JPS6122680A - Mixture gas for carbonic acid gas laser oscilator excited by silent discharge - Google Patents

Mixture gas for carbonic acid gas laser oscilator excited by silent discharge

Info

Publication number
JPS6122680A
JPS6122680A JP14282084A JP14282084A JPS6122680A JP S6122680 A JPS6122680 A JP S6122680A JP 14282084 A JP14282084 A JP 14282084A JP 14282084 A JP14282084 A JP 14282084A JP S6122680 A JPS6122680 A JP S6122680A
Authority
JP
Japan
Prior art keywords
gas
mixed gas
laser oscillator
silent discharge
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14282084A
Other languages
Japanese (ja)
Other versions
JPH0240224B2 (en
Inventor
Kazumoto Hamazaki
浜崎 量基
Eikichi Hayashi
林 栄吉
Shigenori Yagi
重典 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Tobacco Inc
Mitsubishi Electric Corp
Original Assignee
Japan Tobacco Inc
Mitsubishi Electric Corp
Japan Tobacco and Salt Public Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tobacco Inc, Mitsubishi Electric Corp, Japan Tobacco and Salt Public Corp filed Critical Japan Tobacco Inc
Priority to JP14282084A priority Critical patent/JPS6122680A/en
Publication of JPS6122680A publication Critical patent/JPS6122680A/en
Publication of JPH0240224B2 publication Critical patent/JPH0240224B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/2232Carbon dioxide (CO2) or monoxide [CO]

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain a mixture gas which can provide stable performance for a long period of time, by optimizing the composition of a mixture gas containing CO2 used as a laser medium gas in a carbonic acid gas laser oscillator excited by silent discharge. CONSTITUTION:The surface of a metal is covered with an inductor such as glass. A pair of electrodes 1 are provided to be opposed to each other with a proper discharge gap. Silent discharge is caused between these electrodes 2 by applying power from a high-frequency power source 2. A partial reflecting mirror 3 disposed on the laser exciting optical axis, together with a total reflecting mirror 4, provides an optical resonator. In an orthogonal triaxial carbonic acid gas laser oscillator thus provided, the composition of a mixture gas is maintained such that the mole fraction ratio of CO2 to CO is 2:1. That is, when the amounts of CO2 and CO are increased proportionally by a certain value, a maximum pulse laser output waveform is obtained when CO2 is 12% and CO is 6%.

Description

【発明の詳細な説明】 Cの発明は、無声放電励起式炭酸ガスレーザ発振器にお
いてレーザ媒質ガスとして使用されるCO2′?含む混
合ガスに関するものであり、特に混合ガスの組成の改良
に関するものである。
[Detailed Description of the Invention] The invention of C is directed to CO2'? used as a laser medium gas in a silent discharge excited carbon dioxide laser oscillator. The invention relates to mixed gases containing mixed gases, and particularly to improving the composition of mixed gases.

一般に、この種の炭酸ガスレーザ発振器として第1図に
示すものがあった。第1図は発振器の概要図であり1図
中、(1)は金属の表面にガラス等の誘電体ン被榎し適
切な放電空隙ンもって対向的に設けられた一対の電極、
(2)は電極(1)間Km源ン印加し無声放電ケ発生さ
せる高周波電源、(3)はレーザ励起元軸上に設けられ
た部分反射鏡、(4)は全反射鏡であり1部分反射鏡(
3)とともに光共振器ケ構成している。
Generally, there is a carbon dioxide laser oscillator of this type as shown in FIG. Fig. 1 is a schematic diagram of an oscillator. In Fig. 1, (1) is a pair of electrodes covered with a dielectric material such as glass on a metal surface and provided facing each other with an appropriate discharge gap;
(2) is a high frequency power source that is applied between the electrodes (1) to generate a silent discharge, (3) is a partial reflection mirror installed on the axis of the laser excitation source, and (4) is a total reflection mirror with one part. Reflector(
3) together form an optical resonator.

このように構成さねた炭酸ガスレーザ発振器は三軸直交
型と称され、以下その動作乞説明する。
The carbon dioxide laser oscillator constructed in this manner is called a three-axis orthogonal type, and its operation will be explained below.

先ず、放電空隙にco2y7含むレーザ媒質ガスケ。First, a laser medium gasket containing CO2Y7 in the discharge gap.

