法であり、本発明方法によれば銅電解液中のビス
マス、アンチモン等、従来の脱銅脱ピ電解では除去でき
なかった不純金属イオンを良好に吸着除去でき、電気銅
の純度のより向上を図ることができる。また銅電解液中
のビスマス、アンチモン等の不純金属が除去される結
果、脱銅脱ピ電解における電力効率を向上せしめること
ができる等の効果を有する。
As described above, according to the method of the present invention, a chelate resin having a specific resin as a resin matrix and an amidoxime group as a functional group is brought into contact with a copper electrolytic solution, and the chelate resin is treated in a copper electrolytic solution. It is a method of adsorbing and separating impure metal ions, and according to the method of the present invention, bismuth in a copper electrolyte, antimony, etc., can be adsorbed and removed favorably by impure metal ions that could not be removed by conventional decopperization without copper removal. Therefore, the purity of electrolytic copper can be further improved. Further, as a result of removing the impure metal such as bismuth and antimony in the copper electrolytic solution, there is an effect that the power efficiency in the decoppering depyrogenization can be improved.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ジビニルベンゼン系共重合体、エポキシ
樹脂、フェノール樹脂、レゾルシン樹脂、塩化ビニル樹
脂のいずれかを樹脂母体とし、かつアミドオキシム基を
官能基とするキレート樹脂に銅電解液を接触せしめ、不
純金属イオンを上記キレート樹脂に吸着せしめて除去す
ることを特徴とする銅電解液中の不純金属イオンの除去
方法。
1. A copper electrolyte is brought into contact with a chelate resin having a divinylbenzene-based copolymer, an epoxy resin, a phenol resin, a resorcin resin, or a vinyl chloride resin as a resin matrix and having an amidooxime group as a functional group. A method for removing impure metal ions in a copper electrolytic solution, which comprises removing impure metal ions by adsorbing them onto the chelate resin.
【請求項2】 キレート樹脂が多孔質型の樹脂である請
求項1記載の銅電解液中の不純金属イオンの除去方法。
2. The method for removing impure metal ions in a copper electrolyte solution according to claim 1, wherein the chelate resin is a porous resin.
JP4235336A 1992-08-11 1992-08-11 Method for removing impure metal ions in copper electrolyte Expired - Lifetime JPH0694598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4235336A JPH0694598B2 (en) 1992-08-11 1992-08-11 Method for removing impure metal ions in copper electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4235336A JPH0694598B2 (en) 1992-08-11 1992-08-11 Method for removing impure metal ions in copper electrolyte

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60066198A Division JPS61227190A (en) 1985-03-29 1985-03-29 Method for removing impurity metallic ion in copper electrolyte

Publications (2)

Publication Number Publication Date
JPH05214576A JPH05214576A (en) 1993-08-24
JPH0694598B2 true JPH0694598B2 (en) 1994-11-24

Family

ID=16984599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4235336A Expired - Lifetime JPH0694598B2 (en) 1992-08-11 1992-08-11 Method for removing impure metal ions in copper electrolyte

Country Status (1)

Country Link
JP (1) JPH0694598B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2653392A1 (en) 2009-02-10 2010-08-10 Patricio A. Riveros Improved method to remove antimony from copper electrolytes
CN106086935B (en) * 2016-08-29 2017-12-05 江西理工大学 A kind of method that arsenic, antimony, bismuth are removed from copper electrolyte

Also Published As

Publication number Publication date
JPH05214576A (en) 1993-08-24

Similar Documents

Publication Publication Date Title
US4559216A (en) Method for purification of sulfuric acid solution
US5366715A (en) Method for selectively removing antimony and bismuth from sulphuric acid solutions
US5051128A (en) Elution process for gold-iodine complex from ion-exchange resins
JP2017186198A (en) Method for purifying cobalt chloride solution
US3001868A (en) Recovery of metals from cyanide solution by anion exchange
US4374008A (en) Process for separating tungsten from coinage metals
US4572823A (en) Process for rhenium recovery
JPH0694598B2 (en) Method for removing impure metal ions in copper electrolyte
US4157298A (en) Method for the removal of ferric ions from a concentrated aqueous zinc solution
US8349187B2 (en) Method to remove antimony from copper electrolytes
US2863717A (en) Recovery of uranium values from copper-bearing solutions
JPH0549729B2 (en)
JPS61227190A (en) Method for removing impurity metallic ion in copper electrolyte
JPS621325B2 (en)
US4298380A (en) Process for purifying low-melting metals from impurities
JPH0548286B2 (en)
JPS61215215A (en) Separation of gallium from aqueous solution of aluminate
JPS62228436A (en) Method for separating and recovering cobalt
JP7194934B2 (en) Method for recovering silver in copper electrolyte
JP2008038236A (en) Method of separating zinc from aqueous nickel chloride solution
JP3653944B2 (en) Method for selective recovery of Sb and Bi from copper electrolyte
JPS6050192A (en) Purifying method of copper electrolyte
JPH0529607B2 (en)
JPH0471597B2 (en)
JPS6355117A (en) Fractional recovery of gallium and indium

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term