約100 Torr  の圧力下において図中矢印の方
向に流通させる。又、放電により温度上昇した該ガスは
、熱交換器等の冷却装置(図示せず)F/経由させられ
て送風機(図示せず)により再び放電空隙に循環される
ように流される。第2図に一対の電極(1)に印加され
る高周波電源(2)の電圧波形ケ示す。この電圧波形の
基本周波数は100〜150KH,。
It is made to flow in the direction of the arrow in the figure under a pressure of about 100 Torr. Further, the gas whose temperature has increased due to the discharge is passed through a cooling device (not shown) F/ such as a heat exchanger, and is circulated to the discharge gap again by a blower (not shown). FIG. 2 shows the voltage waveform of the high frequency power source (2) applied to the pair of electrodes (1). The fundamental frequency of this voltage waveform is 100 to 150 KH.

電圧値はピーク値で10KV程度であり、第2図に示さ
れるように0.1〜2KH2のAM変調が施されている
。この電圧波形により一対の電極(11間を放電させる
と、  co2ガス分子のレーザ励起レベルでの滞在時
間が放電基本周波数における励起時間に比較してきわめ
て長い(約50μsec、)ために。
The voltage value is about 10 KV at the peak value, and as shown in FIG. 2, AM modulation of 0.1 to 2 KH2 is applied. When a discharge is caused between the pair of electrodes (11) using this voltage waveform, the residence time of CO2 gas molecules at the laser excitation level is extremely long (approximately 50 μsec) compared to the excitation time at the discharge fundamental frequency.

レーザ出力波形は第3図に示す如くパルス状となる。こ
のレーザ出力は、励起元軸上両端に設けられた全反射鏡
(4)と部分反射鏡(3)により構成された光共振器に
より共振され1部分反射鏡i3) lllより出力波長
to1μmのCO2パルスレーザビームとして取り出さ
せることになる。なお、第2図及び第3図の特性図では
パルスレーザビームを得るための例を示したが、高周波
放電を基本周波数において連続的に行なえは、レーザ出
力はCWと呼ばれる連続発振出力を得ることができる。
The laser output waveform is pulsed as shown in FIG. This laser output is resonated by an optical resonator constituted by a total reflection mirror (4) and a partial reflection mirror (3) provided at both ends on the excitation source axis, and the output wavelength of CO2 from the partial reflection mirror i3) is 1 μm. This will be extracted as a pulsed laser beam. Note that the characteristic diagrams in Figures 2 and 3 show an example of obtaining a pulsed laser beam, but if high-frequency discharge is performed continuously at the fundamental frequency, the laser output will be a continuous wave output called CW. I can do it.

ところで、第1図に示す装置において、レーザ媒質ガス
であるCO2を含む混合ガスを発掘器内に封じ込め、長
時間連続的にCW発振を行なわせるのに最も効率の良い
混合ガスの組成として表1に示す(Aガス)の成分及び
組成のものを用いてい炭酸ガスレーザ発振器に使用する
レーザ媒質ガスとして、C02にN2及びHe ガスを
混合する効果は周知であるが、COガスは主にCO2が
無声放電により解離しOO+Oとなる平衡条件を予め設
定するために混入するものである。
By the way, in the apparatus shown in Fig. 1, Table 1 shows the composition of the most efficient mixed gas for confining the mixed gas containing CO2, which is the laser medium gas, in the excavator and performing continuous CW oscillation for a long time. The effect of mixing C02 with N2 and He gas as a laser medium gas used in a carbon dioxide laser oscillator using the components and composition of (A gas) shown in It is mixed in order to preset the equilibrium condition in which it dissociates due to discharge and becomes OO+O.

従来の混合カス(Aガス)を用いた場合、  OW発振
時に於てレーザ出力の低い、即ち注入放電入力の低い領
域では、同一放電入力に対するレーザ出力の時間的変化
はガス封入後100Hr経過しても少ない。
When using the conventional mixed gas (A gas), in the region where the laser output is low during OW oscillation, that is, the injection discharge input is low, the temporal change in the laser output for the same discharge input is only after 100 hours have passed after filling the gas. There are also few.

しかし、ピーク出力の高いパルス出力波形を得るために
、放電々圧を高めたパルス連続発振を行う場合、放電入
カ一定の条件下においてレーザ平均出力は約25 Hr
 後に半減するという重大な欠点があることが判明した
However, when performing continuous pulse oscillation with a high discharge pressure in order to obtain a pulse output waveform with a high peak output, the average laser output is approximately 25 Hr under a constant discharge input condition.
It was later discovered that there was a serious drawback in that it was reduced by half.

この発明は、このような従来のものの欠点を除去するた
めになされたもので、カス封じ切り運転される無声放電
励起式炭酸ガスレーザ発振器にレーザ媒質ガスとして使
用される5C02を含む混合ガスの組成を最適化し、長
時間安定した性能が発揮できる混合ガスを提供すること
を目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones, and it changes the composition of a mixed gas containing 5C02 used as a laser medium gas in a silent discharge-excited carbon dioxide laser oscillator operated in a waste-sealed manner. The aim is to provide a gas mixture that can be optimized and exhibit stable performance over a long period of time.

以下、この発明の一実施例について説明する、三軸直交
型の無声放電励起式炭酸ガスレーザ発振器を用い9表2
に示す運転条件のもとに混合ガスの組成を種々変化させ
、放電入カ一定のもとにレーザ平均出力を熱電対カロリ
ーメータにより。
Hereinafter, one embodiment of the present invention will be described using a three-axis orthogonal silent discharge excited type carbon dioxide laser oscillator.
The composition of the mixed gas was varied under the operating conditions shown below, and the average laser output was measured using a thermocouple calorimeter under a constant discharge input.

またパルス出力波形をAu % Qe 素子により夫々
の時間的変化を測定実験した。
Further, experiments were conducted to measure the temporal changes in each pulse output waveform using an Au % Qe element.

種々の測定実験の結果、第4図はレーザ出力の時間変化
を示し、第5図は放電開始直後のパルスレーザ出力波形
を示す。
As a result of various measurement experiments, FIG. 4 shows the temporal change in laser output, and FIG. 5 shows the pulsed laser output waveform immediately after the start of discharge.

なお1表1には、従来の混合ガス(Aガス)の組成と本
発明で明らかになった最も効率の良いレーザ発振を行わ
せしめる混合ガスCBガス)の組成とを対比して示ビた
Table 1 shows a comparison between the composition of the conventional mixed gas (A gas) and the composition of the mixed gas (CB gas), which has been revealed by the present invention and enables the most efficient laser oscillation.

co2とCOのモル分率比は約2=1に保つのが解離平
衡条件より良好であるということが実験の結果間らかに
なったので、この比率は変化させずに、即ちco2とc
oの量を一定量ずつ比例的に従来のものより増加させた
場合C!0212%、006%のところにパルスレーザ
出力波形の最大となる。
As a result of experiments, it became clear that keeping the molar fraction ratio of co2 and CO at about 2 = 1 is better than the dissociation equilibrium condition.
If the amount of o is proportionally increased by a constant amount compared to the conventional one, C! The pulse laser output waveform reaches its maximum at 0212% and 006%.

ところが存在することが観測された。本発明の一実施例
の混合比である表1の(Bガス)により。
However, it was observed that it exists. According to (B gas) in Table 1, which is the mixing ratio of one example of the present invention.

表2に示す運転条件のもとに連続発振テストを行なった
ところ、第4図に示す如く、従来の(Aガス)では約2
5 Hr後には放電入カ一定なるもレーザ平均出力は半
減したものが、(Bガス〕では100Hrの連続運転後
も運転初期と殆ど変わらぬレーザ′平均出力を取り出す
ことができ−た。又Au −Ge 素子による波形にも
顕著な変化は見られなかった。
When a continuous oscillation test was conducted under the operating conditions shown in Table 2, as shown in Figure 4, the conventional (A gas)
After 5 hours, the discharge input remained constant, but the average laser output was halved, but with (B gas), even after 100 hours of continuous operation, the average laser output was almost the same as at the beginning of operation. No significant change was observed in the waveform caused by the -Ge element.

この発明は、高ピーク値を必要とするパルス発振時に従
来のものでは混合ガスの寿命が短く、ガスが短時間で劣
化するためレーザ出力の早期低下が生ずるのを防止する
ためになさiたものであるが、Au−Ge  素子によ
るパルス波形の観測結果より、第5図に示す如く1本発
明の実施例のガス忙よりは、パルスピーク出力も従来の
ものに比べて20〜30%増大するという副次的効果も
得ら′I7ている。
This invention was made in order to prevent an early drop in laser output due to the short lifetime of the mixed gas and the gas deterioration in a short period of time in conventional systems during pulse oscillation that requires a high peak value. However, from the observation results of the pulse waveform by the Au-Ge element, as shown in Fig. 5, the pulse peak output of the first embodiment of the present invention increases by 20 to 30% compared to the conventional one. The secondary effect is also obtained.

なお、この発明は1表1の(Bガス)に限定されるので
はなく4組成の6千の変化があっても同様の効果が得ら
11ることは容易に納得されるところである。実験によ
って確認さねたところによると、顕著にカス寿命を延長
させることができ、かつパルス出力のピークも増大させ
ることができるカス組成は表3の通りであった。
It should be noted that this invention is not limited to (B gas) in Table 1, but it is easily understood that the same effect can be obtained even with 6,000 changes in 4 compositions11. According to what was confirmed through experiments, Table 3 shows the scum composition that can significantly extend the scum life and also increase the peak of the pulse output.

表3 以上のように、 この発明の混合ガスを用いれは。Table 3 As described above, the mixed gas of the present invention can be used.

1o−o:Hr以上の長時間に渉り安定したレーザ出力
か得られるばかりか、レーザ発振効率も増大し高いレー
ザ出力のとり出せることができる効果がある。
Not only can a stable laser output be obtained for a long time of 1o-o:Hr or more, but also the laser oscillation efficiency is increased and a high laser output can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、無声放電励起式の炭酸ガスレーザ発振器の概
要図、第2図は、高周波放電々源の電圧波形図、第3図
は、パルスレーザ出力波形図、第4図は、従来の混合ガ
ス(A)と本発明の実施例の混合ガス(B)による放電
入カ一定の条件におけるレーザ平均出力の時間変化を示
す図、第5図は従来の混合ガス(A)と本発明の実施例
の混合ガス(B)による放電入カ一定の条件における放
電開始直後のパルスレーザ′出力波形を示す図である。 (11は電極、(2)は高周波放電々源、(3)け部分
反射鏡、(41け全反射鏡
Figure 1 is a schematic diagram of a silent discharge pumped carbon dioxide laser oscillator, Figure 2 is a voltage waveform diagram of a high-frequency discharge source, Figure 3 is a pulsed laser output waveform diagram, and Figure 4 is a conventional mixed laser oscillator. A diagram showing the time change in the average laser output under constant discharge input conditions for gas (A) and the mixed gas (B) of the embodiment of the present invention. Figure 5 shows the variation of the laser average output over time under conditions of constant discharge input with the gas (A) and the mixed gas (B) of the embodiment of the present invention. FIG. 6 is a diagram showing a pulsed laser' output waveform immediately after the start of discharge under a constant discharge input condition using the mixed gas (B) of the example. (11 is an electrode, (2) is a high-frequency discharge source, (3) is a partially reflecting mirror, (41 is a total reflecting mirror)

Claims (4)

【特許請求の範囲】[Claims] (1)対向する一対の電極の対向方向と、上記一対の電
極間に流通させられるレーザ媒質混合ガスのガス流方向
と、上記一対の電極間の放電空隙を介して対向する部分
反射鏡及び全反射鏡からなる光共振器の共振器軸方向と
が夫々互いに直交した三軸直交型の無声放電励起式炭酸
ガスレーザ発振器内に封入され循環使用される上記混合
ガスの組成を以下の条件を満足させるようにしたことを
特徴とする無声放電励起式炭酸ガスレーザ発振器用混合
ガス。
(1) The opposing direction of the pair of opposing electrodes, the gas flow direction of the laser medium mixed gas flowing between the pair of electrodes, and the partial and total reflecting mirrors facing each other across the discharge gap between the pair of electrodes. The composition of the above-mentioned mixed gas, which is sealed and circulated in a three-axis orthogonal silent discharge pumped carbon dioxide laser oscillator in which the resonator axes of optical resonators each consisting of a reflecting mirror are orthogonal to each other, satisfies the following conditions. A mixed gas for a silent discharge excited carbon dioxide laser oscillator, characterized in that:
(2)混合ガスの組成のCOをCO_2の1/2とした
ことを特徴とする特許請求の範囲第(1)項記載の無声
放電励起式炭酸ガスレーザ発振器用混合ガス。
(2) A mixed gas for a silent discharge excited carbon dioxide laser oscillator according to claim (1), characterized in that the composition of the mixed gas is 1/2 CO_2.
(3)混合ガスの組成を以下のとおりとしたことを特徴
とする特許請求の範囲第(2)項記載の無声放電励起式
炭酸ガスレーザ発振器用混合ガス。
(3) A mixed gas for a silent discharge excited carbon dioxide laser oscillator according to claim (2), characterized in that the mixed gas has the following composition.
(4)炭酸ガスレーザ発振器をパルスレーザ発振器とし
たことを特徴とする特許請求の範囲第(3)項記載の無
声放電励起式炭酸ガスレーザ発振器用混合ガス。
(4) A mixed gas for a silent discharge excited carbon dioxide laser oscillator according to claim (3), characterized in that the carbon dioxide laser oscillator is a pulsed laser oscillator.
JP14282084A 1984-07-10 1984-07-10 Mixture gas for carbonic acid gas laser oscilator excited by silent discharge Granted JPS6122680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14282084A JPS6122680A (en) 1984-07-10 1984-07-10 Mixture gas for carbonic acid gas laser oscilator excited by silent discharge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14282084A JPS6122680A (en) 1984-07-10 1984-07-10 Mixture gas for carbonic acid gas laser oscilator excited by silent discharge

Publications (2)

Publication Number Publication Date
JPS6122680A true JPS6122680A (en) 1986-01-31
JPH0240224B2 JPH0240224B2 (en) 1990-09-10

Family

ID=15324383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14282084A Granted JPS6122680A (en) 1984-07-10 1984-07-10 Mixture gas for carbonic acid gas laser oscilator excited by silent discharge

Country Status (1)

Country Link
JP (1) JPS6122680A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000021167A1 (en) * 1998-10-05 2000-04-13 Stichting Voor De Technische Wetenschappen Co2-laser comprising carbon monoxide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54100288A (en) * 1978-01-24 1979-08-07 Mitsubishi Electric Corp Pulse output gas laser oscillation method
JPS5739551A (en) * 1980-08-21 1982-03-04 Seiko Epson Corp Manufacture of selectively oxidized mask
JPS5739546A (en) * 1980-08-21 1982-03-04 Nec Home Electronics Ltd Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54100288A (en) * 1978-01-24 1979-08-07 Mitsubishi Electric Corp Pulse output gas laser oscillation method
JPS5739551A (en) * 1980-08-21 1982-03-04 Seiko Epson Corp Manufacture of selectively oxidized mask
JPS5739546A (en) * 1980-08-21 1982-03-04 Nec Home Electronics Ltd Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000021167A1 (en) * 1998-10-05 2000-04-13 Stichting Voor De Technische Wetenschappen Co2-laser comprising carbon monoxide

Also Published As

Publication number Publication date
JPH0240224B2 (en) 1990-09-10

Similar Documents

Publication Publication Date Title
US3723902A (en) Carbon dioxide laser employing multiple gases including oxygen and water vapor
Lee et al. SINGLE‐MODE POWER FROM A 6328 Å LASER INCORPORATING NEON ABSORPTION
Von Bergmann et al. Pulsed corona excitation of high‐power uv nitrogen lasers at pressures of 0–3 bar
Yasui et al. Silent-discharge excited TEM/sub 00/2.5 kW CO/sub 2/laser
JPS6122680A (en) Mixture gas for carbonic acid gas laser oscilator excited by silent discharge
JPS639393B2 (en)
JPS6237892B2 (en)
US4344174A (en) Gas lasers
Dyer et al. Miniature 250 Hz, TEA CO2 laser using H2 buffered gas mixture
Wellegehausen et al. Cascade laser emission of optically pumped Na2 molecules
US3860884A (en) Optically pumped laser using N{HD 2{B O or similar gas mixed with energy-transferring CO{HD 2{B
Wright et al. Principles of lasers
Anh et al. Homogeneous broadening in a 0.63 μm single mode He-Ne laser
Searles et al. New chemically pumped CO2 and N2O lasers
RU2354019C1 (en) Active medium for electric discharge co laser or amplifier and method of its pumping
US4276517A (en) CO Pumped CO2 16 micron laser
Burlamacchi Laser sources
Smith et al. High repetition-rate and quasi-cw operation of a waveguide CO2 TE laser
US3864646A (en) CO chemical laser from ketene gas
Smith et al. Mode-locking of an atmospheric pressure cross-excited electrically pulsed CO 2 laser
Nath et al. Improved performance and rotational spectral characteristics of a doped helical TEA CO 2 laser
Jitsuno A nitrogen ion laser pumped by a rapid discharge
Ito et al. Self mode-locking of the transverse modes in the CO2 laser oscillation
US4137509A (en) Tunable laser based upon S2, Te2 and other selected dimers
Morrison et al. Modeling of high-pressure 12-μm NH 3 lasers

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term